1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 24 #include <sys/ioctl.h> 25 26 /* 27 * Helpers for CPU hotplug 28 * 29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 30 */ 31 typedef struct KVMEnabledCPU { 32 unsigned long vcpu_id; 33 QLIST_ENTRY(KVMEnabledCPU) node; 34 } KVMEnabledCPU; 35 36 static QLIST_HEAD(, KVMEnabledCPU) 37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 38 39 static bool kvm_cpu_is_enabled(CPUState *cs) 40 { 41 KVMEnabledCPU *enabled_cpu; 42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 43 44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 45 if (enabled_cpu->vcpu_id == vcpu_id) { 46 return true; 47 } 48 } 49 return false; 50 } 51 52 static void kvm_cpu_enable(CPUState *cs) 53 { 54 KVMEnabledCPU *enabled_cpu; 55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 56 57 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 58 enabled_cpu->vcpu_id = vcpu_id; 59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 60 } 61 62 static void kvm_cpu_disable_all(void) 63 { 64 KVMEnabledCPU *enabled_cpu, *next; 65 66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 67 QLIST_REMOVE(enabled_cpu, node); 68 g_free(enabled_cpu); 69 } 70 } 71 72 /* 73 * XIVE Thread Interrupt Management context (KVM) 74 */ 75 76 void kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 77 { 78 SpaprXive *xive = SPAPR_MACHINE(qdev_get_machine())->xive; 79 uint64_t state[2]; 80 int ret; 81 82 /* The KVM XIVE device is not in use yet */ 83 if (xive->fd == -1) { 84 return; 85 } 86 87 /* word0 and word1 of the OS ring. */ 88 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 89 90 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 91 if (ret != 0) { 92 error_setg_errno(errp, errno, 93 "XIVE: could not restore KVM state of CPU %ld", 94 kvm_arch_vcpu_id(tctx->cs)); 95 } 96 } 97 98 void kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 99 { 100 SpaprXive *xive = SPAPR_MACHINE(qdev_get_machine())->xive; 101 uint64_t state[2] = { 0 }; 102 int ret; 103 104 /* The KVM XIVE device is not in use */ 105 if (xive->fd == -1) { 106 return; 107 } 108 109 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 110 if (ret != 0) { 111 error_setg_errno(errp, errno, 112 "XIVE: could not capture KVM state of CPU %ld", 113 kvm_arch_vcpu_id(tctx->cs)); 114 return; 115 } 116 117 /* word0 and word1 of the OS ring. */ 118 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 119 } 120 121 typedef struct { 122 XiveTCTX *tctx; 123 Error *err; 124 } XiveCpuGetState; 125 126 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 127 run_on_cpu_data arg) 128 { 129 XiveCpuGetState *s = arg.host_ptr; 130 131 kvmppc_xive_cpu_get_state(s->tctx, &s->err); 132 } 133 134 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 135 { 136 XiveCpuGetState s = { 137 .tctx = tctx, 138 .err = NULL, 139 }; 140 141 /* 142 * Kick the vCPU to make sure they are available for the KVM ioctl. 143 */ 144 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 145 RUN_ON_CPU_HOST_PTR(&s)); 146 147 if (s.err) { 148 error_propagate(errp, s.err); 149 return; 150 } 151 } 152 153 void kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 154 { 155 SpaprXive *xive = SPAPR_MACHINE(qdev_get_machine())->xive; 156 unsigned long vcpu_id; 157 int ret; 158 159 /* The KVM XIVE device is not in use */ 160 if (xive->fd == -1) { 161 return; 162 } 163 164 /* Check if CPU was hot unplugged and replugged. */ 165 if (kvm_cpu_is_enabled(tctx->cs)) { 166 return; 167 } 168 169 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 170 171 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 172 vcpu_id, 0); 173 if (ret < 0) { 174 error_setg(errp, "XIVE: unable to connect CPU%ld to KVM device: %s", 175 vcpu_id, strerror(errno)); 176 return; 177 } 178 179 kvm_cpu_enable(tctx->cs); 180 } 181 182 /* 183 * XIVE Interrupt Source (KVM) 184 */ 185 186 void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 187 Error **errp) 188 { 189 uint32_t end_idx; 190 uint32_t end_blk; 191 uint8_t priority; 192 uint32_t server; 193 bool masked; 194 uint32_t eisn; 195 uint64_t kvm_src; 196 Error *local_err = NULL; 197 198 assert(xive_eas_is_valid(eas)); 199 200 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 201 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 202 eisn = xive_get_field64(EAS_END_DATA, eas->w); 203 masked = xive_eas_is_masked(eas); 204 205 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 206 207 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 208 KVM_XIVE_SOURCE_PRIORITY_MASK; 209 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 210 KVM_XIVE_SOURCE_SERVER_MASK; 211 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 212 KVM_XIVE_SOURCE_MASKED_MASK; 213 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 214 KVM_XIVE_SOURCE_EISN_MASK; 215 216 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 217 &kvm_src, true, &local_err); 218 if (local_err) { 219 error_propagate(errp, local_err); 220 return; 221 } 222 } 223 224 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 225 { 226 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 227 NULL, true, errp); 228 } 229 230 /* 231 * At reset, the interrupt sources are simply created and MASKED. We 232 * only need to inform the KVM XIVE device about their type: LSI or 233 * MSI. 234 */ 235 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 236 { 237 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 238 uint64_t state = 0; 239 240 /* The KVM XIVE device is not in use */ 241 if (xive->fd == -1) { 242 return -ENODEV; 243 } 244 245 if (xive_source_irq_is_lsi(xsrc, srcno)) { 246 state |= KVM_XIVE_LEVEL_SENSITIVE; 247 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 248 state |= KVM_XIVE_LEVEL_ASSERTED; 249 } 250 } 251 252 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 253 true, errp); 254 } 255 256 static void kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 257 { 258 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 259 int i; 260 261 for (i = 0; i < xsrc->nr_irqs; i++) { 262 Error *local_err = NULL; 263 264 if (!xive_eas_is_valid(&xive->eat[i])) { 265 continue; 266 } 267 268 kvmppc_xive_source_reset_one(xsrc, i, &local_err); 269 if (local_err) { 270 error_propagate(errp, local_err); 271 return; 272 } 273 } 274 } 275 276 /* 277 * This is used to perform the magic loads on the ESB pages, described 278 * in xive.h. 279 * 280 * Memory barriers should not be needed for loads (no store for now). 281 */ 282 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 283 uint64_t data, bool write) 284 { 285 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 286 offset; 287 288 if (write) { 289 *addr = cpu_to_be64(data); 290 return -1; 291 } else { 292 /* Prevent the compiler from optimizing away the load */ 293 volatile uint64_t value = be64_to_cpu(*addr); 294 return value; 295 } 296 } 297 298 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 299 { 300 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 301 } 302 303 static void xive_esb_trigger(XiveSource *xsrc, int srcno) 304 { 305 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 306 307 *addr = 0x0; 308 } 309 310 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 311 uint64_t data, bool write) 312 { 313 if (write) { 314 return xive_esb_rw(xsrc, srcno, offset, data, 1); 315 } 316 317 /* 318 * Special Load EOI handling for LSI sources. Q bit is never set 319 * and the interrupt should be re-triggered if the level is still 320 * asserted. 321 */ 322 if (xive_source_irq_is_lsi(xsrc, srcno) && 323 offset == XIVE_ESB_LOAD_EOI) { 324 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 325 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 326 xive_esb_trigger(xsrc, srcno); 327 } 328 return 0; 329 } else { 330 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 331 } 332 } 333 334 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 335 { 336 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 337 int i; 338 339 for (i = 0; i < xsrc->nr_irqs; i++) { 340 uint8_t pq; 341 342 if (!xive_eas_is_valid(&xive->eat[i])) { 343 continue; 344 } 345 346 /* Perform a load without side effect to retrieve the PQ bits */ 347 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 348 349 /* and save PQ locally */ 350 xive_source_esb_set(xsrc, i, pq); 351 } 352 } 353 354 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 355 { 356 XiveSource *xsrc = opaque; 357 358 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 359 if (!val) { 360 return; 361 } 362 } else { 363 if (val) { 364 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 365 } else { 366 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 367 } 368 } 369 370 xive_esb_trigger(xsrc, srcno); 371 } 372 373 /* 374 * sPAPR XIVE interrupt controller (KVM) 375 */ 376 void kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 377 uint32_t end_idx, XiveEND *end, 378 Error **errp) 379 { 380 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 381 uint64_t kvm_eq_idx; 382 uint8_t priority; 383 uint32_t server; 384 Error *local_err = NULL; 385 386 assert(xive_end_is_valid(end)); 387 388 /* Encode the tuple (server, prio) as a KVM EQ index */ 389 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 390 391 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 392 KVM_XIVE_EQ_PRIORITY_MASK; 393 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 394 KVM_XIVE_EQ_SERVER_MASK; 395 396 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 397 &kvm_eq, false, &local_err); 398 if (local_err) { 399 error_propagate(errp, local_err); 400 return; 401 } 402 403 /* 404 * The EQ index and toggle bit are updated by HW. These are the 405 * only fields from KVM we want to update QEMU with. The other END 406 * fields should already be in the QEMU END table. 407 */ 408 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 409 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 410 } 411 412 void kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 413 uint32_t end_idx, XiveEND *end, 414 Error **errp) 415 { 416 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 417 uint64_t kvm_eq_idx; 418 uint8_t priority; 419 uint32_t server; 420 Error *local_err = NULL; 421 422 /* 423 * Build the KVM state from the local END structure. 424 */ 425 426 kvm_eq.flags = 0; 427 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 428 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 429 } 430 431 /* 432 * If the hcall is disabling the EQ, set the size and page address 433 * to zero. When migrating, only valid ENDs are taken into 434 * account. 435 */ 436 if (xive_end_is_valid(end)) { 437 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 438 kvm_eq.qaddr = xive_end_qaddr(end); 439 /* 440 * The EQ toggle bit and index should only be relevant when 441 * restoring the EQ state 442 */ 443 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 444 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 445 } else { 446 kvm_eq.qshift = 0; 447 kvm_eq.qaddr = 0; 448 } 449 450 /* Encode the tuple (server, prio) as a KVM EQ index */ 451 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 452 453 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 454 KVM_XIVE_EQ_PRIORITY_MASK; 455 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 456 KVM_XIVE_EQ_SERVER_MASK; 457 458 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 459 &kvm_eq, true, &local_err); 460 if (local_err) { 461 error_propagate(errp, local_err); 462 return; 463 } 464 } 465 466 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 467 { 468 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 469 NULL, true, errp); 470 } 471 472 static void kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 473 { 474 Error *local_err = NULL; 475 int i; 476 477 for (i = 0; i < xive->nr_ends; i++) { 478 if (!xive_end_is_valid(&xive->endt[i])) { 479 continue; 480 } 481 482 kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 483 &xive->endt[i], &local_err); 484 if (local_err) { 485 error_propagate(errp, local_err); 486 return; 487 } 488 } 489 } 490 491 /* 492 * The primary goal of the XIVE VM change handler is to mark the EQ 493 * pages dirty when all XIVE event notifications have stopped. 494 * 495 * Whenever the VM is stopped, the VM change handler sets the source 496 * PQs to PENDING to stop the flow of events and to possibly catch a 497 * triggered interrupt occuring while the VM is stopped. The previous 498 * state is saved in anticipation of a migration. The XIVE controller 499 * is then synced through KVM to flush any in-flight event 500 * notification and stabilize the EQs. 501 * 502 * At this stage, we can mark the EQ page dirty and let a migration 503 * sequence transfer the EQ pages to the destination, which is done 504 * just after the stop state. 505 * 506 * The previous configuration of the sources is restored when the VM 507 * runs again. If an interrupt was queued while the VM was stopped, 508 * simply generate a trigger. 509 */ 510 static void kvmppc_xive_change_state_handler(void *opaque, int running, 511 RunState state) 512 { 513 SpaprXive *xive = opaque; 514 XiveSource *xsrc = &xive->source; 515 Error *local_err = NULL; 516 int i; 517 518 /* 519 * Restore the sources to their initial state. This is called when 520 * the VM resumes after a stop or a migration. 521 */ 522 if (running) { 523 for (i = 0; i < xsrc->nr_irqs; i++) { 524 uint8_t pq; 525 uint8_t old_pq; 526 527 if (!xive_eas_is_valid(&xive->eat[i])) { 528 continue; 529 } 530 531 pq = xive_source_esb_get(xsrc, i); 532 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 533 534 /* 535 * An interrupt was queued while the VM was stopped, 536 * generate a trigger. 537 */ 538 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 539 xive_esb_trigger(xsrc, i); 540 } 541 } 542 543 return; 544 } 545 546 /* 547 * Mask the sources, to stop the flow of event notifications, and 548 * save the PQs locally in the XiveSource object. The XiveSource 549 * state will be collected later on by its vmstate handler if a 550 * migration is in progress. 551 */ 552 for (i = 0; i < xsrc->nr_irqs; i++) { 553 uint8_t pq; 554 555 if (!xive_eas_is_valid(&xive->eat[i])) { 556 continue; 557 } 558 559 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 560 561 /* 562 * PQ is set to PENDING to possibly catch a triggered 563 * interrupt occuring while the VM is stopped (hotplug event 564 * for instance) . 565 */ 566 if (pq != XIVE_ESB_OFF) { 567 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 568 } 569 xive_source_esb_set(xsrc, i, pq); 570 } 571 572 /* 573 * Sync the XIVE controller in KVM, to flush in-flight event 574 * notification that should be enqueued in the EQs and mark the 575 * XIVE EQ pages dirty to collect all updates. 576 */ 577 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 578 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 579 if (local_err) { 580 error_report_err(local_err); 581 return; 582 } 583 } 584 585 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 586 { 587 /* The KVM XIVE device is not in use */ 588 if (xive->fd == -1) { 589 return; 590 } 591 592 /* 593 * When the VM is stopped, the sources are masked and the previous 594 * state is saved in anticipation of a migration. We should not 595 * synchronize the source state in that case else we will override 596 * the saved state. 597 */ 598 if (runstate_is_running()) { 599 kvmppc_xive_source_get_state(&xive->source); 600 } 601 602 /* EAT: there is no extra state to query from KVM */ 603 604 /* ENDT */ 605 kvmppc_xive_get_queues(xive, errp); 606 } 607 608 /* 609 * The SpaprXive 'pre_save' method is called by the vmstate handler of 610 * the SpaprXive model, after the XIVE controller is synced in the VM 611 * change handler. 612 */ 613 int kvmppc_xive_pre_save(SpaprXive *xive) 614 { 615 Error *local_err = NULL; 616 617 /* The KVM XIVE device is not in use */ 618 if (xive->fd == -1) { 619 return 0; 620 } 621 622 /* EAT: there is no extra state to query from KVM */ 623 624 /* ENDT */ 625 kvmppc_xive_get_queues(xive, &local_err); 626 if (local_err) { 627 error_report_err(local_err); 628 return -1; 629 } 630 631 return 0; 632 } 633 634 /* 635 * The SpaprXive 'post_load' method is not called by a vmstate 636 * handler. It is called at the sPAPR machine level at the end of the 637 * migration sequence by the sPAPR IRQ backend 'post_load' method, 638 * when all XIVE states have been transferred and loaded. 639 */ 640 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 641 { 642 Error *local_err = NULL; 643 CPUState *cs; 644 int i; 645 646 /* The KVM XIVE device should be in use */ 647 assert(xive->fd != -1); 648 649 /* Restore the ENDT first. The targetting depends on it. */ 650 for (i = 0; i < xive->nr_ends; i++) { 651 if (!xive_end_is_valid(&xive->endt[i])) { 652 continue; 653 } 654 655 kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 656 &xive->endt[i], &local_err); 657 if (local_err) { 658 error_report_err(local_err); 659 return -1; 660 } 661 } 662 663 /* Restore the EAT */ 664 for (i = 0; i < xive->nr_irqs; i++) { 665 if (!xive_eas_is_valid(&xive->eat[i])) { 666 continue; 667 } 668 669 /* 670 * We can only restore the source config if the source has been 671 * previously set in KVM. Since we don't do that for all interrupts 672 * at reset time anymore, let's do it now. 673 */ 674 kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 675 if (local_err) { 676 error_report_err(local_err); 677 return -1; 678 } 679 680 kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 681 if (local_err) { 682 error_report_err(local_err); 683 return -1; 684 } 685 } 686 687 /* 688 * Restore the thread interrupt contexts of initial CPUs. 689 * 690 * The context of hotplugged CPUs is restored later, by the 691 * 'post_load' handler of the XiveTCTX model because they are not 692 * available at the time the SpaprXive 'post_load' method is 693 * called. We can not restore the context of all CPUs in the 694 * 'post_load' handler of XiveTCTX because the machine is not 695 * necessarily connected to the KVM device at that time. 696 */ 697 CPU_FOREACH(cs) { 698 PowerPCCPU *cpu = POWERPC_CPU(cs); 699 700 kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 701 if (local_err) { 702 error_report_err(local_err); 703 return -1; 704 } 705 } 706 707 /* The source states will be restored when the machine starts running */ 708 return 0; 709 } 710 711 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 712 Error **errp) 713 { 714 void *addr; 715 uint32_t page_shift = 16; /* TODO: fix page_shift */ 716 717 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 718 pgoff << page_shift); 719 if (addr == MAP_FAILED) { 720 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 721 return NULL; 722 } 723 724 return addr; 725 } 726 727 /* 728 * All the XIVE memory regions are now backed by mappings from the KVM 729 * XIVE device. 730 */ 731 int kvmppc_xive_connect(SpaprInterruptController *intc, Error **errp) 732 { 733 SpaprXive *xive = SPAPR_XIVE(intc); 734 XiveSource *xsrc = &xive->source; 735 Error *local_err = NULL; 736 size_t esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 737 size_t tima_len = 4ull << TM_SHIFT; 738 CPUState *cs; 739 740 /* 741 * The KVM XIVE device already in use. This is the case when 742 * rebooting under the XIVE-only interrupt mode. 743 */ 744 if (xive->fd != -1) { 745 return 0; 746 } 747 748 if (!kvmppc_has_cap_xive()) { 749 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 750 return -1; 751 } 752 753 /* First, create the KVM XIVE device */ 754 xive->fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 755 if (xive->fd < 0) { 756 error_setg_errno(errp, -xive->fd, "XIVE: error creating KVM device"); 757 return -1; 758 } 759 760 /* 761 * 1. Source ESB pages - KVM mapping 762 */ 763 xsrc->esb_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, 764 &local_err); 765 if (local_err) { 766 goto fail; 767 } 768 769 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 770 "xive.esb", esb_len, xsrc->esb_mmap); 771 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 772 &xsrc->esb_mmio_kvm, 1); 773 774 /* 775 * 2. END ESB pages (No KVM support yet) 776 */ 777 778 /* 779 * 3. TIMA pages - KVM mapping 780 */ 781 xive->tm_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, 782 &local_err); 783 if (local_err) { 784 goto fail; 785 } 786 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 787 "xive.tima", tima_len, xive->tm_mmap); 788 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 789 &xive->tm_mmio_kvm, 1); 790 791 xive->change = qemu_add_vm_change_state_handler( 792 kvmppc_xive_change_state_handler, xive); 793 794 /* Connect the presenters to the initial VCPUs of the machine */ 795 CPU_FOREACH(cs) { 796 PowerPCCPU *cpu = POWERPC_CPU(cs); 797 798 kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, &local_err); 799 if (local_err) { 800 goto fail; 801 } 802 } 803 804 /* Update the KVM sources */ 805 kvmppc_xive_source_reset(xsrc, &local_err); 806 if (local_err) { 807 goto fail; 808 } 809 810 kvm_kernel_irqchip = true; 811 kvm_msi_via_irqfd_allowed = true; 812 kvm_gsi_direct_mapping = true; 813 return 0; 814 815 fail: 816 error_propagate(errp, local_err); 817 kvmppc_xive_disconnect(intc); 818 return -1; 819 } 820 821 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 822 { 823 SpaprXive *xive = SPAPR_XIVE(intc); 824 XiveSource *xsrc; 825 size_t esb_len; 826 827 /* The KVM XIVE device is not in use */ 828 if (!xive || xive->fd == -1) { 829 return; 830 } 831 832 /* Clear the KVM mapping */ 833 xsrc = &xive->source; 834 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 835 836 if (xsrc->esb_mmap) { 837 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 838 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 839 munmap(xsrc->esb_mmap, esb_len); 840 xsrc->esb_mmap = NULL; 841 } 842 843 if (xive->tm_mmap) { 844 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 845 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 846 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 847 xive->tm_mmap = NULL; 848 } 849 850 /* 851 * When the KVM device fd is closed, the KVM device is destroyed 852 * and removed from the list of devices of the VM. The VCPU 853 * presenters are also detached from the device. 854 */ 855 if (xive->fd != -1) { 856 close(xive->fd); 857 xive->fd = -1; 858 } 859 860 kvm_kernel_irqchip = false; 861 kvm_msi_via_irqfd_allowed = false; 862 kvm_gsi_direct_mapping = false; 863 864 /* Clear the local list of presenter (hotplug) */ 865 kvm_cpu_disable_all(); 866 867 /* VM Change state handler is not needed anymore */ 868 if (xive->change) { 869 qemu_del_vm_change_state_handler(xive->change); 870 xive->change = NULL; 871 } 872 } 873