xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 83a71719)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive_regs.h"
23 
24 /*
25  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
26  * use for the ESB pages and the TIMA pages
27  */
28 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
29 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
30 
31 /*
32  * The allocation of VP blocks is a complex operation in OPAL and the
33  * VP identifiers have a relation with the number of HW chips, the
34  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
35  * controller model does not have the same constraints and can use a
36  * simple mapping scheme of the CPU vcpu_id
37  *
38  * These identifiers are never returned to the OS.
39  */
40 
41 #define SPAPR_XIVE_NVT_BASE 0x400
42 
43 /*
44  * The sPAPR machine has a unique XIVE IC device. Assign a fixed value
45  * to the controller block id value. It can nevertheless be changed
46  * for testing purpose.
47  */
48 #define SPAPR_XIVE_BLOCK_ID 0x0
49 
50 /*
51  * sPAPR NVT and END indexing helpers
52  */
53 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
54 {
55     return nvt_idx - SPAPR_XIVE_NVT_BASE;
56 }
57 
58 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
59                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
60 {
61     assert(cpu);
62 
63     if (out_nvt_blk) {
64         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
65     }
66 
67     if (out_nvt_blk) {
68         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69     }
70 }
71 
72 static int spapr_xive_target_to_nvt(uint32_t target,
73                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
74 {
75     PowerPCCPU *cpu = spapr_find_cpu(target);
76 
77     if (!cpu) {
78         return -1;
79     }
80 
81     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
82     return 0;
83 }
84 
85 /*
86  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
87  * priorities per CPU
88  */
89 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
90                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
91 {
92     assert(cpu);
93 
94     if (out_end_blk) {
95         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
96     }
97 
98     if (out_end_idx) {
99         *out_end_idx = (cpu->vcpu_id << 3) + prio;
100     }
101 }
102 
103 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
104                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
105 {
106     PowerPCCPU *cpu = spapr_find_cpu(target);
107 
108     if (!cpu) {
109         return -1;
110     }
111 
112     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
113     return 0;
114 }
115 
116 /*
117  * On sPAPR machines, use a simplified output for the XIVE END
118  * structure dumping only the information related to the OS EQ.
119  */
120 static void spapr_xive_end_pic_print_info(sPAPRXive *xive, XiveEND *end,
121                                           Monitor *mon)
122 {
123     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
124     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
125     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
126     uint32_t qentries = 1 << (qsize + 10);
127     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
128     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
129 
130     monitor_printf(mon, "%3d/%d % 6d/%5d ^%d",
131                    spapr_xive_nvt_to_target(0, nvt),
132                    priority, qindex, qentries, qgen);
133 
134     xive_end_queue_pic_print_info(end, 6, mon);
135     monitor_printf(mon, "]");
136 }
137 
138 void spapr_xive_pic_print_info(sPAPRXive *xive, Monitor *mon)
139 {
140     XiveSource *xsrc = &xive->source;
141     int i;
142 
143     monitor_printf(mon, "  LSIN         PQ    EISN     CPU/PRIO EQ\n");
144 
145     for (i = 0; i < xive->nr_irqs; i++) {
146         uint8_t pq = xive_source_esb_get(xsrc, i);
147         XiveEAS *eas = &xive->eat[i];
148 
149         if (!xive_eas_is_valid(eas)) {
150             continue;
151         }
152 
153         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
154                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
155                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
156                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
157                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
158                        xive_eas_is_masked(eas) ? "M" : " ",
159                        (int) xive_get_field64(EAS_END_DATA, eas->w));
160 
161         if (!xive_eas_is_masked(eas)) {
162             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
163             XiveEND *end;
164 
165             assert(end_idx < xive->nr_ends);
166             end = &xive->endt[end_idx];
167 
168             if (xive_end_is_valid(end)) {
169                 spapr_xive_end_pic_print_info(xive, end, mon);
170             }
171         }
172         monitor_printf(mon, "\n");
173     }
174 }
175 
176 static void spapr_xive_map_mmio(sPAPRXive *xive)
177 {
178     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
179     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
180     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
181 }
182 
183 void spapr_xive_mmio_set_enabled(sPAPRXive *xive, bool enable)
184 {
185     memory_region_set_enabled(&xive->source.esb_mmio, enable);
186     memory_region_set_enabled(&xive->tm_mmio, enable);
187 
188     /* Disable the END ESBs until a guest OS makes use of them */
189     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
190 }
191 
192 /*
193  * When a Virtual Processor is scheduled to run on a HW thread, the
194  * hypervisor pushes its identifier in the OS CAM line. Emulate the
195  * same behavior under QEMU.
196  */
197 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
198 {
199     uint8_t  nvt_blk;
200     uint32_t nvt_idx;
201     uint32_t nvt_cam;
202 
203     spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
204 
205     nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
206     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
207 }
208 
209 static void spapr_xive_end_reset(XiveEND *end)
210 {
211     memset(end, 0, sizeof(*end));
212 
213     /* switch off the escalation and notification ESBs */
214     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
215 }
216 
217 static void spapr_xive_reset(void *dev)
218 {
219     sPAPRXive *xive = SPAPR_XIVE(dev);
220     int i;
221 
222     /*
223      * The XiveSource has its own reset handler, which mask off all
224      * IRQs (!P|Q)
225      */
226 
227     /* Mask all valid EASs in the IRQ number space. */
228     for (i = 0; i < xive->nr_irqs; i++) {
229         XiveEAS *eas = &xive->eat[i];
230         if (xive_eas_is_valid(eas)) {
231             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
232         } else {
233             eas->w = 0;
234         }
235     }
236 
237     /* Clear all ENDs */
238     for (i = 0; i < xive->nr_ends; i++) {
239         spapr_xive_end_reset(&xive->endt[i]);
240     }
241 }
242 
243 static void spapr_xive_instance_init(Object *obj)
244 {
245     sPAPRXive *xive = SPAPR_XIVE(obj);
246 
247     object_initialize(&xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE);
248     object_property_add_child(obj, "source", OBJECT(&xive->source), NULL);
249 
250     object_initialize(&xive->end_source, sizeof(xive->end_source),
251                       TYPE_XIVE_END_SOURCE);
252     object_property_add_child(obj, "end_source", OBJECT(&xive->end_source),
253                               NULL);
254 }
255 
256 static void spapr_xive_realize(DeviceState *dev, Error **errp)
257 {
258     sPAPRXive *xive = SPAPR_XIVE(dev);
259     XiveSource *xsrc = &xive->source;
260     XiveENDSource *end_xsrc = &xive->end_source;
261     Error *local_err = NULL;
262 
263     if (!xive->nr_irqs) {
264         error_setg(errp, "Number of interrupt needs to be greater 0");
265         return;
266     }
267 
268     if (!xive->nr_ends) {
269         error_setg(errp, "Number of interrupt needs to be greater 0");
270         return;
271     }
272 
273     /*
274      * Initialize the internal sources, for IPIs and virtual devices.
275      */
276     object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
277                             &error_fatal);
278     object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
279                                    &error_fatal);
280     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
281     if (local_err) {
282         error_propagate(errp, local_err);
283         return;
284     }
285 
286     /*
287      * Initialize the END ESB source
288      */
289     object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
290                             &error_fatal);
291     object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
292                                    &error_fatal);
293     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
294     if (local_err) {
295         error_propagate(errp, local_err);
296         return;
297     }
298 
299     /* Set the mapping address of the END ESB pages after the source ESBs */
300     xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
301 
302     /*
303      * Allocate the routing tables
304      */
305     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
306     xive->endt = g_new0(XiveEND, xive->nr_ends);
307 
308     /* TIMA initialization */
309     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
310                           "xive.tima", 4ull << TM_SHIFT);
311 
312     /* Define all XIVE MMIO regions on SysBus */
313     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
314     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
315     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
316 
317     /* Map all regions */
318     spapr_xive_map_mmio(xive);
319 
320     qemu_register_reset(spapr_xive_reset, dev);
321 }
322 
323 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
324                               uint32_t eas_idx, XiveEAS *eas)
325 {
326     sPAPRXive *xive = SPAPR_XIVE(xrtr);
327 
328     if (eas_idx >= xive->nr_irqs) {
329         return -1;
330     }
331 
332     *eas = xive->eat[eas_idx];
333     return 0;
334 }
335 
336 static int spapr_xive_get_end(XiveRouter *xrtr,
337                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
338 {
339     sPAPRXive *xive = SPAPR_XIVE(xrtr);
340 
341     if (end_idx >= xive->nr_ends) {
342         return -1;
343     }
344 
345     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
346     return 0;
347 }
348 
349 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
350                                 uint32_t end_idx, XiveEND *end,
351                                 uint8_t word_number)
352 {
353     sPAPRXive *xive = SPAPR_XIVE(xrtr);
354 
355     if (end_idx >= xive->nr_ends) {
356         return -1;
357     }
358 
359     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
360     return 0;
361 }
362 
363 static int spapr_xive_get_nvt(XiveRouter *xrtr,
364                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
365 {
366     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
367     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
368 
369     if (!cpu) {
370         /* TODO: should we assert() if we can find a NVT ? */
371         return -1;
372     }
373 
374     /*
375      * sPAPR does not maintain a NVT table. Return that the NVT is
376      * valid if we have found a matching CPU
377      */
378     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
379     return 0;
380 }
381 
382 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
383                                 uint32_t nvt_idx, XiveNVT *nvt,
384                                 uint8_t word_number)
385 {
386     /*
387      * We don't need to write back to the NVTs because the sPAPR
388      * machine should never hit a non-scheduled NVT. It should never
389      * get called.
390      */
391     g_assert_not_reached();
392 }
393 
394 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
395 {
396     PowerPCCPU *cpu = POWERPC_CPU(cs);
397 
398     return spapr_cpu_state(cpu)->tctx;
399 }
400 
401 static const VMStateDescription vmstate_spapr_xive_end = {
402     .name = TYPE_SPAPR_XIVE "/end",
403     .version_id = 1,
404     .minimum_version_id = 1,
405     .fields = (VMStateField []) {
406         VMSTATE_UINT32(w0, XiveEND),
407         VMSTATE_UINT32(w1, XiveEND),
408         VMSTATE_UINT32(w2, XiveEND),
409         VMSTATE_UINT32(w3, XiveEND),
410         VMSTATE_UINT32(w4, XiveEND),
411         VMSTATE_UINT32(w5, XiveEND),
412         VMSTATE_UINT32(w6, XiveEND),
413         VMSTATE_UINT32(w7, XiveEND),
414         VMSTATE_END_OF_LIST()
415     },
416 };
417 
418 static const VMStateDescription vmstate_spapr_xive_eas = {
419     .name = TYPE_SPAPR_XIVE "/eas",
420     .version_id = 1,
421     .minimum_version_id = 1,
422     .fields = (VMStateField []) {
423         VMSTATE_UINT64(w, XiveEAS),
424         VMSTATE_END_OF_LIST()
425     },
426 };
427 
428 static const VMStateDescription vmstate_spapr_xive = {
429     .name = TYPE_SPAPR_XIVE,
430     .version_id = 1,
431     .minimum_version_id = 1,
432     .fields = (VMStateField[]) {
433         VMSTATE_UINT32_EQUAL(nr_irqs, sPAPRXive, NULL),
434         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, sPAPRXive, nr_irqs,
435                                      vmstate_spapr_xive_eas, XiveEAS),
436         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, sPAPRXive, nr_ends,
437                                              vmstate_spapr_xive_end, XiveEND),
438         VMSTATE_END_OF_LIST()
439     },
440 };
441 
442 static Property spapr_xive_properties[] = {
443     DEFINE_PROP_UINT32("nr-irqs", sPAPRXive, nr_irqs, 0),
444     DEFINE_PROP_UINT32("nr-ends", sPAPRXive, nr_ends, 0),
445     DEFINE_PROP_UINT64("vc-base", sPAPRXive, vc_base, SPAPR_XIVE_VC_BASE),
446     DEFINE_PROP_UINT64("tm-base", sPAPRXive, tm_base, SPAPR_XIVE_TM_BASE),
447     DEFINE_PROP_END_OF_LIST(),
448 };
449 
450 static void spapr_xive_class_init(ObjectClass *klass, void *data)
451 {
452     DeviceClass *dc = DEVICE_CLASS(klass);
453     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
454 
455     dc->desc    = "sPAPR XIVE Interrupt Controller";
456     dc->props   = spapr_xive_properties;
457     dc->realize = spapr_xive_realize;
458     dc->vmsd    = &vmstate_spapr_xive;
459 
460     xrc->get_eas = spapr_xive_get_eas;
461     xrc->get_end = spapr_xive_get_end;
462     xrc->write_end = spapr_xive_write_end;
463     xrc->get_nvt = spapr_xive_get_nvt;
464     xrc->write_nvt = spapr_xive_write_nvt;
465     xrc->get_tctx = spapr_xive_get_tctx;
466 }
467 
468 static const TypeInfo spapr_xive_info = {
469     .name = TYPE_SPAPR_XIVE,
470     .parent = TYPE_XIVE_ROUTER,
471     .instance_init = spapr_xive_instance_init,
472     .instance_size = sizeof(sPAPRXive),
473     .class_init = spapr_xive_class_init,
474 };
475 
476 static void spapr_xive_register_types(void)
477 {
478     type_register_static(&spapr_xive_info);
479 }
480 
481 type_init(spapr_xive_register_types)
482 
483 bool spapr_xive_irq_claim(sPAPRXive *xive, uint32_t lisn, bool lsi)
484 {
485     XiveSource *xsrc = &xive->source;
486 
487     if (lisn >= xive->nr_irqs) {
488         return false;
489     }
490 
491     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
492     xive_source_irq_set(xsrc, lisn, lsi);
493     return true;
494 }
495 
496 bool spapr_xive_irq_free(sPAPRXive *xive, uint32_t lisn)
497 {
498     XiveSource *xsrc = &xive->source;
499 
500     if (lisn >= xive->nr_irqs) {
501         return false;
502     }
503 
504     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
505     xive_source_irq_set(xsrc, lisn, false);
506     return true;
507 }
508 
509 /*
510  * XIVE hcalls
511  *
512  * The terminology used by the XIVE hcalls is the following :
513  *
514  *   TARGET vCPU number
515  *   EQ     Event Queue assigned by OS to receive event data
516  *   ESB    page for source interrupt management
517  *   LISN   Logical Interrupt Source Number identifying a source in the
518  *          machine
519  *   EISN   Effective Interrupt Source Number used by guest OS to
520  *          identify source in the guest
521  *
522  * The EAS, END, NVT structures are not exposed.
523  */
524 
525 /*
526  * Linux hosts under OPAL reserve priority 7 for their own escalation
527  * interrupts (DD2.X POWER9). So we only allow the guest to use
528  * priorities [0..6].
529  */
530 static bool spapr_xive_priority_is_reserved(uint8_t priority)
531 {
532     switch (priority) {
533     case 0 ... 6:
534         return false;
535     case 7: /* OPAL escalation queue */
536     default:
537         return true;
538     }
539 }
540 
541 /*
542  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
543  * real address of the MMIO page through which the Event State Buffer
544  * entry associated with the value of the "lisn" parameter is managed.
545  *
546  * Parameters:
547  * Input
548  * - R4: "flags"
549  *         Bits 0-63 reserved
550  * - R5: "lisn" is per "interrupts", "interrupt-map", or
551  *       "ibm,xive-lisn-ranges" properties, or as returned by the
552  *       ibm,query-interrupt-source-number RTAS call, or as returned
553  *       by the H_ALLOCATE_VAS_WINDOW hcall
554  *
555  * Output
556  * - R4: "flags"
557  *         Bits 0-59: Reserved
558  *         Bit 60: H_INT_ESB must be used for Event State Buffer
559  *                 management
560  *         Bit 61: 1 == LSI  0 == MSI
561  *         Bit 62: the full function page supports trigger
562  *         Bit 63: Store EOI Supported
563  * - R5: Logical Real address of full function Event State Buffer
564  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
565  * - R6: Logical Real Address of trigger only Event State Buffer
566  *       management page or -1.
567  * - R7: Power of 2 page size for the ESB management pages returned in
568  *       R5 and R6.
569  */
570 
571 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
572 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
573 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
574                                                     on same page */
575 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
576 
577 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
578                                           sPAPRMachineState *spapr,
579                                           target_ulong opcode,
580                                           target_ulong *args)
581 {
582     sPAPRXive *xive = spapr->xive;
583     XiveSource *xsrc = &xive->source;
584     target_ulong flags  = args[0];
585     target_ulong lisn   = args[1];
586 
587     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
588         return H_FUNCTION;
589     }
590 
591     if (flags) {
592         return H_PARAMETER;
593     }
594 
595     if (lisn >= xive->nr_irqs) {
596         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
597                       lisn);
598         return H_P2;
599     }
600 
601     if (!xive_eas_is_valid(&xive->eat[lisn])) {
602         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
603                       lisn);
604         return H_P2;
605     }
606 
607     /*
608      * All sources are emulated under the main XIVE object and share
609      * the same characteristics.
610      */
611     args[0] = 0;
612     if (!xive_source_esb_has_2page(xsrc)) {
613         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
614     }
615     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
616         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
617     }
618 
619     /*
620      * Force the use of the H_INT_ESB hcall in case of an LSI
621      * interrupt. This is necessary under KVM to re-trigger the
622      * interrupt if the level is still asserted
623      */
624     if (xive_source_irq_is_lsi(xsrc, lisn)) {
625         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
626     }
627 
628     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
629         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
630     } else {
631         args[1] = -1;
632     }
633 
634     if (xive_source_esb_has_2page(xsrc) &&
635         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
636         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
637     } else {
638         args[2] = -1;
639     }
640 
641     if (xive_source_esb_has_2page(xsrc)) {
642         args[3] = xsrc->esb_shift - 1;
643     } else {
644         args[3] = xsrc->esb_shift;
645     }
646 
647     return H_SUCCESS;
648 }
649 
650 /*
651  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
652  * Interrupt Source to a target. The Logical Interrupt Source is
653  * designated with the "lisn" parameter and the target is designated
654  * with the "target" and "priority" parameters.  Upon return from the
655  * hcall(), no additional interrupts will be directed to the old EQ.
656  *
657  * Parameters:
658  * Input:
659  * - R4: "flags"
660  *         Bits 0-61: Reserved
661  *         Bit 62: set the "eisn" in the EAS
662  *         Bit 63: masks the interrupt source in the hardware interrupt
663  *       control structure. An interrupt masked by this mechanism will
664  *       be dropped, but it's source state bits will still be
665  *       set. There is no race-free way of unmasking and restoring the
666  *       source. Thus this should only be used in interrupts that are
667  *       also masked at the source, and only in cases where the
668  *       interrupt is not meant to be used for a large amount of time
669  *       because no valid target exists for it for example
670  * - R5: "lisn" is per "interrupts", "interrupt-map", or
671  *       "ibm,xive-lisn-ranges" properties, or as returned by the
672  *       ibm,query-interrupt-source-number RTAS call, or as returned by
673  *       the H_ALLOCATE_VAS_WINDOW hcall
674  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
675  *       "ibm,ppc-interrupt-gserver#s"
676  * - R7: "priority" is a valid priority not in
677  *       "ibm,plat-res-int-priorities"
678  * - R8: "eisn" is the guest EISN associated with the "lisn"
679  *
680  * Output:
681  * - None
682  */
683 
684 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
685 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
686 
687 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
688                                             sPAPRMachineState *spapr,
689                                             target_ulong opcode,
690                                             target_ulong *args)
691 {
692     sPAPRXive *xive = spapr->xive;
693     XiveEAS eas, new_eas;
694     target_ulong flags    = args[0];
695     target_ulong lisn     = args[1];
696     target_ulong target   = args[2];
697     target_ulong priority = args[3];
698     target_ulong eisn     = args[4];
699     uint8_t end_blk;
700     uint32_t end_idx;
701 
702     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
703         return H_FUNCTION;
704     }
705 
706     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
707         return H_PARAMETER;
708     }
709 
710     if (lisn >= xive->nr_irqs) {
711         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
712                       lisn);
713         return H_P2;
714     }
715 
716     eas = xive->eat[lisn];
717     if (!xive_eas_is_valid(&eas)) {
718         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
719                       lisn);
720         return H_P2;
721     }
722 
723     /* priority 0xff is used to reset the EAS */
724     if (priority == 0xff) {
725         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
726         goto out;
727     }
728 
729     if (flags & SPAPR_XIVE_SRC_MASK) {
730         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
731     } else {
732         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
733     }
734 
735     if (spapr_xive_priority_is_reserved(priority)) {
736         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
737                       " is reserved\n", priority);
738         return H_P4;
739     }
740 
741     /*
742      * Validate that "target" is part of the list of threads allocated
743      * to the partition. For that, find the END corresponding to the
744      * target.
745      */
746     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
747         return H_P3;
748     }
749 
750     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
751     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
752 
753     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
754         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
755     }
756 
757 out:
758     xive->eat[lisn] = new_eas;
759     return H_SUCCESS;
760 }
761 
762 /*
763  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
764  * target/priority pair is assigned to the specified Logical Interrupt
765  * Source.
766  *
767  * Parameters:
768  * Input:
769  * - R4: "flags"
770  *         Bits 0-63 Reserved
771  * - R5: "lisn" is per "interrupts", "interrupt-map", or
772  *       "ibm,xive-lisn-ranges" properties, or as returned by the
773  *       ibm,query-interrupt-source-number RTAS call, or as
774  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
775  *
776  * Output:
777  * - R4: Target to which the specified Logical Interrupt Source is
778  *       assigned
779  * - R5: Priority to which the specified Logical Interrupt Source is
780  *       assigned
781  * - R6: EISN for the specified Logical Interrupt Source (this will be
782  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
783  */
784 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
785                                             sPAPRMachineState *spapr,
786                                             target_ulong opcode,
787                                             target_ulong *args)
788 {
789     sPAPRXive *xive = spapr->xive;
790     target_ulong flags = args[0];
791     target_ulong lisn = args[1];
792     XiveEAS eas;
793     XiveEND *end;
794     uint8_t nvt_blk;
795     uint32_t end_idx, nvt_idx;
796 
797     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
798         return H_FUNCTION;
799     }
800 
801     if (flags) {
802         return H_PARAMETER;
803     }
804 
805     if (lisn >= xive->nr_irqs) {
806         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
807                       lisn);
808         return H_P2;
809     }
810 
811     eas = xive->eat[lisn];
812     if (!xive_eas_is_valid(&eas)) {
813         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
814                       lisn);
815         return H_P2;
816     }
817 
818     /* EAS_END_BLOCK is unused on sPAPR */
819     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
820 
821     assert(end_idx < xive->nr_ends);
822     end = &xive->endt[end_idx];
823 
824     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
825     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
826     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
827 
828     if (xive_eas_is_masked(&eas)) {
829         args[1] = 0xff;
830     } else {
831         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
832     }
833 
834     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
835 
836     return H_SUCCESS;
837 }
838 
839 /*
840  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
841  * address of the notification management page associated with the
842  * specified target and priority.
843  *
844  * Parameters:
845  * Input:
846  * - R4: "flags"
847  *         Bits 0-63 Reserved
848  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
849  *       "ibm,ppc-interrupt-gserver#s"
850  * - R6: "priority" is a valid priority not in
851  *       "ibm,plat-res-int-priorities"
852  *
853  * Output:
854  * - R4: Logical real address of notification page
855  * - R5: Power of 2 page size of the notification page
856  */
857 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
858                                          sPAPRMachineState *spapr,
859                                          target_ulong opcode,
860                                          target_ulong *args)
861 {
862     sPAPRXive *xive = spapr->xive;
863     XiveENDSource *end_xsrc = &xive->end_source;
864     target_ulong flags = args[0];
865     target_ulong target = args[1];
866     target_ulong priority = args[2];
867     XiveEND *end;
868     uint8_t end_blk;
869     uint32_t end_idx;
870 
871     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
872         return H_FUNCTION;
873     }
874 
875     if (flags) {
876         return H_PARAMETER;
877     }
878 
879     /*
880      * H_STATE should be returned if a H_INT_RESET is in progress.
881      * This is not needed when running the emulation under QEMU
882      */
883 
884     if (spapr_xive_priority_is_reserved(priority)) {
885         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
886                       " is reserved\n", priority);
887         return H_P3;
888     }
889 
890     /*
891      * Validate that "target" is part of the list of threads allocated
892      * to the partition. For that, find the END corresponding to the
893      * target.
894      */
895     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
896         return H_P2;
897     }
898 
899     assert(end_idx < xive->nr_ends);
900     end = &xive->endt[end_idx];
901 
902     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
903     if (xive_end_is_enqueue(end)) {
904         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
905     } else {
906         args[1] = 0;
907     }
908 
909     return H_SUCCESS;
910 }
911 
912 /*
913  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
914  * a given "target" and "priority".  It is also used to set the
915  * notification config associated with the EQ.  An EQ size of 0 is
916  * used to reset the EQ config for a given target and priority. If
917  * resetting the EQ config, the END associated with the given "target"
918  * and "priority" will be changed to disable queueing.
919  *
920  * Upon return from the hcall(), no additional interrupts will be
921  * directed to the old EQ (if one was set). The old EQ (if one was
922  * set) should be investigated for interrupts that occurred prior to
923  * or during the hcall().
924  *
925  * Parameters:
926  * Input:
927  * - R4: "flags"
928  *         Bits 0-62: Reserved
929  *         Bit 63: Unconditional Notify (n) per the XIVE spec
930  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
931  *       "ibm,ppc-interrupt-gserver#s"
932  * - R6: "priority" is a valid priority not in
933  *       "ibm,plat-res-int-priorities"
934  * - R7: "eventQueue": The logical real address of the start of the EQ
935  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
936  *
937  * Output:
938  * - None
939  */
940 
941 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
942 
943 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
944                                            sPAPRMachineState *spapr,
945                                            target_ulong opcode,
946                                            target_ulong *args)
947 {
948     sPAPRXive *xive = spapr->xive;
949     target_ulong flags = args[0];
950     target_ulong target = args[1];
951     target_ulong priority = args[2];
952     target_ulong qpage = args[3];
953     target_ulong qsize = args[4];
954     XiveEND end;
955     uint8_t end_blk, nvt_blk;
956     uint32_t end_idx, nvt_idx;
957 
958     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
959         return H_FUNCTION;
960     }
961 
962     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
963         return H_PARAMETER;
964     }
965 
966     /*
967      * H_STATE should be returned if a H_INT_RESET is in progress.
968      * This is not needed when running the emulation under QEMU
969      */
970 
971     if (spapr_xive_priority_is_reserved(priority)) {
972         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
973                       " is reserved\n", priority);
974         return H_P3;
975     }
976 
977     /*
978      * Validate that "target" is part of the list of threads allocated
979      * to the partition. For that, find the END corresponding to the
980      * target.
981      */
982 
983     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
984         return H_P2;
985     }
986 
987     assert(end_idx < xive->nr_ends);
988     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
989 
990     switch (qsize) {
991     case 12:
992     case 16:
993     case 21:
994     case 24:
995         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
996         end.w3 = cpu_to_be32(qpage & 0xffffffff);
997         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
998         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
999         break;
1000     case 0:
1001         /* reset queue and disable queueing */
1002         spapr_xive_end_reset(&end);
1003         goto out;
1004 
1005     default:
1006         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1007                       qsize);
1008         return H_P5;
1009     }
1010 
1011     if (qsize) {
1012         hwaddr plen = 1 << qsize;
1013         void *eq;
1014 
1015         /*
1016          * Validate the guest EQ. We should also check that the queue
1017          * has been zeroed by the OS.
1018          */
1019         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1020                                MEMTXATTRS_UNSPECIFIED);
1021         if (plen != 1 << qsize) {
1022             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1023                           HWADDR_PRIx "\n", qpage);
1024             return H_P4;
1025         }
1026         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1027     }
1028 
1029     /* "target" should have been validated above */
1030     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1031         g_assert_not_reached();
1032     }
1033 
1034     /*
1035      * Ensure the priority and target are correctly set (they will not
1036      * be right after allocation)
1037      */
1038     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1039         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1040     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1041 
1042     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1043         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1044     } else {
1045         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1046     }
1047 
1048     /*
1049      * The generation bit for the END starts at 1 and The END page
1050      * offset counter starts at 0.
1051      */
1052     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1053         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1054     end.w0 |= cpu_to_be32(END_W0_VALID);
1055 
1056     /*
1057      * TODO: issue syncs required to ensure all in-flight interrupts
1058      * are complete on the old END
1059      */
1060 
1061 out:
1062     /* Update END */
1063     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1064     return H_SUCCESS;
1065 }
1066 
1067 /*
1068  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1069  * target and priority.
1070  *
1071  * Parameters:
1072  * Input:
1073  * - R4: "flags"
1074  *         Bits 0-62: Reserved
1075  *         Bit 63: Debug: Return debug data
1076  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1077  *       "ibm,ppc-interrupt-gserver#s"
1078  * - R6: "priority" is a valid priority not in
1079  *       "ibm,plat-res-int-priorities"
1080  *
1081  * Output:
1082  * - R4: "flags":
1083  *       Bits 0-61: Reserved
1084  *       Bit 62: The value of Event Queue Generation Number (g) per
1085  *              the XIVE spec if "Debug" = 1
1086  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1087  * - R5: The logical real address of the start of the EQ
1088  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1089  * - R7: The value of Event Queue Offset Counter per XIVE spec
1090  *       if "Debug" = 1, else 0
1091  *
1092  */
1093 
1094 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1095 
1096 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1097                                            sPAPRMachineState *spapr,
1098                                            target_ulong opcode,
1099                                            target_ulong *args)
1100 {
1101     sPAPRXive *xive = spapr->xive;
1102     target_ulong flags = args[0];
1103     target_ulong target = args[1];
1104     target_ulong priority = args[2];
1105     XiveEND *end;
1106     uint8_t end_blk;
1107     uint32_t end_idx;
1108 
1109     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1110         return H_FUNCTION;
1111     }
1112 
1113     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1114         return H_PARAMETER;
1115     }
1116 
1117     /*
1118      * H_STATE should be returned if a H_INT_RESET is in progress.
1119      * This is not needed when running the emulation under QEMU
1120      */
1121 
1122     if (spapr_xive_priority_is_reserved(priority)) {
1123         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1124                       " is reserved\n", priority);
1125         return H_P3;
1126     }
1127 
1128     /*
1129      * Validate that "target" is part of the list of threads allocated
1130      * to the partition. For that, find the END corresponding to the
1131      * target.
1132      */
1133     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1134         return H_P2;
1135     }
1136 
1137     assert(end_idx < xive->nr_ends);
1138     end = &xive->endt[end_idx];
1139 
1140     args[0] = 0;
1141     if (xive_end_is_notify(end)) {
1142         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1143     }
1144 
1145     if (xive_end_is_enqueue(end)) {
1146         args[1] = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1147             | be32_to_cpu(end->w3);
1148         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1149     } else {
1150         args[1] = 0;
1151         args[2] = 0;
1152     }
1153 
1154     /* TODO: do we need any locking on the END ? */
1155     if (flags & SPAPR_XIVE_END_DEBUG) {
1156         /* Load the event queue generation number into the return flags */
1157         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1158 
1159         /* Load R7 with the event queue offset counter */
1160         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1161     } else {
1162         args[3] = 0;
1163     }
1164 
1165     return H_SUCCESS;
1166 }
1167 
1168 /*
1169  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1170  * reporting cache line pair for the calling thread.  The reporting
1171  * cache lines will contain the OS interrupt context when the OS
1172  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1173  * interrupt. The reporting cache lines can be reset by inputting -1
1174  * in "reportingLine".  Issuing the CI store byte without reporting
1175  * cache lines registered will result in the data not being accessible
1176  * to the OS.
1177  *
1178  * Parameters:
1179  * Input:
1180  * - R4: "flags"
1181  *         Bits 0-63: Reserved
1182  * - R5: "reportingLine": The logical real address of the reporting cache
1183  *       line pair
1184  *
1185  * Output:
1186  * - None
1187  */
1188 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1189                                                 sPAPRMachineState *spapr,
1190                                                 target_ulong opcode,
1191                                                 target_ulong *args)
1192 {
1193     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1194         return H_FUNCTION;
1195     }
1196 
1197     /*
1198      * H_STATE should be returned if a H_INT_RESET is in progress.
1199      * This is not needed when running the emulation under QEMU
1200      */
1201 
1202     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1203     return H_FUNCTION;
1204 }
1205 
1206 /*
1207  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1208  * real address of the reporting cache line pair set for the input
1209  * "target".  If no reporting cache line pair has been set, -1 is
1210  * returned.
1211  *
1212  * Parameters:
1213  * Input:
1214  * - R4: "flags"
1215  *         Bits 0-63: Reserved
1216  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1217  *       "ibm,ppc-interrupt-gserver#s"
1218  * - R6: "reportingLine": The logical real address of the reporting
1219  *        cache line pair
1220  *
1221  * Output:
1222  * - R4: The logical real address of the reporting line if set, else -1
1223  */
1224 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1225                                                 sPAPRMachineState *spapr,
1226                                                 target_ulong opcode,
1227                                                 target_ulong *args)
1228 {
1229     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1230         return H_FUNCTION;
1231     }
1232 
1233     /*
1234      * H_STATE should be returned if a H_INT_RESET is in progress.
1235      * This is not needed when running the emulation under QEMU
1236      */
1237 
1238     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1239     return H_FUNCTION;
1240 }
1241 
1242 /*
1243  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1244  * page for the input "lisn".  This hcall is only supported for LISNs
1245  * that have the ESB hcall flag set to 1 when returned from hcall()
1246  * H_INT_GET_SOURCE_INFO.
1247  *
1248  * Parameters:
1249  * Input:
1250  * - R4: "flags"
1251  *         Bits 0-62: Reserved
1252  *         bit 63: Store: Store=1, store operation, else load operation
1253  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1254  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1255  *       ibm,query-interrupt-source-number RTAS call, or as
1256  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1257  * - R6: "esbOffset" is the offset into the ESB page for the load or
1258  *       store operation
1259  * - R7: "storeData" is the data to write for a store operation
1260  *
1261  * Output:
1262  * - R4: The value of the load if load operation, else -1
1263  */
1264 
1265 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1266 
1267 static target_ulong h_int_esb(PowerPCCPU *cpu,
1268                               sPAPRMachineState *spapr,
1269                               target_ulong opcode,
1270                               target_ulong *args)
1271 {
1272     sPAPRXive *xive = spapr->xive;
1273     XiveEAS eas;
1274     target_ulong flags  = args[0];
1275     target_ulong lisn   = args[1];
1276     target_ulong offset = args[2];
1277     target_ulong data   = args[3];
1278     hwaddr mmio_addr;
1279     XiveSource *xsrc = &xive->source;
1280 
1281     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1282         return H_FUNCTION;
1283     }
1284 
1285     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1286         return H_PARAMETER;
1287     }
1288 
1289     if (lisn >= xive->nr_irqs) {
1290         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1291                       lisn);
1292         return H_P2;
1293     }
1294 
1295     eas = xive->eat[lisn];
1296     if (!xive_eas_is_valid(&eas)) {
1297         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1298                       lisn);
1299         return H_P2;
1300     }
1301 
1302     if (offset > (1ull << xsrc->esb_shift)) {
1303         return H_P3;
1304     }
1305 
1306     mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1307 
1308     if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1309                       (flags & SPAPR_XIVE_ESB_STORE))) {
1310         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1311                       HWADDR_PRIx "\n", mmio_addr);
1312         return H_HARDWARE;
1313     }
1314     args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1315     return H_SUCCESS;
1316 }
1317 
1318 /*
1319  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1320  * ensure any in flight events for the input lisn are in the event
1321  * queue.
1322  *
1323  * Parameters:
1324  * Input:
1325  * - R4: "flags"
1326  *         Bits 0-63: Reserved
1327  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1328  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1329  *       ibm,query-interrupt-source-number RTAS call, or as
1330  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1331  *
1332  * Output:
1333  * - None
1334  */
1335 static target_ulong h_int_sync(PowerPCCPU *cpu,
1336                                sPAPRMachineState *spapr,
1337                                target_ulong opcode,
1338                                target_ulong *args)
1339 {
1340     sPAPRXive *xive = spapr->xive;
1341     XiveEAS eas;
1342     target_ulong flags = args[0];
1343     target_ulong lisn = args[1];
1344 
1345     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1346         return H_FUNCTION;
1347     }
1348 
1349     if (flags) {
1350         return H_PARAMETER;
1351     }
1352 
1353     if (lisn >= xive->nr_irqs) {
1354         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1355                       lisn);
1356         return H_P2;
1357     }
1358 
1359     eas = xive->eat[lisn];
1360     if (!xive_eas_is_valid(&eas)) {
1361         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1362                       lisn);
1363         return H_P2;
1364     }
1365 
1366     /*
1367      * H_STATE should be returned if a H_INT_RESET is in progress.
1368      * This is not needed when running the emulation under QEMU
1369      */
1370 
1371     /* This is not real hardware. Nothing to be done */
1372     return H_SUCCESS;
1373 }
1374 
1375 /*
1376  * The H_INT_RESET hcall() is used to reset all of the partition's
1377  * interrupt exploitation structures to their initial state.  This
1378  * means losing all previously set interrupt state set via
1379  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1380  *
1381  * Parameters:
1382  * Input:
1383  * - R4: "flags"
1384  *         Bits 0-63: Reserved
1385  *
1386  * Output:
1387  * - None
1388  */
1389 static target_ulong h_int_reset(PowerPCCPU *cpu,
1390                                 sPAPRMachineState *spapr,
1391                                 target_ulong opcode,
1392                                 target_ulong *args)
1393 {
1394     sPAPRXive *xive = spapr->xive;
1395     target_ulong flags   = args[0];
1396 
1397     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1398         return H_FUNCTION;
1399     }
1400 
1401     if (flags) {
1402         return H_PARAMETER;
1403     }
1404 
1405     device_reset(DEVICE(xive));
1406     return H_SUCCESS;
1407 }
1408 
1409 void spapr_xive_hcall_init(sPAPRMachineState *spapr)
1410 {
1411     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1412     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1413     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1414     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1415     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1416     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1417     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1418                              h_int_set_os_reporting_line);
1419     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1420                              h_int_get_os_reporting_line);
1421     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1422     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1423     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1424 }
1425 
1426 void spapr_dt_xive(sPAPRMachineState *spapr, uint32_t nr_servers, void *fdt,
1427                    uint32_t phandle)
1428 {
1429     sPAPRXive *xive = spapr->xive;
1430     int node;
1431     uint64_t timas[2 * 2];
1432     /* Interrupt number ranges for the IPIs */
1433     uint32_t lisn_ranges[] = {
1434         cpu_to_be32(0),
1435         cpu_to_be32(nr_servers),
1436     };
1437     /*
1438      * EQ size - the sizes of pages supported by the system 4K, 64K,
1439      * 2M, 16M. We only advertise 64K for the moment.
1440      */
1441     uint32_t eq_sizes[] = {
1442         cpu_to_be32(16), /* 64K */
1443     };
1444     /*
1445      * The following array is in sync with the reserved priorities
1446      * defined by the 'spapr_xive_priority_is_reserved' routine.
1447      */
1448     uint32_t plat_res_int_priorities[] = {
1449         cpu_to_be32(7),    /* start */
1450         cpu_to_be32(0xf8), /* count */
1451     };
1452     gchar *nodename;
1453 
1454     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1455     timas[0] = cpu_to_be64(xive->tm_base +
1456                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1457     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1458     timas[2] = cpu_to_be64(xive->tm_base +
1459                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1460     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1461 
1462     nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
1463                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
1464     _FDT(node = fdt_add_subnode(fdt, 0, nodename));
1465     g_free(nodename);
1466 
1467     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1468     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1469 
1470     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1471     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1472                      sizeof(eq_sizes)));
1473     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1474                      sizeof(lisn_ranges)));
1475 
1476     /* For Linux to link the LSIs to the interrupt controller. */
1477     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1478     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1479 
1480     /* For SLOF */
1481     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1482     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1483 
1484     /*
1485      * The "ibm,plat-res-int-priorities" property defines the priority
1486      * ranges reserved by the hypervisor
1487      */
1488     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1489                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1490 }
1491