1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 24 #include <sys/ioctl.h> 25 26 /* 27 * Helpers for CPU hotplug 28 * 29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 30 */ 31 typedef struct KVMEnabledCPU { 32 unsigned long vcpu_id; 33 QLIST_ENTRY(KVMEnabledCPU) node; 34 } KVMEnabledCPU; 35 36 static QLIST_HEAD(, KVMEnabledCPU) 37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 38 39 static bool kvm_cpu_is_enabled(CPUState *cs) 40 { 41 KVMEnabledCPU *enabled_cpu; 42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 43 44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 45 if (enabled_cpu->vcpu_id == vcpu_id) { 46 return true; 47 } 48 } 49 return false; 50 } 51 52 static void kvm_cpu_enable(CPUState *cs) 53 { 54 KVMEnabledCPU *enabled_cpu; 55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 56 57 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 58 enabled_cpu->vcpu_id = vcpu_id; 59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 60 } 61 62 static void kvm_cpu_disable_all(void) 63 { 64 KVMEnabledCPU *enabled_cpu, *next; 65 66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 67 QLIST_REMOVE(enabled_cpu, node); 68 g_free(enabled_cpu); 69 } 70 } 71 72 /* 73 * XIVE Thread Interrupt Management context (KVM) 74 */ 75 76 void kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 77 { 78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 79 uint64_t state[2]; 80 int ret; 81 82 assert(xive->fd != -1); 83 84 /* word0 and word1 of the OS ring. */ 85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 86 87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 88 if (ret != 0) { 89 error_setg_errno(errp, errno, 90 "XIVE: could not restore KVM state of CPU %ld", 91 kvm_arch_vcpu_id(tctx->cs)); 92 } 93 } 94 95 void kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 96 { 97 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 98 uint64_t state[2] = { 0 }; 99 int ret; 100 101 assert(xive->fd != -1); 102 103 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 104 if (ret != 0) { 105 error_setg_errno(errp, errno, 106 "XIVE: could not capture KVM state of CPU %ld", 107 kvm_arch_vcpu_id(tctx->cs)); 108 return; 109 } 110 111 /* word0 and word1 of the OS ring. */ 112 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 113 } 114 115 typedef struct { 116 XiveTCTX *tctx; 117 Error *err; 118 } XiveCpuGetState; 119 120 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 121 run_on_cpu_data arg) 122 { 123 XiveCpuGetState *s = arg.host_ptr; 124 125 kvmppc_xive_cpu_get_state(s->tctx, &s->err); 126 } 127 128 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 129 { 130 XiveCpuGetState s = { 131 .tctx = tctx, 132 .err = NULL, 133 }; 134 135 /* 136 * Kick the vCPU to make sure they are available for the KVM ioctl. 137 */ 138 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 139 RUN_ON_CPU_HOST_PTR(&s)); 140 141 if (s.err) { 142 error_propagate(errp, s.err); 143 return; 144 } 145 } 146 147 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 148 { 149 ERRP_GUARD(); 150 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 151 unsigned long vcpu_id; 152 int ret; 153 154 assert(xive->fd != -1); 155 156 /* Check if CPU was hot unplugged and replugged. */ 157 if (kvm_cpu_is_enabled(tctx->cs)) { 158 return 0; 159 } 160 161 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 162 163 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 164 vcpu_id, 0); 165 if (ret < 0) { 166 error_setg_errno(errp, -ret, 167 "XIVE: unable to connect CPU%ld to KVM device", 168 vcpu_id); 169 if (ret == -ENOSPC) { 170 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 171 MACHINE(qdev_get_machine())->smp.max_cpus); 172 } 173 return ret; 174 } 175 176 kvm_cpu_enable(tctx->cs); 177 return 0; 178 } 179 180 /* 181 * XIVE Interrupt Source (KVM) 182 */ 183 184 void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 185 Error **errp) 186 { 187 uint32_t end_idx; 188 uint32_t end_blk; 189 uint8_t priority; 190 uint32_t server; 191 bool masked; 192 uint32_t eisn; 193 uint64_t kvm_src; 194 Error *local_err = NULL; 195 196 assert(xive_eas_is_valid(eas)); 197 198 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 199 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 200 eisn = xive_get_field64(EAS_END_DATA, eas->w); 201 masked = xive_eas_is_masked(eas); 202 203 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 204 205 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 206 KVM_XIVE_SOURCE_PRIORITY_MASK; 207 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 208 KVM_XIVE_SOURCE_SERVER_MASK; 209 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 210 KVM_XIVE_SOURCE_MASKED_MASK; 211 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 212 KVM_XIVE_SOURCE_EISN_MASK; 213 214 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 215 &kvm_src, true, &local_err); 216 if (local_err) { 217 error_propagate(errp, local_err); 218 return; 219 } 220 } 221 222 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 223 { 224 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 225 NULL, true, errp); 226 } 227 228 /* 229 * At reset, the interrupt sources are simply created and MASKED. We 230 * only need to inform the KVM XIVE device about their type: LSI or 231 * MSI. 232 */ 233 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 234 { 235 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 236 uint64_t state = 0; 237 238 assert(xive->fd != -1); 239 240 if (xive_source_irq_is_lsi(xsrc, srcno)) { 241 state |= KVM_XIVE_LEVEL_SENSITIVE; 242 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 243 state |= KVM_XIVE_LEVEL_ASSERTED; 244 } 245 } 246 247 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 248 true, errp); 249 } 250 251 static void kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 252 { 253 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 254 int i; 255 256 for (i = 0; i < xsrc->nr_irqs; i++) { 257 Error *local_err = NULL; 258 259 if (!xive_eas_is_valid(&xive->eat[i])) { 260 continue; 261 } 262 263 kvmppc_xive_source_reset_one(xsrc, i, &local_err); 264 if (local_err) { 265 error_propagate(errp, local_err); 266 return; 267 } 268 } 269 } 270 271 /* 272 * This is used to perform the magic loads on the ESB pages, described 273 * in xive.h. 274 * 275 * Memory barriers should not be needed for loads (no store for now). 276 */ 277 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 278 uint64_t data, bool write) 279 { 280 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 281 offset; 282 283 if (write) { 284 *addr = cpu_to_be64(data); 285 return -1; 286 } else { 287 /* Prevent the compiler from optimizing away the load */ 288 volatile uint64_t value = be64_to_cpu(*addr); 289 return value; 290 } 291 } 292 293 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 294 { 295 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 296 } 297 298 static void xive_esb_trigger(XiveSource *xsrc, int srcno) 299 { 300 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 301 302 *addr = 0x0; 303 } 304 305 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 306 uint64_t data, bool write) 307 { 308 if (write) { 309 return xive_esb_rw(xsrc, srcno, offset, data, 1); 310 } 311 312 /* 313 * Special Load EOI handling for LSI sources. Q bit is never set 314 * and the interrupt should be re-triggered if the level is still 315 * asserted. 316 */ 317 if (xive_source_irq_is_lsi(xsrc, srcno) && 318 offset == XIVE_ESB_LOAD_EOI) { 319 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 320 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 321 xive_esb_trigger(xsrc, srcno); 322 } 323 return 0; 324 } else { 325 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 326 } 327 } 328 329 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 330 { 331 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 332 int i; 333 334 for (i = 0; i < xsrc->nr_irqs; i++) { 335 uint8_t pq; 336 337 if (!xive_eas_is_valid(&xive->eat[i])) { 338 continue; 339 } 340 341 /* Perform a load without side effect to retrieve the PQ bits */ 342 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 343 344 /* and save PQ locally */ 345 xive_source_esb_set(xsrc, i, pq); 346 } 347 } 348 349 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 350 { 351 XiveSource *xsrc = opaque; 352 353 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 354 if (!val) { 355 return; 356 } 357 } else { 358 if (val) { 359 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 360 } else { 361 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 362 } 363 } 364 365 xive_esb_trigger(xsrc, srcno); 366 } 367 368 /* 369 * sPAPR XIVE interrupt controller (KVM) 370 */ 371 void kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 372 uint32_t end_idx, XiveEND *end, 373 Error **errp) 374 { 375 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 376 uint64_t kvm_eq_idx; 377 uint8_t priority; 378 uint32_t server; 379 Error *local_err = NULL; 380 381 assert(xive_end_is_valid(end)); 382 383 /* Encode the tuple (server, prio) as a KVM EQ index */ 384 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 385 386 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 387 KVM_XIVE_EQ_PRIORITY_MASK; 388 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 389 KVM_XIVE_EQ_SERVER_MASK; 390 391 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 392 &kvm_eq, false, &local_err); 393 if (local_err) { 394 error_propagate(errp, local_err); 395 return; 396 } 397 398 /* 399 * The EQ index and toggle bit are updated by HW. These are the 400 * only fields from KVM we want to update QEMU with. The other END 401 * fields should already be in the QEMU END table. 402 */ 403 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 404 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 405 } 406 407 void kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 408 uint32_t end_idx, XiveEND *end, 409 Error **errp) 410 { 411 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 412 uint64_t kvm_eq_idx; 413 uint8_t priority; 414 uint32_t server; 415 Error *local_err = NULL; 416 417 /* 418 * Build the KVM state from the local END structure. 419 */ 420 421 kvm_eq.flags = 0; 422 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 423 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 424 } 425 426 /* 427 * If the hcall is disabling the EQ, set the size and page address 428 * to zero. When migrating, only valid ENDs are taken into 429 * account. 430 */ 431 if (xive_end_is_valid(end)) { 432 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 433 kvm_eq.qaddr = xive_end_qaddr(end); 434 /* 435 * The EQ toggle bit and index should only be relevant when 436 * restoring the EQ state 437 */ 438 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 439 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 440 } else { 441 kvm_eq.qshift = 0; 442 kvm_eq.qaddr = 0; 443 } 444 445 /* Encode the tuple (server, prio) as a KVM EQ index */ 446 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 447 448 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 449 KVM_XIVE_EQ_PRIORITY_MASK; 450 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 451 KVM_XIVE_EQ_SERVER_MASK; 452 453 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 454 &kvm_eq, true, &local_err); 455 if (local_err) { 456 error_propagate(errp, local_err); 457 return; 458 } 459 } 460 461 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 462 { 463 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 464 NULL, true, errp); 465 } 466 467 static void kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 468 { 469 Error *local_err = NULL; 470 int i; 471 472 for (i = 0; i < xive->nr_ends; i++) { 473 if (!xive_end_is_valid(&xive->endt[i])) { 474 continue; 475 } 476 477 kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 478 &xive->endt[i], &local_err); 479 if (local_err) { 480 error_propagate(errp, local_err); 481 return; 482 } 483 } 484 } 485 486 /* 487 * The primary goal of the XIVE VM change handler is to mark the EQ 488 * pages dirty when all XIVE event notifications have stopped. 489 * 490 * Whenever the VM is stopped, the VM change handler sets the source 491 * PQs to PENDING to stop the flow of events and to possibly catch a 492 * triggered interrupt occuring while the VM is stopped. The previous 493 * state is saved in anticipation of a migration. The XIVE controller 494 * is then synced through KVM to flush any in-flight event 495 * notification and stabilize the EQs. 496 * 497 * At this stage, we can mark the EQ page dirty and let a migration 498 * sequence transfer the EQ pages to the destination, which is done 499 * just after the stop state. 500 * 501 * The previous configuration of the sources is restored when the VM 502 * runs again. If an interrupt was queued while the VM was stopped, 503 * simply generate a trigger. 504 */ 505 static void kvmppc_xive_change_state_handler(void *opaque, int running, 506 RunState state) 507 { 508 SpaprXive *xive = opaque; 509 XiveSource *xsrc = &xive->source; 510 Error *local_err = NULL; 511 int i; 512 513 /* 514 * Restore the sources to their initial state. This is called when 515 * the VM resumes after a stop or a migration. 516 */ 517 if (running) { 518 for (i = 0; i < xsrc->nr_irqs; i++) { 519 uint8_t pq; 520 uint8_t old_pq; 521 522 if (!xive_eas_is_valid(&xive->eat[i])) { 523 continue; 524 } 525 526 pq = xive_source_esb_get(xsrc, i); 527 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 528 529 /* 530 * An interrupt was queued while the VM was stopped, 531 * generate a trigger. 532 */ 533 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 534 xive_esb_trigger(xsrc, i); 535 } 536 } 537 538 return; 539 } 540 541 /* 542 * Mask the sources, to stop the flow of event notifications, and 543 * save the PQs locally in the XiveSource object. The XiveSource 544 * state will be collected later on by its vmstate handler if a 545 * migration is in progress. 546 */ 547 for (i = 0; i < xsrc->nr_irqs; i++) { 548 uint8_t pq; 549 550 if (!xive_eas_is_valid(&xive->eat[i])) { 551 continue; 552 } 553 554 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 555 556 /* 557 * PQ is set to PENDING to possibly catch a triggered 558 * interrupt occuring while the VM is stopped (hotplug event 559 * for instance) . 560 */ 561 if (pq != XIVE_ESB_OFF) { 562 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 563 } 564 xive_source_esb_set(xsrc, i, pq); 565 } 566 567 /* 568 * Sync the XIVE controller in KVM, to flush in-flight event 569 * notification that should be enqueued in the EQs and mark the 570 * XIVE EQ pages dirty to collect all updates. 571 */ 572 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 573 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 574 if (local_err) { 575 error_report_err(local_err); 576 return; 577 } 578 } 579 580 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 581 { 582 assert(xive->fd != -1); 583 584 /* 585 * When the VM is stopped, the sources are masked and the previous 586 * state is saved in anticipation of a migration. We should not 587 * synchronize the source state in that case else we will override 588 * the saved state. 589 */ 590 if (runstate_is_running()) { 591 kvmppc_xive_source_get_state(&xive->source); 592 } 593 594 /* EAT: there is no extra state to query from KVM */ 595 596 /* ENDT */ 597 kvmppc_xive_get_queues(xive, errp); 598 } 599 600 /* 601 * The SpaprXive 'pre_save' method is called by the vmstate handler of 602 * the SpaprXive model, after the XIVE controller is synced in the VM 603 * change handler. 604 */ 605 int kvmppc_xive_pre_save(SpaprXive *xive) 606 { 607 Error *local_err = NULL; 608 609 assert(xive->fd != -1); 610 611 /* EAT: there is no extra state to query from KVM */ 612 613 /* ENDT */ 614 kvmppc_xive_get_queues(xive, &local_err); 615 if (local_err) { 616 error_report_err(local_err); 617 return -1; 618 } 619 620 return 0; 621 } 622 623 /* 624 * The SpaprXive 'post_load' method is not called by a vmstate 625 * handler. It is called at the sPAPR machine level at the end of the 626 * migration sequence by the sPAPR IRQ backend 'post_load' method, 627 * when all XIVE states have been transferred and loaded. 628 */ 629 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 630 { 631 Error *local_err = NULL; 632 CPUState *cs; 633 int i; 634 635 /* The KVM XIVE device should be in use */ 636 assert(xive->fd != -1); 637 638 /* Restore the ENDT first. The targetting depends on it. */ 639 for (i = 0; i < xive->nr_ends; i++) { 640 if (!xive_end_is_valid(&xive->endt[i])) { 641 continue; 642 } 643 644 kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 645 &xive->endt[i], &local_err); 646 if (local_err) { 647 error_report_err(local_err); 648 return -1; 649 } 650 } 651 652 /* Restore the EAT */ 653 for (i = 0; i < xive->nr_irqs; i++) { 654 if (!xive_eas_is_valid(&xive->eat[i])) { 655 continue; 656 } 657 658 /* 659 * We can only restore the source config if the source has been 660 * previously set in KVM. Since we don't do that for all interrupts 661 * at reset time anymore, let's do it now. 662 */ 663 kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 664 if (local_err) { 665 error_report_err(local_err); 666 return -1; 667 } 668 669 kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 670 if (local_err) { 671 error_report_err(local_err); 672 return -1; 673 } 674 } 675 676 /* 677 * Restore the thread interrupt contexts of initial CPUs. 678 * 679 * The context of hotplugged CPUs is restored later, by the 680 * 'post_load' handler of the XiveTCTX model because they are not 681 * available at the time the SpaprXive 'post_load' method is 682 * called. We can not restore the context of all CPUs in the 683 * 'post_load' handler of XiveTCTX because the machine is not 684 * necessarily connected to the KVM device at that time. 685 */ 686 CPU_FOREACH(cs) { 687 PowerPCCPU *cpu = POWERPC_CPU(cs); 688 689 kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 690 if (local_err) { 691 error_report_err(local_err); 692 return -1; 693 } 694 } 695 696 /* The source states will be restored when the machine starts running */ 697 return 0; 698 } 699 700 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 701 Error **errp) 702 { 703 void *addr; 704 uint32_t page_shift = 16; /* TODO: fix page_shift */ 705 706 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 707 pgoff << page_shift); 708 if (addr == MAP_FAILED) { 709 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 710 return NULL; 711 } 712 713 return addr; 714 } 715 716 /* 717 * All the XIVE memory regions are now backed by mappings from the KVM 718 * XIVE device. 719 */ 720 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 721 Error **errp) 722 { 723 SpaprXive *xive = SPAPR_XIVE(intc); 724 XiveSource *xsrc = &xive->source; 725 Error *local_err = NULL; 726 size_t esb_len = xive_source_esb_len(xsrc); 727 size_t tima_len = 4ull << TM_SHIFT; 728 CPUState *cs; 729 int fd; 730 731 /* 732 * The KVM XIVE device already in use. This is the case when 733 * rebooting under the XIVE-only interrupt mode. 734 */ 735 if (xive->fd != -1) { 736 return 0; 737 } 738 739 if (!kvmppc_has_cap_xive()) { 740 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 741 return -1; 742 } 743 744 /* First, create the KVM XIVE device */ 745 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 746 if (fd < 0) { 747 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 748 return -1; 749 } 750 xive->fd = fd; 751 752 /* Tell KVM about the # of VCPUs we may have */ 753 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 754 KVM_DEV_XIVE_NR_SERVERS)) { 755 if (kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 756 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 757 &local_err)) { 758 goto fail; 759 } 760 } 761 762 /* 763 * 1. Source ESB pages - KVM mapping 764 */ 765 xsrc->esb_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, 766 &local_err); 767 if (local_err) { 768 goto fail; 769 } 770 771 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 772 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 773 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 774 &xsrc->esb_mmio_kvm, 1); 775 776 /* 777 * 2. END ESB pages (No KVM support yet) 778 */ 779 780 /* 781 * 3. TIMA pages - KVM mapping 782 */ 783 xive->tm_mmap = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, 784 &local_err); 785 if (local_err) { 786 goto fail; 787 } 788 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 789 "xive.tima", tima_len, xive->tm_mmap); 790 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 791 &xive->tm_mmio_kvm, 1); 792 793 xive->change = qemu_add_vm_change_state_handler( 794 kvmppc_xive_change_state_handler, xive); 795 796 /* Connect the presenters to the initial VCPUs of the machine */ 797 CPU_FOREACH(cs) { 798 PowerPCCPU *cpu = POWERPC_CPU(cs); 799 800 kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, &local_err); 801 if (local_err) { 802 goto fail; 803 } 804 } 805 806 /* Update the KVM sources */ 807 kvmppc_xive_source_reset(xsrc, &local_err); 808 if (local_err) { 809 goto fail; 810 } 811 812 kvm_kernel_irqchip = true; 813 kvm_msi_via_irqfd_allowed = true; 814 kvm_gsi_direct_mapping = true; 815 return 0; 816 817 fail: 818 error_propagate(errp, local_err); 819 kvmppc_xive_disconnect(intc); 820 return -1; 821 } 822 823 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 824 { 825 SpaprXive *xive = SPAPR_XIVE(intc); 826 XiveSource *xsrc; 827 size_t esb_len; 828 829 assert(xive->fd != -1); 830 831 /* Clear the KVM mapping */ 832 xsrc = &xive->source; 833 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 834 835 if (xsrc->esb_mmap) { 836 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 837 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 838 munmap(xsrc->esb_mmap, esb_len); 839 xsrc->esb_mmap = NULL; 840 } 841 842 if (xive->tm_mmap) { 843 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 844 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 845 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 846 xive->tm_mmap = NULL; 847 } 848 849 /* 850 * When the KVM device fd is closed, the KVM device is destroyed 851 * and removed from the list of devices of the VM. The VCPU 852 * presenters are also detached from the device. 853 */ 854 close(xive->fd); 855 xive->fd = -1; 856 857 kvm_kernel_irqchip = false; 858 kvm_msi_via_irqfd_allowed = false; 859 kvm_gsi_direct_mapping = false; 860 861 /* Clear the local list of presenter (hotplug) */ 862 kvm_cpu_disable_all(); 863 864 /* VM Change state handler is not needed anymore */ 865 if (xive->change) { 866 qemu_del_vm_change_state_handler(xive->change); 867 xive->change = NULL; 868 } 869 } 870