1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qapi/error.h" 13 #include "qemu/error-report.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "monitor/monitor.h" 17 #include "hw/ppc/fdt.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "hw/ppc/xive_regs.h" 23 24 /* 25 * XIVE Virtualization Controller BAR and Thread Managment BAR that we 26 * use for the ESB pages and the TIMA pages 27 */ 28 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull 29 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull 30 31 /* 32 * The allocation of VP blocks is a complex operation in OPAL and the 33 * VP identifiers have a relation with the number of HW chips, the 34 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE 35 * controller model does not have the same constraints and can use a 36 * simple mapping scheme of the CPU vcpu_id 37 * 38 * These identifiers are never returned to the OS. 39 */ 40 41 #define SPAPR_XIVE_NVT_BASE 0x400 42 43 /* 44 * sPAPR NVT and END indexing helpers 45 */ 46 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx) 47 { 48 return nvt_idx - SPAPR_XIVE_NVT_BASE; 49 } 50 51 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu, 52 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) 53 { 54 assert(cpu); 55 56 if (out_nvt_blk) { 57 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID; 58 } 59 60 if (out_nvt_blk) { 61 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id; 62 } 63 } 64 65 static int spapr_xive_target_to_nvt(uint32_t target, 66 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) 67 { 68 PowerPCCPU *cpu = spapr_find_cpu(target); 69 70 if (!cpu) { 71 return -1; 72 } 73 74 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx); 75 return 0; 76 } 77 78 /* 79 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8 80 * priorities per CPU 81 */ 82 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx, 83 uint32_t *out_server, uint8_t *out_prio) 84 { 85 86 assert(end_blk == SPAPR_XIVE_BLOCK_ID); 87 88 if (out_server) { 89 *out_server = end_idx >> 3; 90 } 91 92 if (out_prio) { 93 *out_prio = end_idx & 0x7; 94 } 95 return 0; 96 } 97 98 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio, 99 uint8_t *out_end_blk, uint32_t *out_end_idx) 100 { 101 assert(cpu); 102 103 if (out_end_blk) { 104 *out_end_blk = SPAPR_XIVE_BLOCK_ID; 105 } 106 107 if (out_end_idx) { 108 *out_end_idx = (cpu->vcpu_id << 3) + prio; 109 } 110 } 111 112 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio, 113 uint8_t *out_end_blk, uint32_t *out_end_idx) 114 { 115 PowerPCCPU *cpu = spapr_find_cpu(target); 116 117 if (!cpu) { 118 return -1; 119 } 120 121 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx); 122 return 0; 123 } 124 125 /* 126 * On sPAPR machines, use a simplified output for the XIVE END 127 * structure dumping only the information related to the OS EQ. 128 */ 129 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end, 130 Monitor *mon) 131 { 132 uint64_t qaddr_base = xive_end_qaddr(end); 133 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 134 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 135 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 136 uint32_t qentries = 1 << (qsize + 10); 137 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); 138 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 139 140 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d", 141 spapr_xive_nvt_to_target(0, nvt), 142 priority, qindex, qentries, qaddr_base, qgen); 143 144 xive_end_queue_pic_print_info(end, 6, mon); 145 monitor_printf(mon, "]"); 146 } 147 148 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon) 149 { 150 XiveSource *xsrc = &xive->source; 151 int i; 152 153 if (kvm_irqchip_in_kernel()) { 154 Error *local_err = NULL; 155 156 kvmppc_xive_synchronize_state(xive, &local_err); 157 if (local_err) { 158 error_report_err(local_err); 159 return; 160 } 161 } 162 163 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n"); 164 165 for (i = 0; i < xive->nr_irqs; i++) { 166 uint8_t pq = xive_source_esb_get(xsrc, i); 167 XiveEAS *eas = &xive->eat[i]; 168 169 if (!xive_eas_is_valid(eas)) { 170 continue; 171 } 172 173 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i, 174 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 175 pq & XIVE_ESB_VAL_P ? 'P' : '-', 176 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 177 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ', 178 xive_eas_is_masked(eas) ? "M" : " ", 179 (int) xive_get_field64(EAS_END_DATA, eas->w)); 180 181 if (!xive_eas_is_masked(eas)) { 182 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 183 XiveEND *end; 184 185 assert(end_idx < xive->nr_ends); 186 end = &xive->endt[end_idx]; 187 188 if (xive_end_is_valid(end)) { 189 spapr_xive_end_pic_print_info(xive, end, mon); 190 } 191 } 192 monitor_printf(mon, "\n"); 193 } 194 } 195 196 void spapr_xive_map_mmio(SpaprXive *xive) 197 { 198 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base); 199 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base); 200 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base); 201 } 202 203 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable) 204 { 205 memory_region_set_enabled(&xive->source.esb_mmio, enable); 206 memory_region_set_enabled(&xive->tm_mmio, enable); 207 208 /* Disable the END ESBs until a guest OS makes use of them */ 209 memory_region_set_enabled(&xive->end_source.esb_mmio, false); 210 } 211 212 /* 213 * When a Virtual Processor is scheduled to run on a HW thread, the 214 * hypervisor pushes its identifier in the OS CAM line. Emulate the 215 * same behavior under QEMU. 216 */ 217 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx) 218 { 219 uint8_t nvt_blk; 220 uint32_t nvt_idx; 221 uint32_t nvt_cam; 222 223 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx); 224 225 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx)); 226 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4); 227 } 228 229 static void spapr_xive_end_reset(XiveEND *end) 230 { 231 memset(end, 0, sizeof(*end)); 232 233 /* switch off the escalation and notification ESBs */ 234 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q); 235 } 236 237 static void spapr_xive_reset(void *dev) 238 { 239 SpaprXive *xive = SPAPR_XIVE(dev); 240 int i; 241 242 /* 243 * The XiveSource has its own reset handler, which mask off all 244 * IRQs (!P|Q) 245 */ 246 247 /* Mask all valid EASs in the IRQ number space. */ 248 for (i = 0; i < xive->nr_irqs; i++) { 249 XiveEAS *eas = &xive->eat[i]; 250 if (xive_eas_is_valid(eas)) { 251 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED); 252 } else { 253 eas->w = 0; 254 } 255 } 256 257 /* Clear all ENDs */ 258 for (i = 0; i < xive->nr_ends; i++) { 259 spapr_xive_end_reset(&xive->endt[i]); 260 } 261 } 262 263 static void spapr_xive_instance_init(Object *obj) 264 { 265 SpaprXive *xive = SPAPR_XIVE(obj); 266 267 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source), 268 TYPE_XIVE_SOURCE, &error_abort, NULL); 269 270 object_initialize_child(obj, "end_source", &xive->end_source, 271 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE, 272 &error_abort, NULL); 273 274 /* Not connected to the KVM XIVE device */ 275 xive->fd = -1; 276 } 277 278 static void spapr_xive_realize(DeviceState *dev, Error **errp) 279 { 280 SpaprXive *xive = SPAPR_XIVE(dev); 281 XiveSource *xsrc = &xive->source; 282 XiveENDSource *end_xsrc = &xive->end_source; 283 Error *local_err = NULL; 284 285 if (!xive->nr_irqs) { 286 error_setg(errp, "Number of interrupt needs to be greater 0"); 287 return; 288 } 289 290 if (!xive->nr_ends) { 291 error_setg(errp, "Number of interrupt needs to be greater 0"); 292 return; 293 } 294 295 /* 296 * Initialize the internal sources, for IPIs and virtual devices. 297 */ 298 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs", 299 &error_fatal); 300 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive), 301 &error_fatal); 302 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err); 303 if (local_err) { 304 error_propagate(errp, local_err); 305 return; 306 } 307 308 /* 309 * Initialize the END ESB source 310 */ 311 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends", 312 &error_fatal); 313 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive), 314 &error_fatal); 315 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err); 316 if (local_err) { 317 error_propagate(errp, local_err); 318 return; 319 } 320 321 /* Set the mapping address of the END ESB pages after the source ESBs */ 322 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 323 324 /* 325 * Allocate the routing tables 326 */ 327 xive->eat = g_new0(XiveEAS, xive->nr_irqs); 328 xive->endt = g_new0(XiveEND, xive->nr_ends); 329 330 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64, 331 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT)); 332 333 qemu_register_reset(spapr_xive_reset, dev); 334 335 /* Define all XIVE MMIO regions on SysBus */ 336 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio); 337 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio); 338 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio); 339 } 340 341 void spapr_xive_init(SpaprXive *xive, Error **errp) 342 { 343 XiveSource *xsrc = &xive->source; 344 345 /* 346 * The emulated XIVE device can only be initialized once. If the 347 * ESB memory region has been already mapped, it means we have been 348 * through there. 349 */ 350 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 351 return; 352 } 353 354 /* TIMA initialization */ 355 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive, 356 "xive.tima", 4ull << TM_SHIFT); 357 358 /* Map all regions */ 359 spapr_xive_map_mmio(xive); 360 } 361 362 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk, 363 uint32_t eas_idx, XiveEAS *eas) 364 { 365 SpaprXive *xive = SPAPR_XIVE(xrtr); 366 367 if (eas_idx >= xive->nr_irqs) { 368 return -1; 369 } 370 371 *eas = xive->eat[eas_idx]; 372 return 0; 373 } 374 375 static int spapr_xive_get_end(XiveRouter *xrtr, 376 uint8_t end_blk, uint32_t end_idx, XiveEND *end) 377 { 378 SpaprXive *xive = SPAPR_XIVE(xrtr); 379 380 if (end_idx >= xive->nr_ends) { 381 return -1; 382 } 383 384 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND)); 385 return 0; 386 } 387 388 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk, 389 uint32_t end_idx, XiveEND *end, 390 uint8_t word_number) 391 { 392 SpaprXive *xive = SPAPR_XIVE(xrtr); 393 394 if (end_idx >= xive->nr_ends) { 395 return -1; 396 } 397 398 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND)); 399 return 0; 400 } 401 402 static int spapr_xive_get_nvt(XiveRouter *xrtr, 403 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) 404 { 405 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); 406 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 407 408 if (!cpu) { 409 /* TODO: should we assert() if we can find a NVT ? */ 410 return -1; 411 } 412 413 /* 414 * sPAPR does not maintain a NVT table. Return that the NVT is 415 * valid if we have found a matching CPU 416 */ 417 nvt->w0 = cpu_to_be32(NVT_W0_VALID); 418 return 0; 419 } 420 421 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, 422 uint32_t nvt_idx, XiveNVT *nvt, 423 uint8_t word_number) 424 { 425 /* 426 * We don't need to write back to the NVTs because the sPAPR 427 * machine should never hit a non-scheduled NVT. It should never 428 * get called. 429 */ 430 g_assert_not_reached(); 431 } 432 433 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs) 434 { 435 PowerPCCPU *cpu = POWERPC_CPU(cs); 436 437 return spapr_cpu_state(cpu)->tctx; 438 } 439 440 static const VMStateDescription vmstate_spapr_xive_end = { 441 .name = TYPE_SPAPR_XIVE "/end", 442 .version_id = 1, 443 .minimum_version_id = 1, 444 .fields = (VMStateField []) { 445 VMSTATE_UINT32(w0, XiveEND), 446 VMSTATE_UINT32(w1, XiveEND), 447 VMSTATE_UINT32(w2, XiveEND), 448 VMSTATE_UINT32(w3, XiveEND), 449 VMSTATE_UINT32(w4, XiveEND), 450 VMSTATE_UINT32(w5, XiveEND), 451 VMSTATE_UINT32(w6, XiveEND), 452 VMSTATE_UINT32(w7, XiveEND), 453 VMSTATE_END_OF_LIST() 454 }, 455 }; 456 457 static const VMStateDescription vmstate_spapr_xive_eas = { 458 .name = TYPE_SPAPR_XIVE "/eas", 459 .version_id = 1, 460 .minimum_version_id = 1, 461 .fields = (VMStateField []) { 462 VMSTATE_UINT64(w, XiveEAS), 463 VMSTATE_END_OF_LIST() 464 }, 465 }; 466 467 static int vmstate_spapr_xive_pre_save(void *opaque) 468 { 469 if (kvm_irqchip_in_kernel()) { 470 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque)); 471 } 472 473 return 0; 474 } 475 476 /* 477 * Called by the sPAPR IRQ backend 'post_load' method at the machine 478 * level. 479 */ 480 int spapr_xive_post_load(SpaprXive *xive, int version_id) 481 { 482 if (kvm_irqchip_in_kernel()) { 483 return kvmppc_xive_post_load(xive, version_id); 484 } 485 486 return 0; 487 } 488 489 static const VMStateDescription vmstate_spapr_xive = { 490 .name = TYPE_SPAPR_XIVE, 491 .version_id = 1, 492 .minimum_version_id = 1, 493 .pre_save = vmstate_spapr_xive_pre_save, 494 .post_load = NULL, /* handled at the machine level */ 495 .fields = (VMStateField[]) { 496 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL), 497 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs, 498 vmstate_spapr_xive_eas, XiveEAS), 499 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends, 500 vmstate_spapr_xive_end, XiveEND), 501 VMSTATE_END_OF_LIST() 502 }, 503 }; 504 505 static Property spapr_xive_properties[] = { 506 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0), 507 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0), 508 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE), 509 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE), 510 DEFINE_PROP_END_OF_LIST(), 511 }; 512 513 static void spapr_xive_class_init(ObjectClass *klass, void *data) 514 { 515 DeviceClass *dc = DEVICE_CLASS(klass); 516 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 517 518 dc->desc = "sPAPR XIVE Interrupt Controller"; 519 dc->props = spapr_xive_properties; 520 dc->realize = spapr_xive_realize; 521 dc->vmsd = &vmstate_spapr_xive; 522 523 xrc->get_eas = spapr_xive_get_eas; 524 xrc->get_end = spapr_xive_get_end; 525 xrc->write_end = spapr_xive_write_end; 526 xrc->get_nvt = spapr_xive_get_nvt; 527 xrc->write_nvt = spapr_xive_write_nvt; 528 xrc->get_tctx = spapr_xive_get_tctx; 529 } 530 531 static const TypeInfo spapr_xive_info = { 532 .name = TYPE_SPAPR_XIVE, 533 .parent = TYPE_XIVE_ROUTER, 534 .instance_init = spapr_xive_instance_init, 535 .instance_size = sizeof(SpaprXive), 536 .class_init = spapr_xive_class_init, 537 }; 538 539 static void spapr_xive_register_types(void) 540 { 541 type_register_static(&spapr_xive_info); 542 } 543 544 type_init(spapr_xive_register_types) 545 546 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi) 547 { 548 XiveSource *xsrc = &xive->source; 549 550 if (lisn >= xive->nr_irqs) { 551 return false; 552 } 553 554 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID); 555 if (lsi) { 556 xive_source_irq_set_lsi(xsrc, lisn); 557 } 558 559 if (kvm_irqchip_in_kernel()) { 560 Error *local_err = NULL; 561 562 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err); 563 if (local_err) { 564 error_report_err(local_err); 565 return false; 566 } 567 } 568 569 return true; 570 } 571 572 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn) 573 { 574 if (lisn >= xive->nr_irqs) { 575 return false; 576 } 577 578 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID); 579 return true; 580 } 581 582 /* 583 * XIVE hcalls 584 * 585 * The terminology used by the XIVE hcalls is the following : 586 * 587 * TARGET vCPU number 588 * EQ Event Queue assigned by OS to receive event data 589 * ESB page for source interrupt management 590 * LISN Logical Interrupt Source Number identifying a source in the 591 * machine 592 * EISN Effective Interrupt Source Number used by guest OS to 593 * identify source in the guest 594 * 595 * The EAS, END, NVT structures are not exposed. 596 */ 597 598 /* 599 * Linux hosts under OPAL reserve priority 7 for their own escalation 600 * interrupts (DD2.X POWER9). So we only allow the guest to use 601 * priorities [0..6]. 602 */ 603 static bool spapr_xive_priority_is_reserved(uint8_t priority) 604 { 605 switch (priority) { 606 case 0 ... 6: 607 return false; 608 case 7: /* OPAL escalation queue */ 609 default: 610 return true; 611 } 612 } 613 614 /* 615 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical 616 * real address of the MMIO page through which the Event State Buffer 617 * entry associated with the value of the "lisn" parameter is managed. 618 * 619 * Parameters: 620 * Input 621 * - R4: "flags" 622 * Bits 0-63 reserved 623 * - R5: "lisn" is per "interrupts", "interrupt-map", or 624 * "ibm,xive-lisn-ranges" properties, or as returned by the 625 * ibm,query-interrupt-source-number RTAS call, or as returned 626 * by the H_ALLOCATE_VAS_WINDOW hcall 627 * 628 * Output 629 * - R4: "flags" 630 * Bits 0-59: Reserved 631 * Bit 60: H_INT_ESB must be used for Event State Buffer 632 * management 633 * Bit 61: 1 == LSI 0 == MSI 634 * Bit 62: the full function page supports trigger 635 * Bit 63: Store EOI Supported 636 * - R5: Logical Real address of full function Event State Buffer 637 * management page, -1 if H_INT_ESB hcall flag is set to 1. 638 * - R6: Logical Real Address of trigger only Event State Buffer 639 * management page or -1. 640 * - R7: Power of 2 page size for the ESB management pages returned in 641 * R5 and R6. 642 */ 643 644 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */ 645 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */ 646 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management 647 on same page */ 648 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */ 649 650 static target_ulong h_int_get_source_info(PowerPCCPU *cpu, 651 SpaprMachineState *spapr, 652 target_ulong opcode, 653 target_ulong *args) 654 { 655 SpaprXive *xive = spapr->xive; 656 XiveSource *xsrc = &xive->source; 657 target_ulong flags = args[0]; 658 target_ulong lisn = args[1]; 659 660 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 661 return H_FUNCTION; 662 } 663 664 if (flags) { 665 return H_PARAMETER; 666 } 667 668 if (lisn >= xive->nr_irqs) { 669 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 670 lisn); 671 return H_P2; 672 } 673 674 if (!xive_eas_is_valid(&xive->eat[lisn])) { 675 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 676 lisn); 677 return H_P2; 678 } 679 680 /* 681 * All sources are emulated under the main XIVE object and share 682 * the same characteristics. 683 */ 684 args[0] = 0; 685 if (!xive_source_esb_has_2page(xsrc)) { 686 args[0] |= SPAPR_XIVE_SRC_TRIGGER; 687 } 688 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) { 689 args[0] |= SPAPR_XIVE_SRC_STORE_EOI; 690 } 691 692 /* 693 * Force the use of the H_INT_ESB hcall in case of an LSI 694 * interrupt. This is necessary under KVM to re-trigger the 695 * interrupt if the level is still asserted 696 */ 697 if (xive_source_irq_is_lsi(xsrc, lisn)) { 698 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI; 699 } 700 701 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { 702 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn); 703 } else { 704 args[1] = -1; 705 } 706 707 if (xive_source_esb_has_2page(xsrc) && 708 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { 709 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn); 710 } else { 711 args[2] = -1; 712 } 713 714 if (xive_source_esb_has_2page(xsrc)) { 715 args[3] = xsrc->esb_shift - 1; 716 } else { 717 args[3] = xsrc->esb_shift; 718 } 719 720 return H_SUCCESS; 721 } 722 723 /* 724 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical 725 * Interrupt Source to a target. The Logical Interrupt Source is 726 * designated with the "lisn" parameter and the target is designated 727 * with the "target" and "priority" parameters. Upon return from the 728 * hcall(), no additional interrupts will be directed to the old EQ. 729 * 730 * Parameters: 731 * Input: 732 * - R4: "flags" 733 * Bits 0-61: Reserved 734 * Bit 62: set the "eisn" in the EAS 735 * Bit 63: masks the interrupt source in the hardware interrupt 736 * control structure. An interrupt masked by this mechanism will 737 * be dropped, but it's source state bits will still be 738 * set. There is no race-free way of unmasking and restoring the 739 * source. Thus this should only be used in interrupts that are 740 * also masked at the source, and only in cases where the 741 * interrupt is not meant to be used for a large amount of time 742 * because no valid target exists for it for example 743 * - R5: "lisn" is per "interrupts", "interrupt-map", or 744 * "ibm,xive-lisn-ranges" properties, or as returned by the 745 * ibm,query-interrupt-source-number RTAS call, or as returned by 746 * the H_ALLOCATE_VAS_WINDOW hcall 747 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or 748 * "ibm,ppc-interrupt-gserver#s" 749 * - R7: "priority" is a valid priority not in 750 * "ibm,plat-res-int-priorities" 751 * - R8: "eisn" is the guest EISN associated with the "lisn" 752 * 753 * Output: 754 * - None 755 */ 756 757 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62) 758 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63) 759 760 static target_ulong h_int_set_source_config(PowerPCCPU *cpu, 761 SpaprMachineState *spapr, 762 target_ulong opcode, 763 target_ulong *args) 764 { 765 SpaprXive *xive = spapr->xive; 766 XiveEAS eas, new_eas; 767 target_ulong flags = args[0]; 768 target_ulong lisn = args[1]; 769 target_ulong target = args[2]; 770 target_ulong priority = args[3]; 771 target_ulong eisn = args[4]; 772 uint8_t end_blk; 773 uint32_t end_idx; 774 775 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 776 return H_FUNCTION; 777 } 778 779 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) { 780 return H_PARAMETER; 781 } 782 783 if (lisn >= xive->nr_irqs) { 784 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 785 lisn); 786 return H_P2; 787 } 788 789 eas = xive->eat[lisn]; 790 if (!xive_eas_is_valid(&eas)) { 791 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 792 lisn); 793 return H_P2; 794 } 795 796 /* priority 0xff is used to reset the EAS */ 797 if (priority == 0xff) { 798 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED); 799 goto out; 800 } 801 802 if (flags & SPAPR_XIVE_SRC_MASK) { 803 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED); 804 } else { 805 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED); 806 } 807 808 if (spapr_xive_priority_is_reserved(priority)) { 809 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 810 " is reserved\n", priority); 811 return H_P4; 812 } 813 814 /* 815 * Validate that "target" is part of the list of threads allocated 816 * to the partition. For that, find the END corresponding to the 817 * target. 818 */ 819 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 820 return H_P3; 821 } 822 823 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); 824 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); 825 826 if (flags & SPAPR_XIVE_SRC_SET_EISN) { 827 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn); 828 } 829 830 if (kvm_irqchip_in_kernel()) { 831 Error *local_err = NULL; 832 833 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err); 834 if (local_err) { 835 error_report_err(local_err); 836 return H_HARDWARE; 837 } 838 } 839 840 out: 841 xive->eat[lisn] = new_eas; 842 return H_SUCCESS; 843 } 844 845 /* 846 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which 847 * target/priority pair is assigned to the specified Logical Interrupt 848 * Source. 849 * 850 * Parameters: 851 * Input: 852 * - R4: "flags" 853 * Bits 0-63 Reserved 854 * - R5: "lisn" is per "interrupts", "interrupt-map", or 855 * "ibm,xive-lisn-ranges" properties, or as returned by the 856 * ibm,query-interrupt-source-number RTAS call, or as 857 * returned by the H_ALLOCATE_VAS_WINDOW hcall 858 * 859 * Output: 860 * - R4: Target to which the specified Logical Interrupt Source is 861 * assigned 862 * - R5: Priority to which the specified Logical Interrupt Source is 863 * assigned 864 * - R6: EISN for the specified Logical Interrupt Source (this will be 865 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG) 866 */ 867 static target_ulong h_int_get_source_config(PowerPCCPU *cpu, 868 SpaprMachineState *spapr, 869 target_ulong opcode, 870 target_ulong *args) 871 { 872 SpaprXive *xive = spapr->xive; 873 target_ulong flags = args[0]; 874 target_ulong lisn = args[1]; 875 XiveEAS eas; 876 XiveEND *end; 877 uint8_t nvt_blk; 878 uint32_t end_idx, nvt_idx; 879 880 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 881 return H_FUNCTION; 882 } 883 884 if (flags) { 885 return H_PARAMETER; 886 } 887 888 if (lisn >= xive->nr_irqs) { 889 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 890 lisn); 891 return H_P2; 892 } 893 894 eas = xive->eat[lisn]; 895 if (!xive_eas_is_valid(&eas)) { 896 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 897 lisn); 898 return H_P2; 899 } 900 901 /* EAS_END_BLOCK is unused on sPAPR */ 902 end_idx = xive_get_field64(EAS_END_INDEX, eas.w); 903 904 assert(end_idx < xive->nr_ends); 905 end = &xive->endt[end_idx]; 906 907 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 908 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 909 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); 910 911 if (xive_eas_is_masked(&eas)) { 912 args[1] = 0xff; 913 } else { 914 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 915 } 916 917 args[2] = xive_get_field64(EAS_END_DATA, eas.w); 918 919 return H_SUCCESS; 920 } 921 922 /* 923 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real 924 * address of the notification management page associated with the 925 * specified target and priority. 926 * 927 * Parameters: 928 * Input: 929 * - R4: "flags" 930 * Bits 0-63 Reserved 931 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 932 * "ibm,ppc-interrupt-gserver#s" 933 * - R6: "priority" is a valid priority not in 934 * "ibm,plat-res-int-priorities" 935 * 936 * Output: 937 * - R4: Logical real address of notification page 938 * - R5: Power of 2 page size of the notification page 939 */ 940 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu, 941 SpaprMachineState *spapr, 942 target_ulong opcode, 943 target_ulong *args) 944 { 945 SpaprXive *xive = spapr->xive; 946 XiveENDSource *end_xsrc = &xive->end_source; 947 target_ulong flags = args[0]; 948 target_ulong target = args[1]; 949 target_ulong priority = args[2]; 950 XiveEND *end; 951 uint8_t end_blk; 952 uint32_t end_idx; 953 954 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 955 return H_FUNCTION; 956 } 957 958 if (flags) { 959 return H_PARAMETER; 960 } 961 962 /* 963 * H_STATE should be returned if a H_INT_RESET is in progress. 964 * This is not needed when running the emulation under QEMU 965 */ 966 967 if (spapr_xive_priority_is_reserved(priority)) { 968 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 969 " is reserved\n", priority); 970 return H_P3; 971 } 972 973 /* 974 * Validate that "target" is part of the list of threads allocated 975 * to the partition. For that, find the END corresponding to the 976 * target. 977 */ 978 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 979 return H_P2; 980 } 981 982 assert(end_idx < xive->nr_ends); 983 end = &xive->endt[end_idx]; 984 985 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx; 986 if (xive_end_is_enqueue(end)) { 987 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 988 } else { 989 args[1] = 0; 990 } 991 992 return H_SUCCESS; 993 } 994 995 /* 996 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for 997 * a given "target" and "priority". It is also used to set the 998 * notification config associated with the EQ. An EQ size of 0 is 999 * used to reset the EQ config for a given target and priority. If 1000 * resetting the EQ config, the END associated with the given "target" 1001 * and "priority" will be changed to disable queueing. 1002 * 1003 * Upon return from the hcall(), no additional interrupts will be 1004 * directed to the old EQ (if one was set). The old EQ (if one was 1005 * set) should be investigated for interrupts that occurred prior to 1006 * or during the hcall(). 1007 * 1008 * Parameters: 1009 * Input: 1010 * - R4: "flags" 1011 * Bits 0-62: Reserved 1012 * Bit 63: Unconditional Notify (n) per the XIVE spec 1013 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1014 * "ibm,ppc-interrupt-gserver#s" 1015 * - R6: "priority" is a valid priority not in 1016 * "ibm,plat-res-int-priorities" 1017 * - R7: "eventQueue": The logical real address of the start of the EQ 1018 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes" 1019 * 1020 * Output: 1021 * - None 1022 */ 1023 1024 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63) 1025 1026 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu, 1027 SpaprMachineState *spapr, 1028 target_ulong opcode, 1029 target_ulong *args) 1030 { 1031 SpaprXive *xive = spapr->xive; 1032 target_ulong flags = args[0]; 1033 target_ulong target = args[1]; 1034 target_ulong priority = args[2]; 1035 target_ulong qpage = args[3]; 1036 target_ulong qsize = args[4]; 1037 XiveEND end; 1038 uint8_t end_blk, nvt_blk; 1039 uint32_t end_idx, nvt_idx; 1040 1041 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1042 return H_FUNCTION; 1043 } 1044 1045 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) { 1046 return H_PARAMETER; 1047 } 1048 1049 /* 1050 * H_STATE should be returned if a H_INT_RESET is in progress. 1051 * This is not needed when running the emulation under QEMU 1052 */ 1053 1054 if (spapr_xive_priority_is_reserved(priority)) { 1055 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1056 " is reserved\n", priority); 1057 return H_P3; 1058 } 1059 1060 /* 1061 * Validate that "target" is part of the list of threads allocated 1062 * to the partition. For that, find the END corresponding to the 1063 * target. 1064 */ 1065 1066 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1067 return H_P2; 1068 } 1069 1070 assert(end_idx < xive->nr_ends); 1071 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND)); 1072 1073 switch (qsize) { 1074 case 12: 1075 case 16: 1076 case 21: 1077 case 24: 1078 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) { 1079 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx 1080 " is not naturally aligned with %" HWADDR_PRIx "\n", 1081 qpage, (hwaddr)1 << qsize); 1082 return H_P4; 1083 } 1084 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff); 1085 end.w3 = cpu_to_be32(qpage & 0xffffffff); 1086 end.w0 |= cpu_to_be32(END_W0_ENQUEUE); 1087 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12); 1088 break; 1089 case 0: 1090 /* reset queue and disable queueing */ 1091 spapr_xive_end_reset(&end); 1092 goto out; 1093 1094 default: 1095 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n", 1096 qsize); 1097 return H_P5; 1098 } 1099 1100 if (qsize) { 1101 hwaddr plen = 1 << qsize; 1102 void *eq; 1103 1104 /* 1105 * Validate the guest EQ. We should also check that the queue 1106 * has been zeroed by the OS. 1107 */ 1108 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true, 1109 MEMTXATTRS_UNSPECIFIED); 1110 if (plen != 1 << qsize) { 1111 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%" 1112 HWADDR_PRIx "\n", qpage); 1113 return H_P4; 1114 } 1115 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen); 1116 } 1117 1118 /* "target" should have been validated above */ 1119 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) { 1120 g_assert_not_reached(); 1121 } 1122 1123 /* 1124 * Ensure the priority and target are correctly set (they will not 1125 * be right after allocation) 1126 */ 1127 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) | 1128 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx); 1129 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority); 1130 1131 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) { 1132 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY); 1133 } else { 1134 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY); 1135 } 1136 1137 /* 1138 * The generation bit for the END starts at 1 and The END page 1139 * offset counter starts at 0. 1140 */ 1141 end.w1 = cpu_to_be32(END_W1_GENERATION) | 1142 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul); 1143 end.w0 |= cpu_to_be32(END_W0_VALID); 1144 1145 /* 1146 * TODO: issue syncs required to ensure all in-flight interrupts 1147 * are complete on the old END 1148 */ 1149 1150 out: 1151 if (kvm_irqchip_in_kernel()) { 1152 Error *local_err = NULL; 1153 1154 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err); 1155 if (local_err) { 1156 error_report_err(local_err); 1157 return H_HARDWARE; 1158 } 1159 } 1160 1161 /* Update END */ 1162 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND)); 1163 return H_SUCCESS; 1164 } 1165 1166 /* 1167 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given 1168 * target and priority. 1169 * 1170 * Parameters: 1171 * Input: 1172 * - R4: "flags" 1173 * Bits 0-62: Reserved 1174 * Bit 63: Debug: Return debug data 1175 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1176 * "ibm,ppc-interrupt-gserver#s" 1177 * - R6: "priority" is a valid priority not in 1178 * "ibm,plat-res-int-priorities" 1179 * 1180 * Output: 1181 * - R4: "flags": 1182 * Bits 0-61: Reserved 1183 * Bit 62: The value of Event Queue Generation Number (g) per 1184 * the XIVE spec if "Debug" = 1 1185 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec 1186 * - R5: The logical real address of the start of the EQ 1187 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes" 1188 * - R7: The value of Event Queue Offset Counter per XIVE spec 1189 * if "Debug" = 1, else 0 1190 * 1191 */ 1192 1193 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63) 1194 1195 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu, 1196 SpaprMachineState *spapr, 1197 target_ulong opcode, 1198 target_ulong *args) 1199 { 1200 SpaprXive *xive = spapr->xive; 1201 target_ulong flags = args[0]; 1202 target_ulong target = args[1]; 1203 target_ulong priority = args[2]; 1204 XiveEND *end; 1205 uint8_t end_blk; 1206 uint32_t end_idx; 1207 1208 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1209 return H_FUNCTION; 1210 } 1211 1212 if (flags & ~SPAPR_XIVE_END_DEBUG) { 1213 return H_PARAMETER; 1214 } 1215 1216 /* 1217 * H_STATE should be returned if a H_INT_RESET is in progress. 1218 * This is not needed when running the emulation under QEMU 1219 */ 1220 1221 if (spapr_xive_priority_is_reserved(priority)) { 1222 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1223 " is reserved\n", priority); 1224 return H_P3; 1225 } 1226 1227 /* 1228 * Validate that "target" is part of the list of threads allocated 1229 * to the partition. For that, find the END corresponding to the 1230 * target. 1231 */ 1232 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1233 return H_P2; 1234 } 1235 1236 assert(end_idx < xive->nr_ends); 1237 end = &xive->endt[end_idx]; 1238 1239 args[0] = 0; 1240 if (xive_end_is_notify(end)) { 1241 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY; 1242 } 1243 1244 if (xive_end_is_enqueue(end)) { 1245 args[1] = xive_end_qaddr(end); 1246 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 1247 } else { 1248 args[1] = 0; 1249 args[2] = 0; 1250 } 1251 1252 if (kvm_irqchip_in_kernel()) { 1253 Error *local_err = NULL; 1254 1255 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err); 1256 if (local_err) { 1257 error_report_err(local_err); 1258 return H_HARDWARE; 1259 } 1260 } 1261 1262 /* TODO: do we need any locking on the END ? */ 1263 if (flags & SPAPR_XIVE_END_DEBUG) { 1264 /* Load the event queue generation number into the return flags */ 1265 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62; 1266 1267 /* Load R7 with the event queue offset counter */ 1268 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1269 } else { 1270 args[3] = 0; 1271 } 1272 1273 return H_SUCCESS; 1274 } 1275 1276 /* 1277 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the 1278 * reporting cache line pair for the calling thread. The reporting 1279 * cache lines will contain the OS interrupt context when the OS 1280 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS 1281 * interrupt. The reporting cache lines can be reset by inputting -1 1282 * in "reportingLine". Issuing the CI store byte without reporting 1283 * cache lines registered will result in the data not being accessible 1284 * to the OS. 1285 * 1286 * Parameters: 1287 * Input: 1288 * - R4: "flags" 1289 * Bits 0-63: Reserved 1290 * - R5: "reportingLine": The logical real address of the reporting cache 1291 * line pair 1292 * 1293 * Output: 1294 * - None 1295 */ 1296 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu, 1297 SpaprMachineState *spapr, 1298 target_ulong opcode, 1299 target_ulong *args) 1300 { 1301 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1302 return H_FUNCTION; 1303 } 1304 1305 /* 1306 * H_STATE should be returned if a H_INT_RESET is in progress. 1307 * This is not needed when running the emulation under QEMU 1308 */ 1309 1310 /* TODO: H_INT_SET_OS_REPORTING_LINE */ 1311 return H_FUNCTION; 1312 } 1313 1314 /* 1315 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical 1316 * real address of the reporting cache line pair set for the input 1317 * "target". If no reporting cache line pair has been set, -1 is 1318 * returned. 1319 * 1320 * Parameters: 1321 * Input: 1322 * - R4: "flags" 1323 * Bits 0-63: Reserved 1324 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1325 * "ibm,ppc-interrupt-gserver#s" 1326 * - R6: "reportingLine": The logical real address of the reporting 1327 * cache line pair 1328 * 1329 * Output: 1330 * - R4: The logical real address of the reporting line if set, else -1 1331 */ 1332 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu, 1333 SpaprMachineState *spapr, 1334 target_ulong opcode, 1335 target_ulong *args) 1336 { 1337 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1338 return H_FUNCTION; 1339 } 1340 1341 /* 1342 * H_STATE should be returned if a H_INT_RESET is in progress. 1343 * This is not needed when running the emulation under QEMU 1344 */ 1345 1346 /* TODO: H_INT_GET_OS_REPORTING_LINE */ 1347 return H_FUNCTION; 1348 } 1349 1350 /* 1351 * The H_INT_ESB hcall() is used to issue a load or store to the ESB 1352 * page for the input "lisn". This hcall is only supported for LISNs 1353 * that have the ESB hcall flag set to 1 when returned from hcall() 1354 * H_INT_GET_SOURCE_INFO. 1355 * 1356 * Parameters: 1357 * Input: 1358 * - R4: "flags" 1359 * Bits 0-62: Reserved 1360 * bit 63: Store: Store=1, store operation, else load operation 1361 * - R5: "lisn" is per "interrupts", "interrupt-map", or 1362 * "ibm,xive-lisn-ranges" properties, or as returned by the 1363 * ibm,query-interrupt-source-number RTAS call, or as 1364 * returned by the H_ALLOCATE_VAS_WINDOW hcall 1365 * - R6: "esbOffset" is the offset into the ESB page for the load or 1366 * store operation 1367 * - R7: "storeData" is the data to write for a store operation 1368 * 1369 * Output: 1370 * - R4: The value of the load if load operation, else -1 1371 */ 1372 1373 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63) 1374 1375 static target_ulong h_int_esb(PowerPCCPU *cpu, 1376 SpaprMachineState *spapr, 1377 target_ulong opcode, 1378 target_ulong *args) 1379 { 1380 SpaprXive *xive = spapr->xive; 1381 XiveEAS eas; 1382 target_ulong flags = args[0]; 1383 target_ulong lisn = args[1]; 1384 target_ulong offset = args[2]; 1385 target_ulong data = args[3]; 1386 hwaddr mmio_addr; 1387 XiveSource *xsrc = &xive->source; 1388 1389 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1390 return H_FUNCTION; 1391 } 1392 1393 if (flags & ~SPAPR_XIVE_ESB_STORE) { 1394 return H_PARAMETER; 1395 } 1396 1397 if (lisn >= xive->nr_irqs) { 1398 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1399 lisn); 1400 return H_P2; 1401 } 1402 1403 eas = xive->eat[lisn]; 1404 if (!xive_eas_is_valid(&eas)) { 1405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1406 lisn); 1407 return H_P2; 1408 } 1409 1410 if (offset > (1ull << xsrc->esb_shift)) { 1411 return H_P3; 1412 } 1413 1414 if (kvm_irqchip_in_kernel()) { 1415 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data, 1416 flags & SPAPR_XIVE_ESB_STORE); 1417 } else { 1418 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset; 1419 1420 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8, 1421 (flags & SPAPR_XIVE_ESB_STORE))) { 1422 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%" 1423 HWADDR_PRIx "\n", mmio_addr); 1424 return H_HARDWARE; 1425 } 1426 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data; 1427 } 1428 return H_SUCCESS; 1429 } 1430 1431 /* 1432 * The H_INT_SYNC hcall() is used to issue hardware syncs that will 1433 * ensure any in flight events for the input lisn are in the event 1434 * queue. 1435 * 1436 * Parameters: 1437 * Input: 1438 * - R4: "flags" 1439 * Bits 0-63: Reserved 1440 * - R5: "lisn" is per "interrupts", "interrupt-map", or 1441 * "ibm,xive-lisn-ranges" properties, or as returned by the 1442 * ibm,query-interrupt-source-number RTAS call, or as 1443 * returned by the H_ALLOCATE_VAS_WINDOW hcall 1444 * 1445 * Output: 1446 * - None 1447 */ 1448 static target_ulong h_int_sync(PowerPCCPU *cpu, 1449 SpaprMachineState *spapr, 1450 target_ulong opcode, 1451 target_ulong *args) 1452 { 1453 SpaprXive *xive = spapr->xive; 1454 XiveEAS eas; 1455 target_ulong flags = args[0]; 1456 target_ulong lisn = args[1]; 1457 1458 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1459 return H_FUNCTION; 1460 } 1461 1462 if (flags) { 1463 return H_PARAMETER; 1464 } 1465 1466 if (lisn >= xive->nr_irqs) { 1467 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1468 lisn); 1469 return H_P2; 1470 } 1471 1472 eas = xive->eat[lisn]; 1473 if (!xive_eas_is_valid(&eas)) { 1474 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1475 lisn); 1476 return H_P2; 1477 } 1478 1479 /* 1480 * H_STATE should be returned if a H_INT_RESET is in progress. 1481 * This is not needed when running the emulation under QEMU 1482 */ 1483 1484 /* 1485 * This is not real hardware. Nothing to be done unless when 1486 * under KVM 1487 */ 1488 1489 if (kvm_irqchip_in_kernel()) { 1490 Error *local_err = NULL; 1491 1492 kvmppc_xive_sync_source(xive, lisn, &local_err); 1493 if (local_err) { 1494 error_report_err(local_err); 1495 return H_HARDWARE; 1496 } 1497 } 1498 return H_SUCCESS; 1499 } 1500 1501 /* 1502 * The H_INT_RESET hcall() is used to reset all of the partition's 1503 * interrupt exploitation structures to their initial state. This 1504 * means losing all previously set interrupt state set via 1505 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG. 1506 * 1507 * Parameters: 1508 * Input: 1509 * - R4: "flags" 1510 * Bits 0-63: Reserved 1511 * 1512 * Output: 1513 * - None 1514 */ 1515 static target_ulong h_int_reset(PowerPCCPU *cpu, 1516 SpaprMachineState *spapr, 1517 target_ulong opcode, 1518 target_ulong *args) 1519 { 1520 SpaprXive *xive = spapr->xive; 1521 target_ulong flags = args[0]; 1522 1523 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1524 return H_FUNCTION; 1525 } 1526 1527 if (flags) { 1528 return H_PARAMETER; 1529 } 1530 1531 device_reset(DEVICE(xive)); 1532 1533 if (kvm_irqchip_in_kernel()) { 1534 Error *local_err = NULL; 1535 1536 kvmppc_xive_reset(xive, &local_err); 1537 if (local_err) { 1538 error_report_err(local_err); 1539 return H_HARDWARE; 1540 } 1541 } 1542 return H_SUCCESS; 1543 } 1544 1545 void spapr_xive_hcall_init(SpaprMachineState *spapr) 1546 { 1547 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info); 1548 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config); 1549 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config); 1550 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info); 1551 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config); 1552 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config); 1553 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE, 1554 h_int_set_os_reporting_line); 1555 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE, 1556 h_int_get_os_reporting_line); 1557 spapr_register_hypercall(H_INT_ESB, h_int_esb); 1558 spapr_register_hypercall(H_INT_SYNC, h_int_sync); 1559 spapr_register_hypercall(H_INT_RESET, h_int_reset); 1560 } 1561 1562 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt, 1563 uint32_t phandle) 1564 { 1565 SpaprXive *xive = spapr->xive; 1566 int node; 1567 uint64_t timas[2 * 2]; 1568 /* Interrupt number ranges for the IPIs */ 1569 uint32_t lisn_ranges[] = { 1570 cpu_to_be32(0), 1571 cpu_to_be32(nr_servers), 1572 }; 1573 /* 1574 * EQ size - the sizes of pages supported by the system 4K, 64K, 1575 * 2M, 16M. We only advertise 64K for the moment. 1576 */ 1577 uint32_t eq_sizes[] = { 1578 cpu_to_be32(16), /* 64K */ 1579 }; 1580 /* 1581 * The following array is in sync with the reserved priorities 1582 * defined by the 'spapr_xive_priority_is_reserved' routine. 1583 */ 1584 uint32_t plat_res_int_priorities[] = { 1585 cpu_to_be32(7), /* start */ 1586 cpu_to_be32(0xf8), /* count */ 1587 }; 1588 1589 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */ 1590 timas[0] = cpu_to_be64(xive->tm_base + 1591 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT)); 1592 timas[1] = cpu_to_be64(1ull << TM_SHIFT); 1593 timas[2] = cpu_to_be64(xive->tm_base + 1594 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT)); 1595 timas[3] = cpu_to_be64(1ull << TM_SHIFT); 1596 1597 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename)); 1598 1599 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe")); 1600 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas))); 1601 1602 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe")); 1603 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes, 1604 sizeof(eq_sizes))); 1605 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges, 1606 sizeof(lisn_ranges))); 1607 1608 /* For Linux to link the LSIs to the interrupt controller. */ 1609 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0)); 1610 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2)); 1611 1612 /* For SLOF */ 1613 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle)); 1614 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle)); 1615 1616 /* 1617 * The "ibm,plat-res-int-priorities" property defines the priority 1618 * ranges reserved by the hypervisor 1619 */ 1620 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities", 1621 plat_res_int_priorities, sizeof(plat_res_int_priorities))); 1622 } 1623