1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "qemu/error-report.h" 15 #include "target/ppc/cpu.h" 16 #include "sysemu/cpus.h" 17 #include "sysemu/reset.h" 18 #include "migration/vmstate.h" 19 #include "monitor/monitor.h" 20 #include "hw/ppc/fdt.h" 21 #include "hw/ppc/spapr.h" 22 #include "hw/ppc/spapr_cpu_core.h" 23 #include "hw/ppc/spapr_xive.h" 24 #include "hw/ppc/xive.h" 25 #include "hw/ppc/xive_regs.h" 26 #include "hw/qdev-properties.h" 27 #include "trace.h" 28 29 /* 30 * XIVE Virtualization Controller BAR and Thread Managment BAR that we 31 * use for the ESB pages and the TIMA pages 32 */ 33 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull 34 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull 35 36 /* 37 * The allocation of VP blocks is a complex operation in OPAL and the 38 * VP identifiers have a relation with the number of HW chips, the 39 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE 40 * controller model does not have the same constraints and can use a 41 * simple mapping scheme of the CPU vcpu_id 42 * 43 * These identifiers are never returned to the OS. 44 */ 45 46 #define SPAPR_XIVE_NVT_BASE 0x400 47 48 /* 49 * sPAPR NVT and END indexing helpers 50 */ 51 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx) 52 { 53 return nvt_idx - SPAPR_XIVE_NVT_BASE; 54 } 55 56 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu, 57 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) 58 { 59 assert(cpu); 60 61 if (out_nvt_blk) { 62 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID; 63 } 64 65 if (out_nvt_blk) { 66 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id; 67 } 68 } 69 70 static int spapr_xive_target_to_nvt(uint32_t target, 71 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) 72 { 73 PowerPCCPU *cpu = spapr_find_cpu(target); 74 75 if (!cpu) { 76 return -1; 77 } 78 79 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx); 80 return 0; 81 } 82 83 /* 84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8 85 * priorities per CPU 86 */ 87 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx, 88 uint32_t *out_server, uint8_t *out_prio) 89 { 90 91 assert(end_blk == SPAPR_XIVE_BLOCK_ID); 92 93 if (out_server) { 94 *out_server = end_idx >> 3; 95 } 96 97 if (out_prio) { 98 *out_prio = end_idx & 0x7; 99 } 100 return 0; 101 } 102 103 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio, 104 uint8_t *out_end_blk, uint32_t *out_end_idx) 105 { 106 assert(cpu); 107 108 if (out_end_blk) { 109 *out_end_blk = SPAPR_XIVE_BLOCK_ID; 110 } 111 112 if (out_end_idx) { 113 *out_end_idx = (cpu->vcpu_id << 3) + prio; 114 } 115 } 116 117 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio, 118 uint8_t *out_end_blk, uint32_t *out_end_idx) 119 { 120 PowerPCCPU *cpu = spapr_find_cpu(target); 121 122 if (!cpu) { 123 return -1; 124 } 125 126 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx); 127 return 0; 128 } 129 130 /* 131 * On sPAPR machines, use a simplified output for the XIVE END 132 * structure dumping only the information related to the OS EQ. 133 */ 134 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end, 135 Monitor *mon) 136 { 137 uint64_t qaddr_base = xive_end_qaddr(end); 138 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 139 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 140 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 141 uint32_t qentries = 1 << (qsize + 10); 142 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); 143 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 144 145 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d", 146 spapr_xive_nvt_to_target(0, nvt), 147 priority, qindex, qentries, qaddr_base, qgen); 148 149 xive_end_queue_pic_print_info(end, 6, mon); 150 } 151 152 /* 153 * kvm_irqchip_in_kernel() will cause the compiler to turn this 154 * info a nop if CONFIG_KVM isn't defined. 155 */ 156 #define spapr_xive_in_kernel(xive) \ 157 (kvm_irqchip_in_kernel() && (xive)->fd != -1) 158 159 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon) 160 { 161 XiveSource *xsrc = &xive->source; 162 int i; 163 164 if (spapr_xive_in_kernel(xive)) { 165 Error *local_err = NULL; 166 167 kvmppc_xive_synchronize_state(xive, &local_err); 168 if (local_err) { 169 error_report_err(local_err); 170 return; 171 } 172 } 173 174 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n"); 175 176 for (i = 0; i < xive->nr_irqs; i++) { 177 uint8_t pq = xive_source_esb_get(xsrc, i); 178 XiveEAS *eas = &xive->eat[i]; 179 180 if (!xive_eas_is_valid(eas)) { 181 continue; 182 } 183 184 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i, 185 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 186 pq & XIVE_ESB_VAL_P ? 'P' : '-', 187 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 188 xive_source_is_asserted(xsrc, i) ? 'A' : ' ', 189 xive_eas_is_masked(eas) ? "M" : " ", 190 (int) xive_get_field64(EAS_END_DATA, eas->w)); 191 192 if (!xive_eas_is_masked(eas)) { 193 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 194 XiveEND *end; 195 196 assert(end_idx < xive->nr_ends); 197 end = &xive->endt[end_idx]; 198 199 if (xive_end_is_valid(end)) { 200 spapr_xive_end_pic_print_info(xive, end, mon); 201 } 202 } 203 monitor_printf(mon, "\n"); 204 } 205 } 206 207 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable) 208 { 209 memory_region_set_enabled(&xive->source.esb_mmio, enable); 210 memory_region_set_enabled(&xive->tm_mmio, enable); 211 212 /* Disable the END ESBs until a guest OS makes use of them */ 213 memory_region_set_enabled(&xive->end_source.esb_mmio, false); 214 } 215 216 static void spapr_xive_tm_write(void *opaque, hwaddr offset, 217 uint64_t value, unsigned size) 218 { 219 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; 220 221 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size); 222 } 223 224 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size) 225 { 226 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; 227 228 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size); 229 } 230 231 const MemoryRegionOps spapr_xive_tm_ops = { 232 .read = spapr_xive_tm_read, 233 .write = spapr_xive_tm_write, 234 .endianness = DEVICE_BIG_ENDIAN, 235 .valid = { 236 .min_access_size = 1, 237 .max_access_size = 8, 238 }, 239 .impl = { 240 .min_access_size = 1, 241 .max_access_size = 8, 242 }, 243 }; 244 245 static void spapr_xive_end_reset(XiveEND *end) 246 { 247 memset(end, 0, sizeof(*end)); 248 249 /* switch off the escalation and notification ESBs */ 250 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q); 251 } 252 253 static void spapr_xive_reset(void *dev) 254 { 255 SpaprXive *xive = SPAPR_XIVE(dev); 256 int i; 257 258 /* 259 * The XiveSource has its own reset handler, which mask off all 260 * IRQs (!P|Q) 261 */ 262 263 /* Mask all valid EASs in the IRQ number space. */ 264 for (i = 0; i < xive->nr_irqs; i++) { 265 XiveEAS *eas = &xive->eat[i]; 266 if (xive_eas_is_valid(eas)) { 267 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED); 268 } else { 269 eas->w = 0; 270 } 271 } 272 273 /* Clear all ENDs */ 274 for (i = 0; i < xive->nr_ends; i++) { 275 spapr_xive_end_reset(&xive->endt[i]); 276 } 277 } 278 279 static void spapr_xive_instance_init(Object *obj) 280 { 281 SpaprXive *xive = SPAPR_XIVE(obj); 282 283 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE); 284 285 object_initialize_child(obj, "end_source", &xive->end_source, 286 TYPE_XIVE_END_SOURCE); 287 288 /* Not connected to the KVM XIVE device */ 289 xive->fd = -1; 290 } 291 292 static void spapr_xive_realize(DeviceState *dev, Error **errp) 293 { 294 SpaprXive *xive = SPAPR_XIVE(dev); 295 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive); 296 XiveSource *xsrc = &xive->source; 297 XiveENDSource *end_xsrc = &xive->end_source; 298 Error *local_err = NULL; 299 300 /* Set by spapr_irq_init() */ 301 g_assert(xive->nr_irqs); 302 g_assert(xive->nr_ends); 303 304 sxc->parent_realize(dev, &local_err); 305 if (local_err) { 306 error_propagate(errp, local_err); 307 return; 308 } 309 310 /* 311 * Initialize the internal sources, for IPIs and virtual devices. 312 */ 313 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs, 314 &error_fatal); 315 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort); 316 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { 317 return; 318 } 319 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio); 320 321 /* 322 * Initialize the END ESB source 323 */ 324 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs, 325 &error_fatal); 326 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), 327 &error_abort); 328 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) { 329 return; 330 } 331 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio); 332 333 /* Set the mapping address of the END ESB pages after the source ESBs */ 334 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc); 335 336 /* 337 * Allocate the routing tables 338 */ 339 xive->eat = g_new0(XiveEAS, xive->nr_irqs); 340 xive->endt = g_new0(XiveEND, xive->nr_ends); 341 342 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64, 343 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT)); 344 345 qemu_register_reset(spapr_xive_reset, dev); 346 347 /* TIMA initialization */ 348 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops, 349 xive, "xive.tima", 4ull << TM_SHIFT); 350 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio); 351 352 /* 353 * Map all regions. These will be enabled or disabled at reset and 354 * can also be overridden by KVM memory regions if active 355 */ 356 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base); 357 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base); 358 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base); 359 } 360 361 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk, 362 uint32_t eas_idx, XiveEAS *eas) 363 { 364 SpaprXive *xive = SPAPR_XIVE(xrtr); 365 366 if (eas_idx >= xive->nr_irqs) { 367 return -1; 368 } 369 370 *eas = xive->eat[eas_idx]; 371 return 0; 372 } 373 374 static int spapr_xive_get_end(XiveRouter *xrtr, 375 uint8_t end_blk, uint32_t end_idx, XiveEND *end) 376 { 377 SpaprXive *xive = SPAPR_XIVE(xrtr); 378 379 if (end_idx >= xive->nr_ends) { 380 return -1; 381 } 382 383 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND)); 384 return 0; 385 } 386 387 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk, 388 uint32_t end_idx, XiveEND *end, 389 uint8_t word_number) 390 { 391 SpaprXive *xive = SPAPR_XIVE(xrtr); 392 393 if (end_idx >= xive->nr_ends) { 394 return -1; 395 } 396 397 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND)); 398 return 0; 399 } 400 401 static int spapr_xive_get_nvt(XiveRouter *xrtr, 402 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) 403 { 404 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); 405 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 406 407 if (!cpu) { 408 /* TODO: should we assert() if we can find a NVT ? */ 409 return -1; 410 } 411 412 /* 413 * sPAPR does not maintain a NVT table. Return that the NVT is 414 * valid if we have found a matching CPU 415 */ 416 nvt->w0 = cpu_to_be32(NVT_W0_VALID); 417 return 0; 418 } 419 420 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, 421 uint32_t nvt_idx, XiveNVT *nvt, 422 uint8_t word_number) 423 { 424 /* 425 * We don't need to write back to the NVTs because the sPAPR 426 * machine should never hit a non-scheduled NVT. It should never 427 * get called. 428 */ 429 g_assert_not_reached(); 430 } 431 432 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format, 433 uint8_t nvt_blk, uint32_t nvt_idx, 434 bool cam_ignore, uint8_t priority, 435 uint32_t logic_serv, XiveTCTXMatch *match) 436 { 437 CPUState *cs; 438 int count = 0; 439 440 CPU_FOREACH(cs) { 441 PowerPCCPU *cpu = POWERPC_CPU(cs); 442 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; 443 int ring; 444 445 /* 446 * Skip partially initialized vCPUs. This can happen when 447 * vCPUs are hotplugged. 448 */ 449 if (!tctx) { 450 continue; 451 } 452 453 /* 454 * Check the thread context CAM lines and record matches. 455 */ 456 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, 457 cam_ignore, logic_serv); 458 /* 459 * Save the matching thread interrupt context and follow on to 460 * check for duplicates which are invalid. 461 */ 462 if (ring != -1) { 463 if (match->tctx) { 464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " 465 "context NVT %x/%x\n", nvt_blk, nvt_idx); 466 return -1; 467 } 468 469 match->ring = ring; 470 match->tctx = tctx; 471 count++; 472 } 473 } 474 475 return count; 476 } 477 478 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr) 479 { 480 return SPAPR_XIVE_BLOCK_ID; 481 } 482 483 static const VMStateDescription vmstate_spapr_xive_end = { 484 .name = TYPE_SPAPR_XIVE "/end", 485 .version_id = 1, 486 .minimum_version_id = 1, 487 .fields = (VMStateField []) { 488 VMSTATE_UINT32(w0, XiveEND), 489 VMSTATE_UINT32(w1, XiveEND), 490 VMSTATE_UINT32(w2, XiveEND), 491 VMSTATE_UINT32(w3, XiveEND), 492 VMSTATE_UINT32(w4, XiveEND), 493 VMSTATE_UINT32(w5, XiveEND), 494 VMSTATE_UINT32(w6, XiveEND), 495 VMSTATE_UINT32(w7, XiveEND), 496 VMSTATE_END_OF_LIST() 497 }, 498 }; 499 500 static const VMStateDescription vmstate_spapr_xive_eas = { 501 .name = TYPE_SPAPR_XIVE "/eas", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .fields = (VMStateField []) { 505 VMSTATE_UINT64(w, XiveEAS), 506 VMSTATE_END_OF_LIST() 507 }, 508 }; 509 510 static int vmstate_spapr_xive_pre_save(void *opaque) 511 { 512 SpaprXive *xive = SPAPR_XIVE(opaque); 513 514 if (spapr_xive_in_kernel(xive)) { 515 return kvmppc_xive_pre_save(xive); 516 } 517 518 return 0; 519 } 520 521 /* 522 * Called by the sPAPR IRQ backend 'post_load' method at the machine 523 * level. 524 */ 525 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id) 526 { 527 SpaprXive *xive = SPAPR_XIVE(intc); 528 529 if (spapr_xive_in_kernel(xive)) { 530 return kvmppc_xive_post_load(xive, version_id); 531 } 532 533 return 0; 534 } 535 536 static const VMStateDescription vmstate_spapr_xive = { 537 .name = TYPE_SPAPR_XIVE, 538 .version_id = 1, 539 .minimum_version_id = 1, 540 .pre_save = vmstate_spapr_xive_pre_save, 541 .post_load = NULL, /* handled at the machine level */ 542 .fields = (VMStateField[]) { 543 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL), 544 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs, 545 vmstate_spapr_xive_eas, XiveEAS), 546 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends, 547 vmstate_spapr_xive_end, XiveEND), 548 VMSTATE_END_OF_LIST() 549 }, 550 }; 551 552 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn, 553 bool lsi, Error **errp) 554 { 555 SpaprXive *xive = SPAPR_XIVE(intc); 556 XiveSource *xsrc = &xive->source; 557 558 assert(lisn < xive->nr_irqs); 559 560 trace_spapr_xive_claim_irq(lisn, lsi); 561 562 if (xive_eas_is_valid(&xive->eat[lisn])) { 563 error_setg(errp, "IRQ %d is not free", lisn); 564 return -EBUSY; 565 } 566 567 /* 568 * Set default values when allocating an IRQ number 569 */ 570 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED); 571 if (lsi) { 572 xive_source_irq_set_lsi(xsrc, lisn); 573 } 574 575 if (spapr_xive_in_kernel(xive)) { 576 return kvmppc_xive_source_reset_one(xsrc, lisn, errp); 577 } 578 579 return 0; 580 } 581 582 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn) 583 { 584 SpaprXive *xive = SPAPR_XIVE(intc); 585 assert(lisn < xive->nr_irqs); 586 587 trace_spapr_xive_free_irq(lisn); 588 589 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID); 590 } 591 592 static Property spapr_xive_properties[] = { 593 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0), 594 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0), 595 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE), 596 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE), 597 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7), 598 DEFINE_PROP_END_OF_LIST(), 599 }; 600 601 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc, 602 PowerPCCPU *cpu, Error **errp) 603 { 604 SpaprXive *xive = SPAPR_XIVE(intc); 605 Object *obj; 606 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 607 608 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp); 609 if (!obj) { 610 return -1; 611 } 612 613 spapr_cpu->tctx = XIVE_TCTX(obj); 614 return 0; 615 } 616 617 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam) 618 { 619 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam); 620 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 621 } 622 623 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc, 624 PowerPCCPU *cpu) 625 { 626 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; 627 uint8_t nvt_blk; 628 uint32_t nvt_idx; 629 630 xive_tctx_reset(tctx); 631 632 /* 633 * When a Virtual Processor is scheduled to run on a HW thread, 634 * the hypervisor pushes its identifier in the OS CAM line. 635 * Emulate the same behavior under QEMU. 636 */ 637 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx); 638 639 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx)); 640 } 641 642 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc, 643 PowerPCCPU *cpu) 644 { 645 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 646 647 xive_tctx_destroy(spapr_cpu->tctx); 648 spapr_cpu->tctx = NULL; 649 } 650 651 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val) 652 { 653 SpaprXive *xive = SPAPR_XIVE(intc); 654 655 trace_spapr_xive_set_irq(irq, val); 656 657 if (spapr_xive_in_kernel(xive)) { 658 kvmppc_xive_source_set_irq(&xive->source, irq, val); 659 } else { 660 xive_source_set_irq(&xive->source, irq, val); 661 } 662 } 663 664 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon) 665 { 666 SpaprXive *xive = SPAPR_XIVE(intc); 667 CPUState *cs; 668 669 CPU_FOREACH(cs) { 670 PowerPCCPU *cpu = POWERPC_CPU(cs); 671 672 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon); 673 } 674 675 spapr_xive_pic_print_info(xive, mon); 676 } 677 678 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers, 679 void *fdt, uint32_t phandle) 680 { 681 SpaprXive *xive = SPAPR_XIVE(intc); 682 int node; 683 uint64_t timas[2 * 2]; 684 /* Interrupt number ranges for the IPIs */ 685 uint32_t lisn_ranges[] = { 686 cpu_to_be32(SPAPR_IRQ_IPI), 687 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers), 688 }; 689 /* 690 * EQ size - the sizes of pages supported by the system 4K, 64K, 691 * 2M, 16M. We only advertise 64K for the moment. 692 */ 693 uint32_t eq_sizes[] = { 694 cpu_to_be32(16), /* 64K */ 695 }; 696 /* 697 * QEMU/KVM only needs to define a single range to reserve the 698 * escalation priority. A priority bitmask would have been more 699 * appropriate. 700 */ 701 uint32_t plat_res_int_priorities[] = { 702 cpu_to_be32(xive->hv_prio), /* start */ 703 cpu_to_be32(0xff - xive->hv_prio), /* count */ 704 }; 705 706 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */ 707 timas[0] = cpu_to_be64(xive->tm_base + 708 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT)); 709 timas[1] = cpu_to_be64(1ull << TM_SHIFT); 710 timas[2] = cpu_to_be64(xive->tm_base + 711 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT)); 712 timas[3] = cpu_to_be64(1ull << TM_SHIFT); 713 714 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename)); 715 716 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe")); 717 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas))); 718 719 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe")); 720 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes, 721 sizeof(eq_sizes))); 722 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges, 723 sizeof(lisn_ranges))); 724 725 /* For Linux to link the LSIs to the interrupt controller. */ 726 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0)); 727 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2)); 728 729 /* For SLOF */ 730 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle)); 731 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle)); 732 733 /* 734 * The "ibm,plat-res-int-priorities" property defines the priority 735 * ranges reserved by the hypervisor 736 */ 737 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities", 738 plat_res_int_priorities, sizeof(plat_res_int_priorities))); 739 } 740 741 static int spapr_xive_activate(SpaprInterruptController *intc, 742 uint32_t nr_servers, Error **errp) 743 { 744 SpaprXive *xive = SPAPR_XIVE(intc); 745 746 if (kvm_enabled()) { 747 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers, 748 errp); 749 if (rc < 0) { 750 return rc; 751 } 752 } 753 754 /* Activate the XIVE MMIOs */ 755 spapr_xive_mmio_set_enabled(xive, true); 756 757 return 0; 758 } 759 760 static void spapr_xive_deactivate(SpaprInterruptController *intc) 761 { 762 SpaprXive *xive = SPAPR_XIVE(intc); 763 764 spapr_xive_mmio_set_enabled(xive, false); 765 766 if (spapr_xive_in_kernel(xive)) { 767 kvmppc_xive_disconnect(intc); 768 } 769 } 770 771 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr) 772 { 773 return spapr_xive_in_kernel(SPAPR_XIVE(xptr)); 774 } 775 776 static void spapr_xive_class_init(ObjectClass *klass, void *data) 777 { 778 DeviceClass *dc = DEVICE_CLASS(klass); 779 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 780 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass); 781 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); 782 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass); 783 784 dc->desc = "sPAPR XIVE Interrupt Controller"; 785 device_class_set_props(dc, spapr_xive_properties); 786 device_class_set_parent_realize(dc, spapr_xive_realize, 787 &sxc->parent_realize); 788 dc->vmsd = &vmstate_spapr_xive; 789 790 xrc->get_eas = spapr_xive_get_eas; 791 xrc->get_end = spapr_xive_get_end; 792 xrc->write_end = spapr_xive_write_end; 793 xrc->get_nvt = spapr_xive_get_nvt; 794 xrc->write_nvt = spapr_xive_write_nvt; 795 xrc->get_block_id = spapr_xive_get_block_id; 796 797 sicc->activate = spapr_xive_activate; 798 sicc->deactivate = spapr_xive_deactivate; 799 sicc->cpu_intc_create = spapr_xive_cpu_intc_create; 800 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset; 801 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy; 802 sicc->claim_irq = spapr_xive_claim_irq; 803 sicc->free_irq = spapr_xive_free_irq; 804 sicc->set_irq = spapr_xive_set_irq; 805 sicc->print_info = spapr_xive_print_info; 806 sicc->dt = spapr_xive_dt; 807 sicc->post_load = spapr_xive_post_load; 808 809 xpc->match_nvt = spapr_xive_match_nvt; 810 xpc->in_kernel = spapr_xive_in_kernel_xptr; 811 } 812 813 static const TypeInfo spapr_xive_info = { 814 .name = TYPE_SPAPR_XIVE, 815 .parent = TYPE_XIVE_ROUTER, 816 .instance_init = spapr_xive_instance_init, 817 .instance_size = sizeof(SpaprXive), 818 .class_init = spapr_xive_class_init, 819 .class_size = sizeof(SpaprXiveClass), 820 .interfaces = (InterfaceInfo[]) { 821 { TYPE_SPAPR_INTC }, 822 { } 823 }, 824 }; 825 826 static void spapr_xive_register_types(void) 827 { 828 type_register_static(&spapr_xive_info); 829 } 830 831 type_init(spapr_xive_register_types) 832 833 /* 834 * XIVE hcalls 835 * 836 * The terminology used by the XIVE hcalls is the following : 837 * 838 * TARGET vCPU number 839 * EQ Event Queue assigned by OS to receive event data 840 * ESB page for source interrupt management 841 * LISN Logical Interrupt Source Number identifying a source in the 842 * machine 843 * EISN Effective Interrupt Source Number used by guest OS to 844 * identify source in the guest 845 * 846 * The EAS, END, NVT structures are not exposed. 847 */ 848 849 /* 850 * On POWER9, the KVM XIVE device uses priority 7 for the escalation 851 * interrupts. So we only allow the guest to use priorities [0..6]. 852 */ 853 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority) 854 { 855 return priority >= xive->hv_prio; 856 } 857 858 /* 859 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical 860 * real address of the MMIO page through which the Event State Buffer 861 * entry associated with the value of the "lisn" parameter is managed. 862 * 863 * Parameters: 864 * Input 865 * - R4: "flags" 866 * Bits 0-63 reserved 867 * - R5: "lisn" is per "interrupts", "interrupt-map", or 868 * "ibm,xive-lisn-ranges" properties, or as returned by the 869 * ibm,query-interrupt-source-number RTAS call, or as returned 870 * by the H_ALLOCATE_VAS_WINDOW hcall 871 * 872 * Output 873 * - R4: "flags" 874 * Bits 0-59: Reserved 875 * Bit 60: H_INT_ESB must be used for Event State Buffer 876 * management 877 * Bit 61: 1 == LSI 0 == MSI 878 * Bit 62: the full function page supports trigger 879 * Bit 63: Store EOI Supported 880 * - R5: Logical Real address of full function Event State Buffer 881 * management page, -1 if H_INT_ESB hcall flag is set to 1. 882 * - R6: Logical Real Address of trigger only Event State Buffer 883 * management page or -1. 884 * - R7: Power of 2 page size for the ESB management pages returned in 885 * R5 and R6. 886 */ 887 888 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */ 889 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */ 890 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management 891 on same page */ 892 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */ 893 894 static target_ulong h_int_get_source_info(PowerPCCPU *cpu, 895 SpaprMachineState *spapr, 896 target_ulong opcode, 897 target_ulong *args) 898 { 899 SpaprXive *xive = spapr->xive; 900 XiveSource *xsrc = &xive->source; 901 target_ulong flags = args[0]; 902 target_ulong lisn = args[1]; 903 904 trace_spapr_xive_get_source_info(flags, lisn); 905 906 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 907 return H_FUNCTION; 908 } 909 910 if (flags) { 911 return H_PARAMETER; 912 } 913 914 if (lisn >= xive->nr_irqs) { 915 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 916 lisn); 917 return H_P2; 918 } 919 920 if (!xive_eas_is_valid(&xive->eat[lisn])) { 921 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 922 lisn); 923 return H_P2; 924 } 925 926 /* 927 * All sources are emulated under the main XIVE object and share 928 * the same characteristics. 929 */ 930 args[0] = 0; 931 if (!xive_source_esb_has_2page(xsrc)) { 932 args[0] |= SPAPR_XIVE_SRC_TRIGGER; 933 } 934 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) { 935 args[0] |= SPAPR_XIVE_SRC_STORE_EOI; 936 } 937 938 /* 939 * Force the use of the H_INT_ESB hcall in case of an LSI 940 * interrupt. This is necessary under KVM to re-trigger the 941 * interrupt if the level is still asserted 942 */ 943 if (xive_source_irq_is_lsi(xsrc, lisn)) { 944 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI; 945 } 946 947 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { 948 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn); 949 } else { 950 args[1] = -1; 951 } 952 953 if (xive_source_esb_has_2page(xsrc) && 954 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { 955 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn); 956 } else { 957 args[2] = -1; 958 } 959 960 if (xive_source_esb_has_2page(xsrc)) { 961 args[3] = xsrc->esb_shift - 1; 962 } else { 963 args[3] = xsrc->esb_shift; 964 } 965 966 return H_SUCCESS; 967 } 968 969 /* 970 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical 971 * Interrupt Source to a target. The Logical Interrupt Source is 972 * designated with the "lisn" parameter and the target is designated 973 * with the "target" and "priority" parameters. Upon return from the 974 * hcall(), no additional interrupts will be directed to the old EQ. 975 * 976 * Parameters: 977 * Input: 978 * - R4: "flags" 979 * Bits 0-61: Reserved 980 * Bit 62: set the "eisn" in the EAS 981 * Bit 63: masks the interrupt source in the hardware interrupt 982 * control structure. An interrupt masked by this mechanism will 983 * be dropped, but it's source state bits will still be 984 * set. There is no race-free way of unmasking and restoring the 985 * source. Thus this should only be used in interrupts that are 986 * also masked at the source, and only in cases where the 987 * interrupt is not meant to be used for a large amount of time 988 * because no valid target exists for it for example 989 * - R5: "lisn" is per "interrupts", "interrupt-map", or 990 * "ibm,xive-lisn-ranges" properties, or as returned by the 991 * ibm,query-interrupt-source-number RTAS call, or as returned by 992 * the H_ALLOCATE_VAS_WINDOW hcall 993 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or 994 * "ibm,ppc-interrupt-gserver#s" 995 * - R7: "priority" is a valid priority not in 996 * "ibm,plat-res-int-priorities" 997 * - R8: "eisn" is the guest EISN associated with the "lisn" 998 * 999 * Output: 1000 * - None 1001 */ 1002 1003 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62) 1004 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63) 1005 1006 static target_ulong h_int_set_source_config(PowerPCCPU *cpu, 1007 SpaprMachineState *spapr, 1008 target_ulong opcode, 1009 target_ulong *args) 1010 { 1011 SpaprXive *xive = spapr->xive; 1012 XiveEAS eas, new_eas; 1013 target_ulong flags = args[0]; 1014 target_ulong lisn = args[1]; 1015 target_ulong target = args[2]; 1016 target_ulong priority = args[3]; 1017 target_ulong eisn = args[4]; 1018 uint8_t end_blk; 1019 uint32_t end_idx; 1020 1021 trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn); 1022 1023 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1024 return H_FUNCTION; 1025 } 1026 1027 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) { 1028 return H_PARAMETER; 1029 } 1030 1031 if (lisn >= xive->nr_irqs) { 1032 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1033 lisn); 1034 return H_P2; 1035 } 1036 1037 eas = xive->eat[lisn]; 1038 if (!xive_eas_is_valid(&eas)) { 1039 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1040 lisn); 1041 return H_P2; 1042 } 1043 1044 /* priority 0xff is used to reset the EAS */ 1045 if (priority == 0xff) { 1046 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED); 1047 goto out; 1048 } 1049 1050 if (flags & SPAPR_XIVE_SRC_MASK) { 1051 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED); 1052 } else { 1053 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED); 1054 } 1055 1056 if (spapr_xive_priority_is_reserved(xive, priority)) { 1057 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1058 " is reserved\n", priority); 1059 return H_P4; 1060 } 1061 1062 /* 1063 * Validate that "target" is part of the list of threads allocated 1064 * to the partition. For that, find the END corresponding to the 1065 * target. 1066 */ 1067 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1068 return H_P3; 1069 } 1070 1071 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); 1072 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); 1073 1074 if (flags & SPAPR_XIVE_SRC_SET_EISN) { 1075 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn); 1076 } 1077 1078 if (spapr_xive_in_kernel(xive)) { 1079 Error *local_err = NULL; 1080 1081 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err); 1082 if (local_err) { 1083 error_report_err(local_err); 1084 return H_HARDWARE; 1085 } 1086 } 1087 1088 out: 1089 xive->eat[lisn] = new_eas; 1090 return H_SUCCESS; 1091 } 1092 1093 /* 1094 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which 1095 * target/priority pair is assigned to the specified Logical Interrupt 1096 * Source. 1097 * 1098 * Parameters: 1099 * Input: 1100 * - R4: "flags" 1101 * Bits 0-63 Reserved 1102 * - R5: "lisn" is per "interrupts", "interrupt-map", or 1103 * "ibm,xive-lisn-ranges" properties, or as returned by the 1104 * ibm,query-interrupt-source-number RTAS call, or as 1105 * returned by the H_ALLOCATE_VAS_WINDOW hcall 1106 * 1107 * Output: 1108 * - R4: Target to which the specified Logical Interrupt Source is 1109 * assigned 1110 * - R5: Priority to which the specified Logical Interrupt Source is 1111 * assigned 1112 * - R6: EISN for the specified Logical Interrupt Source (this will be 1113 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG) 1114 */ 1115 static target_ulong h_int_get_source_config(PowerPCCPU *cpu, 1116 SpaprMachineState *spapr, 1117 target_ulong opcode, 1118 target_ulong *args) 1119 { 1120 SpaprXive *xive = spapr->xive; 1121 target_ulong flags = args[0]; 1122 target_ulong lisn = args[1]; 1123 XiveEAS eas; 1124 XiveEND *end; 1125 uint8_t nvt_blk; 1126 uint32_t end_idx, nvt_idx; 1127 1128 trace_spapr_xive_get_source_config(flags, lisn); 1129 1130 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1131 return H_FUNCTION; 1132 } 1133 1134 if (flags) { 1135 return H_PARAMETER; 1136 } 1137 1138 if (lisn >= xive->nr_irqs) { 1139 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1140 lisn); 1141 return H_P2; 1142 } 1143 1144 eas = xive->eat[lisn]; 1145 if (!xive_eas_is_valid(&eas)) { 1146 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1147 lisn); 1148 return H_P2; 1149 } 1150 1151 /* EAS_END_BLOCK is unused on sPAPR */ 1152 end_idx = xive_get_field64(EAS_END_INDEX, eas.w); 1153 1154 assert(end_idx < xive->nr_ends); 1155 end = &xive->endt[end_idx]; 1156 1157 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1158 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1159 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); 1160 1161 if (xive_eas_is_masked(&eas)) { 1162 args[1] = 0xff; 1163 } else { 1164 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1165 } 1166 1167 args[2] = xive_get_field64(EAS_END_DATA, eas.w); 1168 1169 return H_SUCCESS; 1170 } 1171 1172 /* 1173 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real 1174 * address of the notification management page associated with the 1175 * specified target and priority. 1176 * 1177 * Parameters: 1178 * Input: 1179 * - R4: "flags" 1180 * Bits 0-63 Reserved 1181 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1182 * "ibm,ppc-interrupt-gserver#s" 1183 * - R6: "priority" is a valid priority not in 1184 * "ibm,plat-res-int-priorities" 1185 * 1186 * Output: 1187 * - R4: Logical real address of notification page 1188 * - R5: Power of 2 page size of the notification page 1189 */ 1190 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu, 1191 SpaprMachineState *spapr, 1192 target_ulong opcode, 1193 target_ulong *args) 1194 { 1195 SpaprXive *xive = spapr->xive; 1196 XiveENDSource *end_xsrc = &xive->end_source; 1197 target_ulong flags = args[0]; 1198 target_ulong target = args[1]; 1199 target_ulong priority = args[2]; 1200 XiveEND *end; 1201 uint8_t end_blk; 1202 uint32_t end_idx; 1203 1204 trace_spapr_xive_get_queue_info(flags, target, priority); 1205 1206 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1207 return H_FUNCTION; 1208 } 1209 1210 if (flags) { 1211 return H_PARAMETER; 1212 } 1213 1214 /* 1215 * H_STATE should be returned if a H_INT_RESET is in progress. 1216 * This is not needed when running the emulation under QEMU 1217 */ 1218 1219 if (spapr_xive_priority_is_reserved(xive, priority)) { 1220 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1221 " is reserved\n", priority); 1222 return H_P3; 1223 } 1224 1225 /* 1226 * Validate that "target" is part of the list of threads allocated 1227 * to the partition. For that, find the END corresponding to the 1228 * target. 1229 */ 1230 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1231 return H_P2; 1232 } 1233 1234 assert(end_idx < xive->nr_ends); 1235 end = &xive->endt[end_idx]; 1236 1237 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx; 1238 if (xive_end_is_enqueue(end)) { 1239 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 1240 } else { 1241 args[1] = 0; 1242 } 1243 1244 return H_SUCCESS; 1245 } 1246 1247 /* 1248 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for 1249 * a given "target" and "priority". It is also used to set the 1250 * notification config associated with the EQ. An EQ size of 0 is 1251 * used to reset the EQ config for a given target and priority. If 1252 * resetting the EQ config, the END associated with the given "target" 1253 * and "priority" will be changed to disable queueing. 1254 * 1255 * Upon return from the hcall(), no additional interrupts will be 1256 * directed to the old EQ (if one was set). The old EQ (if one was 1257 * set) should be investigated for interrupts that occurred prior to 1258 * or during the hcall(). 1259 * 1260 * Parameters: 1261 * Input: 1262 * - R4: "flags" 1263 * Bits 0-62: Reserved 1264 * Bit 63: Unconditional Notify (n) per the XIVE spec 1265 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1266 * "ibm,ppc-interrupt-gserver#s" 1267 * - R6: "priority" is a valid priority not in 1268 * "ibm,plat-res-int-priorities" 1269 * - R7: "eventQueue": The logical real address of the start of the EQ 1270 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes" 1271 * 1272 * Output: 1273 * - None 1274 */ 1275 1276 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63) 1277 1278 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu, 1279 SpaprMachineState *spapr, 1280 target_ulong opcode, 1281 target_ulong *args) 1282 { 1283 SpaprXive *xive = spapr->xive; 1284 target_ulong flags = args[0]; 1285 target_ulong target = args[1]; 1286 target_ulong priority = args[2]; 1287 target_ulong qpage = args[3]; 1288 target_ulong qsize = args[4]; 1289 XiveEND end; 1290 uint8_t end_blk, nvt_blk; 1291 uint32_t end_idx, nvt_idx; 1292 1293 trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize); 1294 1295 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1296 return H_FUNCTION; 1297 } 1298 1299 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) { 1300 return H_PARAMETER; 1301 } 1302 1303 /* 1304 * H_STATE should be returned if a H_INT_RESET is in progress. 1305 * This is not needed when running the emulation under QEMU 1306 */ 1307 1308 if (spapr_xive_priority_is_reserved(xive, priority)) { 1309 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1310 " is reserved\n", priority); 1311 return H_P3; 1312 } 1313 1314 /* 1315 * Validate that "target" is part of the list of threads allocated 1316 * to the partition. For that, find the END corresponding to the 1317 * target. 1318 */ 1319 1320 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1321 return H_P2; 1322 } 1323 1324 assert(end_idx < xive->nr_ends); 1325 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND)); 1326 1327 switch (qsize) { 1328 case 12: 1329 case 16: 1330 case 21: 1331 case 24: 1332 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) { 1333 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx 1334 " is not naturally aligned with %" HWADDR_PRIx "\n", 1335 qpage, (hwaddr)1 << qsize); 1336 return H_P4; 1337 } 1338 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff); 1339 end.w3 = cpu_to_be32(qpage & 0xffffffff); 1340 end.w0 |= cpu_to_be32(END_W0_ENQUEUE); 1341 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12); 1342 break; 1343 case 0: 1344 /* reset queue and disable queueing */ 1345 spapr_xive_end_reset(&end); 1346 goto out; 1347 1348 default: 1349 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n", 1350 qsize); 1351 return H_P5; 1352 } 1353 1354 if (qsize) { 1355 hwaddr plen = 1 << qsize; 1356 void *eq; 1357 1358 /* 1359 * Validate the guest EQ. We should also check that the queue 1360 * has been zeroed by the OS. 1361 */ 1362 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true, 1363 MEMTXATTRS_UNSPECIFIED); 1364 if (plen != 1 << qsize) { 1365 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%" 1366 HWADDR_PRIx "\n", qpage); 1367 return H_P4; 1368 } 1369 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen); 1370 } 1371 1372 /* "target" should have been validated above */ 1373 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) { 1374 g_assert_not_reached(); 1375 } 1376 1377 /* 1378 * Ensure the priority and target are correctly set (they will not 1379 * be right after allocation) 1380 */ 1381 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) | 1382 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx); 1383 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority); 1384 1385 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) { 1386 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY); 1387 } else { 1388 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY); 1389 } 1390 1391 /* 1392 * The generation bit for the END starts at 1 and The END page 1393 * offset counter starts at 0. 1394 */ 1395 end.w1 = cpu_to_be32(END_W1_GENERATION) | 1396 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul); 1397 end.w0 |= cpu_to_be32(END_W0_VALID); 1398 1399 /* 1400 * TODO: issue syncs required to ensure all in-flight interrupts 1401 * are complete on the old END 1402 */ 1403 1404 out: 1405 if (spapr_xive_in_kernel(xive)) { 1406 Error *local_err = NULL; 1407 1408 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err); 1409 if (local_err) { 1410 error_report_err(local_err); 1411 return H_HARDWARE; 1412 } 1413 } 1414 1415 /* Update END */ 1416 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND)); 1417 return H_SUCCESS; 1418 } 1419 1420 /* 1421 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given 1422 * target and priority. 1423 * 1424 * Parameters: 1425 * Input: 1426 * - R4: "flags" 1427 * Bits 0-62: Reserved 1428 * Bit 63: Debug: Return debug data 1429 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1430 * "ibm,ppc-interrupt-gserver#s" 1431 * - R6: "priority" is a valid priority not in 1432 * "ibm,plat-res-int-priorities" 1433 * 1434 * Output: 1435 * - R4: "flags": 1436 * Bits 0-61: Reserved 1437 * Bit 62: The value of Event Queue Generation Number (g) per 1438 * the XIVE spec if "Debug" = 1 1439 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec 1440 * - R5: The logical real address of the start of the EQ 1441 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes" 1442 * - R7: The value of Event Queue Offset Counter per XIVE spec 1443 * if "Debug" = 1, else 0 1444 * 1445 */ 1446 1447 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63) 1448 1449 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu, 1450 SpaprMachineState *spapr, 1451 target_ulong opcode, 1452 target_ulong *args) 1453 { 1454 SpaprXive *xive = spapr->xive; 1455 target_ulong flags = args[0]; 1456 target_ulong target = args[1]; 1457 target_ulong priority = args[2]; 1458 XiveEND *end; 1459 uint8_t end_blk; 1460 uint32_t end_idx; 1461 1462 trace_spapr_xive_get_queue_config(flags, target, priority); 1463 1464 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1465 return H_FUNCTION; 1466 } 1467 1468 if (flags & ~SPAPR_XIVE_END_DEBUG) { 1469 return H_PARAMETER; 1470 } 1471 1472 /* 1473 * H_STATE should be returned if a H_INT_RESET is in progress. 1474 * This is not needed when running the emulation under QEMU 1475 */ 1476 1477 if (spapr_xive_priority_is_reserved(xive, priority)) { 1478 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld 1479 " is reserved\n", priority); 1480 return H_P3; 1481 } 1482 1483 /* 1484 * Validate that "target" is part of the list of threads allocated 1485 * to the partition. For that, find the END corresponding to the 1486 * target. 1487 */ 1488 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { 1489 return H_P2; 1490 } 1491 1492 assert(end_idx < xive->nr_ends); 1493 end = &xive->endt[end_idx]; 1494 1495 args[0] = 0; 1496 if (xive_end_is_notify(end)) { 1497 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY; 1498 } 1499 1500 if (xive_end_is_enqueue(end)) { 1501 args[1] = xive_end_qaddr(end); 1502 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 1503 } else { 1504 args[1] = 0; 1505 args[2] = 0; 1506 } 1507 1508 if (spapr_xive_in_kernel(xive)) { 1509 Error *local_err = NULL; 1510 1511 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err); 1512 if (local_err) { 1513 error_report_err(local_err); 1514 return H_HARDWARE; 1515 } 1516 } 1517 1518 /* TODO: do we need any locking on the END ? */ 1519 if (flags & SPAPR_XIVE_END_DEBUG) { 1520 /* Load the event queue generation number into the return flags */ 1521 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62; 1522 1523 /* Load R7 with the event queue offset counter */ 1524 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1525 } else { 1526 args[3] = 0; 1527 } 1528 1529 return H_SUCCESS; 1530 } 1531 1532 /* 1533 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the 1534 * reporting cache line pair for the calling thread. The reporting 1535 * cache lines will contain the OS interrupt context when the OS 1536 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS 1537 * interrupt. The reporting cache lines can be reset by inputting -1 1538 * in "reportingLine". Issuing the CI store byte without reporting 1539 * cache lines registered will result in the data not being accessible 1540 * to the OS. 1541 * 1542 * Parameters: 1543 * Input: 1544 * - R4: "flags" 1545 * Bits 0-63: Reserved 1546 * - R5: "reportingLine": The logical real address of the reporting cache 1547 * line pair 1548 * 1549 * Output: 1550 * - None 1551 */ 1552 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu, 1553 SpaprMachineState *spapr, 1554 target_ulong opcode, 1555 target_ulong *args) 1556 { 1557 target_ulong flags = args[0]; 1558 1559 trace_spapr_xive_set_os_reporting_line(flags); 1560 1561 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1562 return H_FUNCTION; 1563 } 1564 1565 /* 1566 * H_STATE should be returned if a H_INT_RESET is in progress. 1567 * This is not needed when running the emulation under QEMU 1568 */ 1569 1570 /* TODO: H_INT_SET_OS_REPORTING_LINE */ 1571 return H_FUNCTION; 1572 } 1573 1574 /* 1575 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical 1576 * real address of the reporting cache line pair set for the input 1577 * "target". If no reporting cache line pair has been set, -1 is 1578 * returned. 1579 * 1580 * Parameters: 1581 * Input: 1582 * - R4: "flags" 1583 * Bits 0-63: Reserved 1584 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or 1585 * "ibm,ppc-interrupt-gserver#s" 1586 * - R6: "reportingLine": The logical real address of the reporting 1587 * cache line pair 1588 * 1589 * Output: 1590 * - R4: The logical real address of the reporting line if set, else -1 1591 */ 1592 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu, 1593 SpaprMachineState *spapr, 1594 target_ulong opcode, 1595 target_ulong *args) 1596 { 1597 target_ulong flags = args[0]; 1598 1599 trace_spapr_xive_get_os_reporting_line(flags); 1600 1601 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1602 return H_FUNCTION; 1603 } 1604 1605 /* 1606 * H_STATE should be returned if a H_INT_RESET is in progress. 1607 * This is not needed when running the emulation under QEMU 1608 */ 1609 1610 /* TODO: H_INT_GET_OS_REPORTING_LINE */ 1611 return H_FUNCTION; 1612 } 1613 1614 /* 1615 * The H_INT_ESB hcall() is used to issue a load or store to the ESB 1616 * page for the input "lisn". This hcall is only supported for LISNs 1617 * that have the ESB hcall flag set to 1 when returned from hcall() 1618 * H_INT_GET_SOURCE_INFO. 1619 * 1620 * Parameters: 1621 * Input: 1622 * - R4: "flags" 1623 * Bits 0-62: Reserved 1624 * bit 63: Store: Store=1, store operation, else load operation 1625 * - R5: "lisn" is per "interrupts", "interrupt-map", or 1626 * "ibm,xive-lisn-ranges" properties, or as returned by the 1627 * ibm,query-interrupt-source-number RTAS call, or as 1628 * returned by the H_ALLOCATE_VAS_WINDOW hcall 1629 * - R6: "esbOffset" is the offset into the ESB page for the load or 1630 * store operation 1631 * - R7: "storeData" is the data to write for a store operation 1632 * 1633 * Output: 1634 * - R4: The value of the load if load operation, else -1 1635 */ 1636 1637 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63) 1638 1639 static target_ulong h_int_esb(PowerPCCPU *cpu, 1640 SpaprMachineState *spapr, 1641 target_ulong opcode, 1642 target_ulong *args) 1643 { 1644 SpaprXive *xive = spapr->xive; 1645 XiveEAS eas; 1646 target_ulong flags = args[0]; 1647 target_ulong lisn = args[1]; 1648 target_ulong offset = args[2]; 1649 target_ulong data = args[3]; 1650 hwaddr mmio_addr; 1651 XiveSource *xsrc = &xive->source; 1652 1653 trace_spapr_xive_esb(flags, lisn, offset, data); 1654 1655 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1656 return H_FUNCTION; 1657 } 1658 1659 if (flags & ~SPAPR_XIVE_ESB_STORE) { 1660 return H_PARAMETER; 1661 } 1662 1663 if (lisn >= xive->nr_irqs) { 1664 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1665 lisn); 1666 return H_P2; 1667 } 1668 1669 eas = xive->eat[lisn]; 1670 if (!xive_eas_is_valid(&eas)) { 1671 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1672 lisn); 1673 return H_P2; 1674 } 1675 1676 if (offset > (1ull << xsrc->esb_shift)) { 1677 return H_P3; 1678 } 1679 1680 if (spapr_xive_in_kernel(xive)) { 1681 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data, 1682 flags & SPAPR_XIVE_ESB_STORE); 1683 } else { 1684 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset; 1685 1686 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8, 1687 (flags & SPAPR_XIVE_ESB_STORE))) { 1688 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%" 1689 HWADDR_PRIx "\n", mmio_addr); 1690 return H_HARDWARE; 1691 } 1692 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data; 1693 } 1694 return H_SUCCESS; 1695 } 1696 1697 /* 1698 * The H_INT_SYNC hcall() is used to issue hardware syncs that will 1699 * ensure any in flight events for the input lisn are in the event 1700 * queue. 1701 * 1702 * Parameters: 1703 * Input: 1704 * - R4: "flags" 1705 * Bits 0-63: Reserved 1706 * - R5: "lisn" is per "interrupts", "interrupt-map", or 1707 * "ibm,xive-lisn-ranges" properties, or as returned by the 1708 * ibm,query-interrupt-source-number RTAS call, or as 1709 * returned by the H_ALLOCATE_VAS_WINDOW hcall 1710 * 1711 * Output: 1712 * - None 1713 */ 1714 static target_ulong h_int_sync(PowerPCCPU *cpu, 1715 SpaprMachineState *spapr, 1716 target_ulong opcode, 1717 target_ulong *args) 1718 { 1719 SpaprXive *xive = spapr->xive; 1720 XiveEAS eas; 1721 target_ulong flags = args[0]; 1722 target_ulong lisn = args[1]; 1723 1724 trace_spapr_xive_sync(flags, lisn); 1725 1726 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1727 return H_FUNCTION; 1728 } 1729 1730 if (flags) { 1731 return H_PARAMETER; 1732 } 1733 1734 if (lisn >= xive->nr_irqs) { 1735 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", 1736 lisn); 1737 return H_P2; 1738 } 1739 1740 eas = xive->eat[lisn]; 1741 if (!xive_eas_is_valid(&eas)) { 1742 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", 1743 lisn); 1744 return H_P2; 1745 } 1746 1747 /* 1748 * H_STATE should be returned if a H_INT_RESET is in progress. 1749 * This is not needed when running the emulation under QEMU 1750 */ 1751 1752 /* 1753 * This is not real hardware. Nothing to be done unless when 1754 * under KVM 1755 */ 1756 1757 if (spapr_xive_in_kernel(xive)) { 1758 Error *local_err = NULL; 1759 1760 kvmppc_xive_sync_source(xive, lisn, &local_err); 1761 if (local_err) { 1762 error_report_err(local_err); 1763 return H_HARDWARE; 1764 } 1765 } 1766 return H_SUCCESS; 1767 } 1768 1769 /* 1770 * The H_INT_RESET hcall() is used to reset all of the partition's 1771 * interrupt exploitation structures to their initial state. This 1772 * means losing all previously set interrupt state set via 1773 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG. 1774 * 1775 * Parameters: 1776 * Input: 1777 * - R4: "flags" 1778 * Bits 0-63: Reserved 1779 * 1780 * Output: 1781 * - None 1782 */ 1783 static target_ulong h_int_reset(PowerPCCPU *cpu, 1784 SpaprMachineState *spapr, 1785 target_ulong opcode, 1786 target_ulong *args) 1787 { 1788 SpaprXive *xive = spapr->xive; 1789 target_ulong flags = args[0]; 1790 1791 trace_spapr_xive_reset(flags); 1792 1793 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { 1794 return H_FUNCTION; 1795 } 1796 1797 if (flags) { 1798 return H_PARAMETER; 1799 } 1800 1801 device_cold_reset(DEVICE(xive)); 1802 1803 if (spapr_xive_in_kernel(xive)) { 1804 Error *local_err = NULL; 1805 1806 kvmppc_xive_reset(xive, &local_err); 1807 if (local_err) { 1808 error_report_err(local_err); 1809 return H_HARDWARE; 1810 } 1811 } 1812 return H_SUCCESS; 1813 } 1814 1815 void spapr_xive_hcall_init(SpaprMachineState *spapr) 1816 { 1817 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info); 1818 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config); 1819 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config); 1820 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info); 1821 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config); 1822 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config); 1823 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE, 1824 h_int_set_os_reporting_line); 1825 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE, 1826 h_int_get_os_reporting_line); 1827 spapr_register_hypercall(H_INT_ESB, h_int_esb); 1828 spapr_register_hypercall(H_INT_SYNC, h_int_sync); 1829 spapr_register_hypercall(H_INT_RESET, h_int_reset); 1830 } 1831