1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 24 #include <sys/ioctl.h> 25 26 /* 27 * Helpers for CPU hotplug 28 * 29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 30 */ 31 typedef struct KVMEnabledCPU { 32 unsigned long vcpu_id; 33 QLIST_ENTRY(KVMEnabledCPU) node; 34 } KVMEnabledCPU; 35 36 static QLIST_HEAD(, KVMEnabledCPU) 37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 38 39 static bool kvm_cpu_is_enabled(CPUState *cs) 40 { 41 KVMEnabledCPU *enabled_cpu; 42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 43 44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 45 if (enabled_cpu->vcpu_id == vcpu_id) { 46 return true; 47 } 48 } 49 return false; 50 } 51 52 static void kvm_cpu_enable(CPUState *cs) 53 { 54 KVMEnabledCPU *enabled_cpu; 55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 56 57 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 58 enabled_cpu->vcpu_id = vcpu_id; 59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 60 } 61 62 static void kvm_cpu_disable_all(void) 63 { 64 KVMEnabledCPU *enabled_cpu, *next; 65 66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 67 QLIST_REMOVE(enabled_cpu, node); 68 g_free(enabled_cpu); 69 } 70 } 71 72 /* 73 * XIVE Thread Interrupt Management context (KVM) 74 */ 75 76 void kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 77 { 78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 79 uint64_t state[2]; 80 int ret; 81 82 assert(xive->fd != -1); 83 84 /* word0 and word1 of the OS ring. */ 85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 86 87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 88 if (ret != 0) { 89 error_setg_errno(errp, errno, 90 "XIVE: could not restore KVM state of CPU %ld", 91 kvm_arch_vcpu_id(tctx->cs)); 92 } 93 } 94 95 void kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 96 { 97 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 98 uint64_t state[2] = { 0 }; 99 int ret; 100 101 assert(xive->fd != -1); 102 103 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 104 if (ret != 0) { 105 error_setg_errno(errp, errno, 106 "XIVE: could not capture KVM state of CPU %ld", 107 kvm_arch_vcpu_id(tctx->cs)); 108 return; 109 } 110 111 /* word0 and word1 of the OS ring. */ 112 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 113 } 114 115 typedef struct { 116 XiveTCTX *tctx; 117 Error *err; 118 } XiveCpuGetState; 119 120 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 121 run_on_cpu_data arg) 122 { 123 XiveCpuGetState *s = arg.host_ptr; 124 125 kvmppc_xive_cpu_get_state(s->tctx, &s->err); 126 } 127 128 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 129 { 130 XiveCpuGetState s = { 131 .tctx = tctx, 132 .err = NULL, 133 }; 134 135 /* 136 * Kick the vCPU to make sure they are available for the KVM ioctl. 137 */ 138 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 139 RUN_ON_CPU_HOST_PTR(&s)); 140 141 if (s.err) { 142 error_propagate(errp, s.err); 143 return; 144 } 145 } 146 147 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 148 { 149 ERRP_GUARD(); 150 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 151 unsigned long vcpu_id; 152 int ret; 153 154 assert(xive->fd != -1); 155 156 /* Check if CPU was hot unplugged and replugged. */ 157 if (kvm_cpu_is_enabled(tctx->cs)) { 158 return 0; 159 } 160 161 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 162 163 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 164 vcpu_id, 0); 165 if (ret < 0) { 166 error_setg_errno(errp, -ret, 167 "XIVE: unable to connect CPU%ld to KVM device", 168 vcpu_id); 169 if (ret == -ENOSPC) { 170 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 171 MACHINE(qdev_get_machine())->smp.max_cpus); 172 } 173 return ret; 174 } 175 176 kvm_cpu_enable(tctx->cs); 177 return 0; 178 } 179 180 /* 181 * XIVE Interrupt Source (KVM) 182 */ 183 184 void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 185 Error **errp) 186 { 187 uint32_t end_idx; 188 uint32_t end_blk; 189 uint8_t priority; 190 uint32_t server; 191 bool masked; 192 uint32_t eisn; 193 uint64_t kvm_src; 194 Error *local_err = NULL; 195 196 assert(xive_eas_is_valid(eas)); 197 198 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 199 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 200 eisn = xive_get_field64(EAS_END_DATA, eas->w); 201 masked = xive_eas_is_masked(eas); 202 203 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 204 205 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 206 KVM_XIVE_SOURCE_PRIORITY_MASK; 207 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 208 KVM_XIVE_SOURCE_SERVER_MASK; 209 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 210 KVM_XIVE_SOURCE_MASKED_MASK; 211 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 212 KVM_XIVE_SOURCE_EISN_MASK; 213 214 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 215 &kvm_src, true, &local_err); 216 if (local_err) { 217 error_propagate(errp, local_err); 218 return; 219 } 220 } 221 222 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 223 { 224 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 225 NULL, true, errp); 226 } 227 228 /* 229 * At reset, the interrupt sources are simply created and MASKED. We 230 * only need to inform the KVM XIVE device about their type: LSI or 231 * MSI. 232 */ 233 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 234 { 235 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 236 uint64_t state = 0; 237 238 assert(xive->fd != -1); 239 240 if (xive_source_irq_is_lsi(xsrc, srcno)) { 241 state |= KVM_XIVE_LEVEL_SENSITIVE; 242 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 243 state |= KVM_XIVE_LEVEL_ASSERTED; 244 } 245 } 246 247 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 248 true, errp); 249 } 250 251 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 252 { 253 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 254 int i; 255 256 for (i = 0; i < xsrc->nr_irqs; i++) { 257 int ret; 258 259 if (!xive_eas_is_valid(&xive->eat[i])) { 260 continue; 261 } 262 263 ret = kvmppc_xive_source_reset_one(xsrc, i, errp); 264 if (ret < 0) { 265 return ret; 266 } 267 } 268 269 return 0; 270 } 271 272 /* 273 * This is used to perform the magic loads on the ESB pages, described 274 * in xive.h. 275 * 276 * Memory barriers should not be needed for loads (no store for now). 277 */ 278 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 279 uint64_t data, bool write) 280 { 281 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 282 offset; 283 284 if (write) { 285 *addr = cpu_to_be64(data); 286 return -1; 287 } else { 288 /* Prevent the compiler from optimizing away the load */ 289 volatile uint64_t value = be64_to_cpu(*addr); 290 return value; 291 } 292 } 293 294 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 295 { 296 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 297 } 298 299 static void xive_esb_trigger(XiveSource *xsrc, int srcno) 300 { 301 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 302 303 *addr = 0x0; 304 } 305 306 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 307 uint64_t data, bool write) 308 { 309 if (write) { 310 return xive_esb_rw(xsrc, srcno, offset, data, 1); 311 } 312 313 /* 314 * Special Load EOI handling for LSI sources. Q bit is never set 315 * and the interrupt should be re-triggered if the level is still 316 * asserted. 317 */ 318 if (xive_source_irq_is_lsi(xsrc, srcno) && 319 offset == XIVE_ESB_LOAD_EOI) { 320 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 321 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 322 xive_esb_trigger(xsrc, srcno); 323 } 324 return 0; 325 } else { 326 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 327 } 328 } 329 330 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 331 { 332 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 333 int i; 334 335 for (i = 0; i < xsrc->nr_irqs; i++) { 336 uint8_t pq; 337 338 if (!xive_eas_is_valid(&xive->eat[i])) { 339 continue; 340 } 341 342 /* Perform a load without side effect to retrieve the PQ bits */ 343 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 344 345 /* and save PQ locally */ 346 xive_source_esb_set(xsrc, i, pq); 347 } 348 } 349 350 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 351 { 352 XiveSource *xsrc = opaque; 353 354 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 355 if (!val) { 356 return; 357 } 358 } else { 359 if (val) { 360 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 361 } else { 362 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 363 } 364 } 365 366 xive_esb_trigger(xsrc, srcno); 367 } 368 369 /* 370 * sPAPR XIVE interrupt controller (KVM) 371 */ 372 void kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 373 uint32_t end_idx, XiveEND *end, 374 Error **errp) 375 { 376 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 377 uint64_t kvm_eq_idx; 378 uint8_t priority; 379 uint32_t server; 380 Error *local_err = NULL; 381 382 assert(xive_end_is_valid(end)); 383 384 /* Encode the tuple (server, prio) as a KVM EQ index */ 385 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 386 387 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 388 KVM_XIVE_EQ_PRIORITY_MASK; 389 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 390 KVM_XIVE_EQ_SERVER_MASK; 391 392 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 393 &kvm_eq, false, &local_err); 394 if (local_err) { 395 error_propagate(errp, local_err); 396 return; 397 } 398 399 /* 400 * The EQ index and toggle bit are updated by HW. These are the 401 * only fields from KVM we want to update QEMU with. The other END 402 * fields should already be in the QEMU END table. 403 */ 404 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 405 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 406 } 407 408 void kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 409 uint32_t end_idx, XiveEND *end, 410 Error **errp) 411 { 412 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 413 uint64_t kvm_eq_idx; 414 uint8_t priority; 415 uint32_t server; 416 Error *local_err = NULL; 417 418 /* 419 * Build the KVM state from the local END structure. 420 */ 421 422 kvm_eq.flags = 0; 423 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 424 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 425 } 426 427 /* 428 * If the hcall is disabling the EQ, set the size and page address 429 * to zero. When migrating, only valid ENDs are taken into 430 * account. 431 */ 432 if (xive_end_is_valid(end)) { 433 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 434 kvm_eq.qaddr = xive_end_qaddr(end); 435 /* 436 * The EQ toggle bit and index should only be relevant when 437 * restoring the EQ state 438 */ 439 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 440 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 441 } else { 442 kvm_eq.qshift = 0; 443 kvm_eq.qaddr = 0; 444 } 445 446 /* Encode the tuple (server, prio) as a KVM EQ index */ 447 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 448 449 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 450 KVM_XIVE_EQ_PRIORITY_MASK; 451 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 452 KVM_XIVE_EQ_SERVER_MASK; 453 454 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 455 &kvm_eq, true, &local_err); 456 if (local_err) { 457 error_propagate(errp, local_err); 458 return; 459 } 460 } 461 462 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 463 { 464 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 465 NULL, true, errp); 466 } 467 468 static void kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 469 { 470 Error *local_err = NULL; 471 int i; 472 473 for (i = 0; i < xive->nr_ends; i++) { 474 if (!xive_end_is_valid(&xive->endt[i])) { 475 continue; 476 } 477 478 kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 479 &xive->endt[i], &local_err); 480 if (local_err) { 481 error_propagate(errp, local_err); 482 return; 483 } 484 } 485 } 486 487 /* 488 * The primary goal of the XIVE VM change handler is to mark the EQ 489 * pages dirty when all XIVE event notifications have stopped. 490 * 491 * Whenever the VM is stopped, the VM change handler sets the source 492 * PQs to PENDING to stop the flow of events and to possibly catch a 493 * triggered interrupt occuring while the VM is stopped. The previous 494 * state is saved in anticipation of a migration. The XIVE controller 495 * is then synced through KVM to flush any in-flight event 496 * notification and stabilize the EQs. 497 * 498 * At this stage, we can mark the EQ page dirty and let a migration 499 * sequence transfer the EQ pages to the destination, which is done 500 * just after the stop state. 501 * 502 * The previous configuration of the sources is restored when the VM 503 * runs again. If an interrupt was queued while the VM was stopped, 504 * simply generate a trigger. 505 */ 506 static void kvmppc_xive_change_state_handler(void *opaque, int running, 507 RunState state) 508 { 509 SpaprXive *xive = opaque; 510 XiveSource *xsrc = &xive->source; 511 Error *local_err = NULL; 512 int i; 513 514 /* 515 * Restore the sources to their initial state. This is called when 516 * the VM resumes after a stop or a migration. 517 */ 518 if (running) { 519 for (i = 0; i < xsrc->nr_irqs; i++) { 520 uint8_t pq; 521 uint8_t old_pq; 522 523 if (!xive_eas_is_valid(&xive->eat[i])) { 524 continue; 525 } 526 527 pq = xive_source_esb_get(xsrc, i); 528 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 529 530 /* 531 * An interrupt was queued while the VM was stopped, 532 * generate a trigger. 533 */ 534 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 535 xive_esb_trigger(xsrc, i); 536 } 537 } 538 539 return; 540 } 541 542 /* 543 * Mask the sources, to stop the flow of event notifications, and 544 * save the PQs locally in the XiveSource object. The XiveSource 545 * state will be collected later on by its vmstate handler if a 546 * migration is in progress. 547 */ 548 for (i = 0; i < xsrc->nr_irqs; i++) { 549 uint8_t pq; 550 551 if (!xive_eas_is_valid(&xive->eat[i])) { 552 continue; 553 } 554 555 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 556 557 /* 558 * PQ is set to PENDING to possibly catch a triggered 559 * interrupt occuring while the VM is stopped (hotplug event 560 * for instance) . 561 */ 562 if (pq != XIVE_ESB_OFF) { 563 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 564 } 565 xive_source_esb_set(xsrc, i, pq); 566 } 567 568 /* 569 * Sync the XIVE controller in KVM, to flush in-flight event 570 * notification that should be enqueued in the EQs and mark the 571 * XIVE EQ pages dirty to collect all updates. 572 */ 573 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 574 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 575 if (local_err) { 576 error_report_err(local_err); 577 return; 578 } 579 } 580 581 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 582 { 583 assert(xive->fd != -1); 584 585 /* 586 * When the VM is stopped, the sources are masked and the previous 587 * state is saved in anticipation of a migration. We should not 588 * synchronize the source state in that case else we will override 589 * the saved state. 590 */ 591 if (runstate_is_running()) { 592 kvmppc_xive_source_get_state(&xive->source); 593 } 594 595 /* EAT: there is no extra state to query from KVM */ 596 597 /* ENDT */ 598 kvmppc_xive_get_queues(xive, errp); 599 } 600 601 /* 602 * The SpaprXive 'pre_save' method is called by the vmstate handler of 603 * the SpaprXive model, after the XIVE controller is synced in the VM 604 * change handler. 605 */ 606 int kvmppc_xive_pre_save(SpaprXive *xive) 607 { 608 Error *local_err = NULL; 609 610 assert(xive->fd != -1); 611 612 /* EAT: there is no extra state to query from KVM */ 613 614 /* ENDT */ 615 kvmppc_xive_get_queues(xive, &local_err); 616 if (local_err) { 617 error_report_err(local_err); 618 return -1; 619 } 620 621 return 0; 622 } 623 624 /* 625 * The SpaprXive 'post_load' method is not called by a vmstate 626 * handler. It is called at the sPAPR machine level at the end of the 627 * migration sequence by the sPAPR IRQ backend 'post_load' method, 628 * when all XIVE states have been transferred and loaded. 629 */ 630 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 631 { 632 Error *local_err = NULL; 633 CPUState *cs; 634 int i; 635 636 /* The KVM XIVE device should be in use */ 637 assert(xive->fd != -1); 638 639 /* Restore the ENDT first. The targetting depends on it. */ 640 for (i = 0; i < xive->nr_ends; i++) { 641 if (!xive_end_is_valid(&xive->endt[i])) { 642 continue; 643 } 644 645 kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 646 &xive->endt[i], &local_err); 647 if (local_err) { 648 error_report_err(local_err); 649 return -1; 650 } 651 } 652 653 /* Restore the EAT */ 654 for (i = 0; i < xive->nr_irqs; i++) { 655 if (!xive_eas_is_valid(&xive->eat[i])) { 656 continue; 657 } 658 659 /* 660 * We can only restore the source config if the source has been 661 * previously set in KVM. Since we don't do that for all interrupts 662 * at reset time anymore, let's do it now. 663 */ 664 kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 665 if (local_err) { 666 error_report_err(local_err); 667 return -1; 668 } 669 670 kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 671 if (local_err) { 672 error_report_err(local_err); 673 return -1; 674 } 675 } 676 677 /* 678 * Restore the thread interrupt contexts of initial CPUs. 679 * 680 * The context of hotplugged CPUs is restored later, by the 681 * 'post_load' handler of the XiveTCTX model because they are not 682 * available at the time the SpaprXive 'post_load' method is 683 * called. We can not restore the context of all CPUs in the 684 * 'post_load' handler of XiveTCTX because the machine is not 685 * necessarily connected to the KVM device at that time. 686 */ 687 CPU_FOREACH(cs) { 688 PowerPCCPU *cpu = POWERPC_CPU(cs); 689 690 kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 691 if (local_err) { 692 error_report_err(local_err); 693 return -1; 694 } 695 } 696 697 /* The source states will be restored when the machine starts running */ 698 return 0; 699 } 700 701 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 702 Error **errp) 703 { 704 void *addr; 705 uint32_t page_shift = 16; /* TODO: fix page_shift */ 706 707 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 708 pgoff << page_shift); 709 if (addr == MAP_FAILED) { 710 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 711 return NULL; 712 } 713 714 return addr; 715 } 716 717 /* 718 * All the XIVE memory regions are now backed by mappings from the KVM 719 * XIVE device. 720 */ 721 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 722 Error **errp) 723 { 724 SpaprXive *xive = SPAPR_XIVE(intc); 725 XiveSource *xsrc = &xive->source; 726 Error *local_err = NULL; 727 size_t esb_len = xive_source_esb_len(xsrc); 728 size_t tima_len = 4ull << TM_SHIFT; 729 CPUState *cs; 730 int fd; 731 732 /* 733 * The KVM XIVE device already in use. This is the case when 734 * rebooting under the XIVE-only interrupt mode. 735 */ 736 if (xive->fd != -1) { 737 return 0; 738 } 739 740 if (!kvmppc_has_cap_xive()) { 741 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 742 return -1; 743 } 744 745 /* First, create the KVM XIVE device */ 746 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 747 if (fd < 0) { 748 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 749 return -1; 750 } 751 xive->fd = fd; 752 753 /* Tell KVM about the # of VCPUs we may have */ 754 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 755 KVM_DEV_XIVE_NR_SERVERS)) { 756 if (kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 757 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 758 &local_err)) { 759 goto fail; 760 } 761 } 762 763 /* 764 * 1. Source ESB pages - KVM mapping 765 */ 766 xsrc->esb_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, 767 &local_err); 768 if (local_err) { 769 goto fail; 770 } 771 772 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 773 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 774 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 775 &xsrc->esb_mmio_kvm, 1); 776 777 /* 778 * 2. END ESB pages (No KVM support yet) 779 */ 780 781 /* 782 * 3. TIMA pages - KVM mapping 783 */ 784 xive->tm_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, 785 &local_err); 786 if (local_err) { 787 goto fail; 788 } 789 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 790 "xive.tima", tima_len, xive->tm_mmap); 791 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 792 &xive->tm_mmio_kvm, 1); 793 794 xive->change = qemu_add_vm_change_state_handler( 795 kvmppc_xive_change_state_handler, xive); 796 797 /* Connect the presenters to the initial VCPUs of the machine */ 798 CPU_FOREACH(cs) { 799 PowerPCCPU *cpu = POWERPC_CPU(cs); 800 801 kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, &local_err); 802 if (local_err) { 803 goto fail; 804 } 805 } 806 807 /* Update the KVM sources */ 808 kvmppc_xive_source_reset(xsrc, &local_err); 809 if (local_err) { 810 goto fail; 811 } 812 813 kvm_kernel_irqchip = true; 814 kvm_msi_via_irqfd_allowed = true; 815 kvm_gsi_direct_mapping = true; 816 return 0; 817 818 fail: 819 error_propagate(errp, local_err); 820 kvmppc_xive_disconnect(intc); 821 return -1; 822 } 823 824 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 825 { 826 SpaprXive *xive = SPAPR_XIVE(intc); 827 XiveSource *xsrc; 828 size_t esb_len; 829 830 assert(xive->fd != -1); 831 832 /* Clear the KVM mapping */ 833 xsrc = &xive->source; 834 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 835 836 if (xsrc->esb_mmap) { 837 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 838 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 839 munmap(xsrc->esb_mmap, esb_len); 840 xsrc->esb_mmap = NULL; 841 } 842 843 if (xive->tm_mmap) { 844 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 845 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 846 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 847 xive->tm_mmap = NULL; 848 } 849 850 /* 851 * When the KVM device fd is closed, the KVM device is destroyed 852 * and removed from the list of devices of the VM. The VCPU 853 * presenters are also detached from the device. 854 */ 855 close(xive->fd); 856 xive->fd = -1; 857 858 kvm_kernel_irqchip = false; 859 kvm_msi_via_irqfd_allowed = false; 860 kvm_gsi_direct_mapping = false; 861 862 /* Clear the local list of presenter (hotplug) */ 863 kvm_cpu_disable_all(); 864 865 /* VM Change state handler is not needed anymore */ 866 if (xive->change) { 867 qemu_del_vm_change_state_handler(xive->change); 868 xive->change = NULL; 869 } 870 } 871