xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 520e210c)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive_regs.h"
23 
24 /*
25  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
26  * use for the ESB pages and the TIMA pages
27  */
28 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
29 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
30 
31 /*
32  * The allocation of VP blocks is a complex operation in OPAL and the
33  * VP identifiers have a relation with the number of HW chips, the
34  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
35  * controller model does not have the same constraints and can use a
36  * simple mapping scheme of the CPU vcpu_id
37  *
38  * These identifiers are never returned to the OS.
39  */
40 
41 #define SPAPR_XIVE_NVT_BASE 0x400
42 
43 /*
44  * The sPAPR machine has a unique XIVE IC device. Assign a fixed value
45  * to the controller block id value. It can nevertheless be changed
46  * for testing purpose.
47  */
48 #define SPAPR_XIVE_BLOCK_ID 0x0
49 
50 /*
51  * sPAPR NVT and END indexing helpers
52  */
53 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
54 {
55     return nvt_idx - SPAPR_XIVE_NVT_BASE;
56 }
57 
58 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
59                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
60 {
61     assert(cpu);
62 
63     if (out_nvt_blk) {
64         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
65     }
66 
67     if (out_nvt_blk) {
68         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69     }
70 }
71 
72 static int spapr_xive_target_to_nvt(uint32_t target,
73                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
74 {
75     PowerPCCPU *cpu = spapr_find_cpu(target);
76 
77     if (!cpu) {
78         return -1;
79     }
80 
81     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
82     return 0;
83 }
84 
85 /*
86  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
87  * priorities per CPU
88  */
89 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
90                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
91 {
92     assert(cpu);
93 
94     if (out_end_blk) {
95         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
96     }
97 
98     if (out_end_idx) {
99         *out_end_idx = (cpu->vcpu_id << 3) + prio;
100     }
101 }
102 
103 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
104                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
105 {
106     PowerPCCPU *cpu = spapr_find_cpu(target);
107 
108     if (!cpu) {
109         return -1;
110     }
111 
112     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
113     return 0;
114 }
115 
116 /*
117  * On sPAPR machines, use a simplified output for the XIVE END
118  * structure dumping only the information related to the OS EQ.
119  */
120 static void spapr_xive_end_pic_print_info(sPAPRXive *xive, XiveEND *end,
121                                           Monitor *mon)
122 {
123     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
124     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
125     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
126     uint32_t qentries = 1 << (qsize + 10);
127     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
128     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
129 
130     monitor_printf(mon, "%3d/%d % 6d/%5d ^%d",
131                    spapr_xive_nvt_to_target(0, nvt),
132                    priority, qindex, qentries, qgen);
133 
134     xive_end_queue_pic_print_info(end, 6, mon);
135     monitor_printf(mon, "]");
136 }
137 
138 void spapr_xive_pic_print_info(sPAPRXive *xive, Monitor *mon)
139 {
140     XiveSource *xsrc = &xive->source;
141     int i;
142 
143     monitor_printf(mon, "  LSIN         PQ    EISN     CPU/PRIO EQ\n");
144 
145     for (i = 0; i < xive->nr_irqs; i++) {
146         uint8_t pq = xive_source_esb_get(xsrc, i);
147         XiveEAS *eas = &xive->eat[i];
148 
149         if (!xive_eas_is_valid(eas)) {
150             continue;
151         }
152 
153         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
154                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
155                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
156                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
157                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
158                        xive_eas_is_masked(eas) ? "M" : " ",
159                        (int) xive_get_field64(EAS_END_DATA, eas->w));
160 
161         if (!xive_eas_is_masked(eas)) {
162             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
163             XiveEND *end;
164 
165             assert(end_idx < xive->nr_ends);
166             end = &xive->endt[end_idx];
167 
168             if (xive_end_is_valid(end)) {
169                 spapr_xive_end_pic_print_info(xive, end, mon);
170             }
171         }
172         monitor_printf(mon, "\n");
173     }
174 }
175 
176 static void spapr_xive_map_mmio(sPAPRXive *xive)
177 {
178     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
179     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
180     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
181 }
182 
183 void spapr_xive_mmio_set_enabled(sPAPRXive *xive, bool enable)
184 {
185     memory_region_set_enabled(&xive->source.esb_mmio, enable);
186     memory_region_set_enabled(&xive->tm_mmio, enable);
187 
188     /* Disable the END ESBs until a guest OS makes use of them */
189     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
190 }
191 
192 /*
193  * When a Virtual Processor is scheduled to run on a HW thread, the
194  * hypervisor pushes its identifier in the OS CAM line. Emulate the
195  * same behavior under QEMU.
196  */
197 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
198 {
199     uint8_t  nvt_blk;
200     uint32_t nvt_idx;
201     uint32_t nvt_cam;
202 
203     spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
204 
205     nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
206     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
207 }
208 
209 static void spapr_xive_end_reset(XiveEND *end)
210 {
211     memset(end, 0, sizeof(*end));
212 
213     /* switch off the escalation and notification ESBs */
214     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
215 }
216 
217 static void spapr_xive_reset(void *dev)
218 {
219     sPAPRXive *xive = SPAPR_XIVE(dev);
220     int i;
221 
222     /*
223      * The XiveSource has its own reset handler, which mask off all
224      * IRQs (!P|Q)
225      */
226 
227     /* Mask all valid EASs in the IRQ number space. */
228     for (i = 0; i < xive->nr_irqs; i++) {
229         XiveEAS *eas = &xive->eat[i];
230         if (xive_eas_is_valid(eas)) {
231             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
232         } else {
233             eas->w = 0;
234         }
235     }
236 
237     /* Clear all ENDs */
238     for (i = 0; i < xive->nr_ends; i++) {
239         spapr_xive_end_reset(&xive->endt[i]);
240     }
241 }
242 
243 static void spapr_xive_instance_init(Object *obj)
244 {
245     sPAPRXive *xive = SPAPR_XIVE(obj);
246 
247     object_initialize(&xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE);
248     object_property_add_child(obj, "source", OBJECT(&xive->source), NULL);
249 
250     object_initialize(&xive->end_source, sizeof(xive->end_source),
251                       TYPE_XIVE_END_SOURCE);
252     object_property_add_child(obj, "end_source", OBJECT(&xive->end_source),
253                               NULL);
254 }
255 
256 static void spapr_xive_realize(DeviceState *dev, Error **errp)
257 {
258     sPAPRXive *xive = SPAPR_XIVE(dev);
259     XiveSource *xsrc = &xive->source;
260     XiveENDSource *end_xsrc = &xive->end_source;
261     Error *local_err = NULL;
262 
263     if (!xive->nr_irqs) {
264         error_setg(errp, "Number of interrupt needs to be greater 0");
265         return;
266     }
267 
268     if (!xive->nr_ends) {
269         error_setg(errp, "Number of interrupt needs to be greater 0");
270         return;
271     }
272 
273     /*
274      * Initialize the internal sources, for IPIs and virtual devices.
275      */
276     object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
277                             &error_fatal);
278     object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
279                                    &error_fatal);
280     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
281     if (local_err) {
282         error_propagate(errp, local_err);
283         return;
284     }
285 
286     /*
287      * Initialize the END ESB source
288      */
289     object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
290                             &error_fatal);
291     object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
292                                    &error_fatal);
293     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
294     if (local_err) {
295         error_propagate(errp, local_err);
296         return;
297     }
298 
299     /* Set the mapping address of the END ESB pages after the source ESBs */
300     xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
301 
302     /*
303      * Allocate the routing tables
304      */
305     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
306     xive->endt = g_new0(XiveEND, xive->nr_ends);
307 
308     /* TIMA initialization */
309     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
310                           "xive.tima", 4ull << TM_SHIFT);
311 
312     /* Define all XIVE MMIO regions on SysBus */
313     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
314     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
315     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
316 
317     /* Map all regions */
318     spapr_xive_map_mmio(xive);
319 
320     qemu_register_reset(spapr_xive_reset, dev);
321 }
322 
323 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
324                               uint32_t eas_idx, XiveEAS *eas)
325 {
326     sPAPRXive *xive = SPAPR_XIVE(xrtr);
327 
328     if (eas_idx >= xive->nr_irqs) {
329         return -1;
330     }
331 
332     *eas = xive->eat[eas_idx];
333     return 0;
334 }
335 
336 static int spapr_xive_get_end(XiveRouter *xrtr,
337                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
338 {
339     sPAPRXive *xive = SPAPR_XIVE(xrtr);
340 
341     if (end_idx >= xive->nr_ends) {
342         return -1;
343     }
344 
345     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
346     return 0;
347 }
348 
349 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
350                                 uint32_t end_idx, XiveEND *end,
351                                 uint8_t word_number)
352 {
353     sPAPRXive *xive = SPAPR_XIVE(xrtr);
354 
355     if (end_idx >= xive->nr_ends) {
356         return -1;
357     }
358 
359     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
360     return 0;
361 }
362 
363 static int spapr_xive_get_nvt(XiveRouter *xrtr,
364                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
365 {
366     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
367     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
368 
369     if (!cpu) {
370         /* TODO: should we assert() if we can find a NVT ? */
371         return -1;
372     }
373 
374     /*
375      * sPAPR does not maintain a NVT table. Return that the NVT is
376      * valid if we have found a matching CPU
377      */
378     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
379     return 0;
380 }
381 
382 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
383                                 uint32_t nvt_idx, XiveNVT *nvt,
384                                 uint8_t word_number)
385 {
386     /*
387      * We don't need to write back to the NVTs because the sPAPR
388      * machine should never hit a non-scheduled NVT. It should never
389      * get called.
390      */
391     g_assert_not_reached();
392 }
393 
394 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
395 {
396     PowerPCCPU *cpu = POWERPC_CPU(cs);
397 
398     return spapr_cpu_state(cpu)->tctx;
399 }
400 
401 static const VMStateDescription vmstate_spapr_xive_end = {
402     .name = TYPE_SPAPR_XIVE "/end",
403     .version_id = 1,
404     .minimum_version_id = 1,
405     .fields = (VMStateField []) {
406         VMSTATE_UINT32(w0, XiveEND),
407         VMSTATE_UINT32(w1, XiveEND),
408         VMSTATE_UINT32(w2, XiveEND),
409         VMSTATE_UINT32(w3, XiveEND),
410         VMSTATE_UINT32(w4, XiveEND),
411         VMSTATE_UINT32(w5, XiveEND),
412         VMSTATE_UINT32(w6, XiveEND),
413         VMSTATE_UINT32(w7, XiveEND),
414         VMSTATE_END_OF_LIST()
415     },
416 };
417 
418 static const VMStateDescription vmstate_spapr_xive_eas = {
419     .name = TYPE_SPAPR_XIVE "/eas",
420     .version_id = 1,
421     .minimum_version_id = 1,
422     .fields = (VMStateField []) {
423         VMSTATE_UINT64(w, XiveEAS),
424         VMSTATE_END_OF_LIST()
425     },
426 };
427 
428 static const VMStateDescription vmstate_spapr_xive = {
429     .name = TYPE_SPAPR_XIVE,
430     .version_id = 1,
431     .minimum_version_id = 1,
432     .fields = (VMStateField[]) {
433         VMSTATE_UINT32_EQUAL(nr_irqs, sPAPRXive, NULL),
434         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, sPAPRXive, nr_irqs,
435                                      vmstate_spapr_xive_eas, XiveEAS),
436         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, sPAPRXive, nr_ends,
437                                              vmstate_spapr_xive_end, XiveEND),
438         VMSTATE_END_OF_LIST()
439     },
440 };
441 
442 static Property spapr_xive_properties[] = {
443     DEFINE_PROP_UINT32("nr-irqs", sPAPRXive, nr_irqs, 0),
444     DEFINE_PROP_UINT32("nr-ends", sPAPRXive, nr_ends, 0),
445     DEFINE_PROP_UINT64("vc-base", sPAPRXive, vc_base, SPAPR_XIVE_VC_BASE),
446     DEFINE_PROP_UINT64("tm-base", sPAPRXive, tm_base, SPAPR_XIVE_TM_BASE),
447     DEFINE_PROP_END_OF_LIST(),
448 };
449 
450 static void spapr_xive_class_init(ObjectClass *klass, void *data)
451 {
452     DeviceClass *dc = DEVICE_CLASS(klass);
453     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
454 
455     dc->desc    = "sPAPR XIVE Interrupt Controller";
456     dc->props   = spapr_xive_properties;
457     dc->realize = spapr_xive_realize;
458     dc->vmsd    = &vmstate_spapr_xive;
459 
460     xrc->get_eas = spapr_xive_get_eas;
461     xrc->get_end = spapr_xive_get_end;
462     xrc->write_end = spapr_xive_write_end;
463     xrc->get_nvt = spapr_xive_get_nvt;
464     xrc->write_nvt = spapr_xive_write_nvt;
465     xrc->get_tctx = spapr_xive_get_tctx;
466 }
467 
468 static const TypeInfo spapr_xive_info = {
469     .name = TYPE_SPAPR_XIVE,
470     .parent = TYPE_XIVE_ROUTER,
471     .instance_init = spapr_xive_instance_init,
472     .instance_size = sizeof(sPAPRXive),
473     .class_init = spapr_xive_class_init,
474 };
475 
476 static void spapr_xive_register_types(void)
477 {
478     type_register_static(&spapr_xive_info);
479 }
480 
481 type_init(spapr_xive_register_types)
482 
483 bool spapr_xive_irq_claim(sPAPRXive *xive, uint32_t lisn, bool lsi)
484 {
485     XiveSource *xsrc = &xive->source;
486 
487     if (lisn >= xive->nr_irqs) {
488         return false;
489     }
490 
491     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
492     if (lsi) {
493         xive_source_irq_set_lsi(xsrc, lisn);
494     }
495     return true;
496 }
497 
498 bool spapr_xive_irq_free(sPAPRXive *xive, uint32_t lisn)
499 {
500     if (lisn >= xive->nr_irqs) {
501         return false;
502     }
503 
504     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
505     return true;
506 }
507 
508 /*
509  * XIVE hcalls
510  *
511  * The terminology used by the XIVE hcalls is the following :
512  *
513  *   TARGET vCPU number
514  *   EQ     Event Queue assigned by OS to receive event data
515  *   ESB    page for source interrupt management
516  *   LISN   Logical Interrupt Source Number identifying a source in the
517  *          machine
518  *   EISN   Effective Interrupt Source Number used by guest OS to
519  *          identify source in the guest
520  *
521  * The EAS, END, NVT structures are not exposed.
522  */
523 
524 /*
525  * Linux hosts under OPAL reserve priority 7 for their own escalation
526  * interrupts (DD2.X POWER9). So we only allow the guest to use
527  * priorities [0..6].
528  */
529 static bool spapr_xive_priority_is_reserved(uint8_t priority)
530 {
531     switch (priority) {
532     case 0 ... 6:
533         return false;
534     case 7: /* OPAL escalation queue */
535     default:
536         return true;
537     }
538 }
539 
540 /*
541  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
542  * real address of the MMIO page through which the Event State Buffer
543  * entry associated with the value of the "lisn" parameter is managed.
544  *
545  * Parameters:
546  * Input
547  * - R4: "flags"
548  *         Bits 0-63 reserved
549  * - R5: "lisn" is per "interrupts", "interrupt-map", or
550  *       "ibm,xive-lisn-ranges" properties, or as returned by the
551  *       ibm,query-interrupt-source-number RTAS call, or as returned
552  *       by the H_ALLOCATE_VAS_WINDOW hcall
553  *
554  * Output
555  * - R4: "flags"
556  *         Bits 0-59: Reserved
557  *         Bit 60: H_INT_ESB must be used for Event State Buffer
558  *                 management
559  *         Bit 61: 1 == LSI  0 == MSI
560  *         Bit 62: the full function page supports trigger
561  *         Bit 63: Store EOI Supported
562  * - R5: Logical Real address of full function Event State Buffer
563  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
564  * - R6: Logical Real Address of trigger only Event State Buffer
565  *       management page or -1.
566  * - R7: Power of 2 page size for the ESB management pages returned in
567  *       R5 and R6.
568  */
569 
570 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
571 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
572 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
573                                                     on same page */
574 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
575 
576 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
577                                           sPAPRMachineState *spapr,
578                                           target_ulong opcode,
579                                           target_ulong *args)
580 {
581     sPAPRXive *xive = spapr->xive;
582     XiveSource *xsrc = &xive->source;
583     target_ulong flags  = args[0];
584     target_ulong lisn   = args[1];
585 
586     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
587         return H_FUNCTION;
588     }
589 
590     if (flags) {
591         return H_PARAMETER;
592     }
593 
594     if (lisn >= xive->nr_irqs) {
595         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
596                       lisn);
597         return H_P2;
598     }
599 
600     if (!xive_eas_is_valid(&xive->eat[lisn])) {
601         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
602                       lisn);
603         return H_P2;
604     }
605 
606     /*
607      * All sources are emulated under the main XIVE object and share
608      * the same characteristics.
609      */
610     args[0] = 0;
611     if (!xive_source_esb_has_2page(xsrc)) {
612         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
613     }
614     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
615         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
616     }
617 
618     /*
619      * Force the use of the H_INT_ESB hcall in case of an LSI
620      * interrupt. This is necessary under KVM to re-trigger the
621      * interrupt if the level is still asserted
622      */
623     if (xive_source_irq_is_lsi(xsrc, lisn)) {
624         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
625     }
626 
627     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
628         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
629     } else {
630         args[1] = -1;
631     }
632 
633     if (xive_source_esb_has_2page(xsrc) &&
634         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
635         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
636     } else {
637         args[2] = -1;
638     }
639 
640     if (xive_source_esb_has_2page(xsrc)) {
641         args[3] = xsrc->esb_shift - 1;
642     } else {
643         args[3] = xsrc->esb_shift;
644     }
645 
646     return H_SUCCESS;
647 }
648 
649 /*
650  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
651  * Interrupt Source to a target. The Logical Interrupt Source is
652  * designated with the "lisn" parameter and the target is designated
653  * with the "target" and "priority" parameters.  Upon return from the
654  * hcall(), no additional interrupts will be directed to the old EQ.
655  *
656  * Parameters:
657  * Input:
658  * - R4: "flags"
659  *         Bits 0-61: Reserved
660  *         Bit 62: set the "eisn" in the EAS
661  *         Bit 63: masks the interrupt source in the hardware interrupt
662  *       control structure. An interrupt masked by this mechanism will
663  *       be dropped, but it's source state bits will still be
664  *       set. There is no race-free way of unmasking and restoring the
665  *       source. Thus this should only be used in interrupts that are
666  *       also masked at the source, and only in cases where the
667  *       interrupt is not meant to be used for a large amount of time
668  *       because no valid target exists for it for example
669  * - R5: "lisn" is per "interrupts", "interrupt-map", or
670  *       "ibm,xive-lisn-ranges" properties, or as returned by the
671  *       ibm,query-interrupt-source-number RTAS call, or as returned by
672  *       the H_ALLOCATE_VAS_WINDOW hcall
673  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
674  *       "ibm,ppc-interrupt-gserver#s"
675  * - R7: "priority" is a valid priority not in
676  *       "ibm,plat-res-int-priorities"
677  * - R8: "eisn" is the guest EISN associated with the "lisn"
678  *
679  * Output:
680  * - None
681  */
682 
683 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
684 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
685 
686 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
687                                             sPAPRMachineState *spapr,
688                                             target_ulong opcode,
689                                             target_ulong *args)
690 {
691     sPAPRXive *xive = spapr->xive;
692     XiveEAS eas, new_eas;
693     target_ulong flags    = args[0];
694     target_ulong lisn     = args[1];
695     target_ulong target   = args[2];
696     target_ulong priority = args[3];
697     target_ulong eisn     = args[4];
698     uint8_t end_blk;
699     uint32_t end_idx;
700 
701     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
702         return H_FUNCTION;
703     }
704 
705     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
706         return H_PARAMETER;
707     }
708 
709     if (lisn >= xive->nr_irqs) {
710         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
711                       lisn);
712         return H_P2;
713     }
714 
715     eas = xive->eat[lisn];
716     if (!xive_eas_is_valid(&eas)) {
717         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
718                       lisn);
719         return H_P2;
720     }
721 
722     /* priority 0xff is used to reset the EAS */
723     if (priority == 0xff) {
724         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
725         goto out;
726     }
727 
728     if (flags & SPAPR_XIVE_SRC_MASK) {
729         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
730     } else {
731         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
732     }
733 
734     if (spapr_xive_priority_is_reserved(priority)) {
735         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
736                       " is reserved\n", priority);
737         return H_P4;
738     }
739 
740     /*
741      * Validate that "target" is part of the list of threads allocated
742      * to the partition. For that, find the END corresponding to the
743      * target.
744      */
745     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
746         return H_P3;
747     }
748 
749     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
750     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
751 
752     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
753         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
754     }
755 
756 out:
757     xive->eat[lisn] = new_eas;
758     return H_SUCCESS;
759 }
760 
761 /*
762  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
763  * target/priority pair is assigned to the specified Logical Interrupt
764  * Source.
765  *
766  * Parameters:
767  * Input:
768  * - R4: "flags"
769  *         Bits 0-63 Reserved
770  * - R5: "lisn" is per "interrupts", "interrupt-map", or
771  *       "ibm,xive-lisn-ranges" properties, or as returned by the
772  *       ibm,query-interrupt-source-number RTAS call, or as
773  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
774  *
775  * Output:
776  * - R4: Target to which the specified Logical Interrupt Source is
777  *       assigned
778  * - R5: Priority to which the specified Logical Interrupt Source is
779  *       assigned
780  * - R6: EISN for the specified Logical Interrupt Source (this will be
781  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
782  */
783 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
784                                             sPAPRMachineState *spapr,
785                                             target_ulong opcode,
786                                             target_ulong *args)
787 {
788     sPAPRXive *xive = spapr->xive;
789     target_ulong flags = args[0];
790     target_ulong lisn = args[1];
791     XiveEAS eas;
792     XiveEND *end;
793     uint8_t nvt_blk;
794     uint32_t end_idx, nvt_idx;
795 
796     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
797         return H_FUNCTION;
798     }
799 
800     if (flags) {
801         return H_PARAMETER;
802     }
803 
804     if (lisn >= xive->nr_irqs) {
805         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
806                       lisn);
807         return H_P2;
808     }
809 
810     eas = xive->eat[lisn];
811     if (!xive_eas_is_valid(&eas)) {
812         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
813                       lisn);
814         return H_P2;
815     }
816 
817     /* EAS_END_BLOCK is unused on sPAPR */
818     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
819 
820     assert(end_idx < xive->nr_ends);
821     end = &xive->endt[end_idx];
822 
823     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
824     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
825     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
826 
827     if (xive_eas_is_masked(&eas)) {
828         args[1] = 0xff;
829     } else {
830         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
831     }
832 
833     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
834 
835     return H_SUCCESS;
836 }
837 
838 /*
839  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
840  * address of the notification management page associated with the
841  * specified target and priority.
842  *
843  * Parameters:
844  * Input:
845  * - R4: "flags"
846  *         Bits 0-63 Reserved
847  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
848  *       "ibm,ppc-interrupt-gserver#s"
849  * - R6: "priority" is a valid priority not in
850  *       "ibm,plat-res-int-priorities"
851  *
852  * Output:
853  * - R4: Logical real address of notification page
854  * - R5: Power of 2 page size of the notification page
855  */
856 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
857                                          sPAPRMachineState *spapr,
858                                          target_ulong opcode,
859                                          target_ulong *args)
860 {
861     sPAPRXive *xive = spapr->xive;
862     XiveENDSource *end_xsrc = &xive->end_source;
863     target_ulong flags = args[0];
864     target_ulong target = args[1];
865     target_ulong priority = args[2];
866     XiveEND *end;
867     uint8_t end_blk;
868     uint32_t end_idx;
869 
870     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
871         return H_FUNCTION;
872     }
873 
874     if (flags) {
875         return H_PARAMETER;
876     }
877 
878     /*
879      * H_STATE should be returned if a H_INT_RESET is in progress.
880      * This is not needed when running the emulation under QEMU
881      */
882 
883     if (spapr_xive_priority_is_reserved(priority)) {
884         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
885                       " is reserved\n", priority);
886         return H_P3;
887     }
888 
889     /*
890      * Validate that "target" is part of the list of threads allocated
891      * to the partition. For that, find the END corresponding to the
892      * target.
893      */
894     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
895         return H_P2;
896     }
897 
898     assert(end_idx < xive->nr_ends);
899     end = &xive->endt[end_idx];
900 
901     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
902     if (xive_end_is_enqueue(end)) {
903         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
904     } else {
905         args[1] = 0;
906     }
907 
908     return H_SUCCESS;
909 }
910 
911 /*
912  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
913  * a given "target" and "priority".  It is also used to set the
914  * notification config associated with the EQ.  An EQ size of 0 is
915  * used to reset the EQ config for a given target and priority. If
916  * resetting the EQ config, the END associated with the given "target"
917  * and "priority" will be changed to disable queueing.
918  *
919  * Upon return from the hcall(), no additional interrupts will be
920  * directed to the old EQ (if one was set). The old EQ (if one was
921  * set) should be investigated for interrupts that occurred prior to
922  * or during the hcall().
923  *
924  * Parameters:
925  * Input:
926  * - R4: "flags"
927  *         Bits 0-62: Reserved
928  *         Bit 63: Unconditional Notify (n) per the XIVE spec
929  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
930  *       "ibm,ppc-interrupt-gserver#s"
931  * - R6: "priority" is a valid priority not in
932  *       "ibm,plat-res-int-priorities"
933  * - R7: "eventQueue": The logical real address of the start of the EQ
934  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
935  *
936  * Output:
937  * - None
938  */
939 
940 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
941 
942 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
943                                            sPAPRMachineState *spapr,
944                                            target_ulong opcode,
945                                            target_ulong *args)
946 {
947     sPAPRXive *xive = spapr->xive;
948     target_ulong flags = args[0];
949     target_ulong target = args[1];
950     target_ulong priority = args[2];
951     target_ulong qpage = args[3];
952     target_ulong qsize = args[4];
953     XiveEND end;
954     uint8_t end_blk, nvt_blk;
955     uint32_t end_idx, nvt_idx;
956 
957     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
958         return H_FUNCTION;
959     }
960 
961     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
962         return H_PARAMETER;
963     }
964 
965     /*
966      * H_STATE should be returned if a H_INT_RESET is in progress.
967      * This is not needed when running the emulation under QEMU
968      */
969 
970     if (spapr_xive_priority_is_reserved(priority)) {
971         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
972                       " is reserved\n", priority);
973         return H_P3;
974     }
975 
976     /*
977      * Validate that "target" is part of the list of threads allocated
978      * to the partition. For that, find the END corresponding to the
979      * target.
980      */
981 
982     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
983         return H_P2;
984     }
985 
986     assert(end_idx < xive->nr_ends);
987     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
988 
989     switch (qsize) {
990     case 12:
991     case 16:
992     case 21:
993     case 24:
994         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
995         end.w3 = cpu_to_be32(qpage & 0xffffffff);
996         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
997         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
998         break;
999     case 0:
1000         /* reset queue and disable queueing */
1001         spapr_xive_end_reset(&end);
1002         goto out;
1003 
1004     default:
1005         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1006                       qsize);
1007         return H_P5;
1008     }
1009 
1010     if (qsize) {
1011         hwaddr plen = 1 << qsize;
1012         void *eq;
1013 
1014         /*
1015          * Validate the guest EQ. We should also check that the queue
1016          * has been zeroed by the OS.
1017          */
1018         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1019                                MEMTXATTRS_UNSPECIFIED);
1020         if (plen != 1 << qsize) {
1021             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1022                           HWADDR_PRIx "\n", qpage);
1023             return H_P4;
1024         }
1025         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1026     }
1027 
1028     /* "target" should have been validated above */
1029     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1030         g_assert_not_reached();
1031     }
1032 
1033     /*
1034      * Ensure the priority and target are correctly set (they will not
1035      * be right after allocation)
1036      */
1037     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1038         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1039     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1040 
1041     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1042         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1043     } else {
1044         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1045     }
1046 
1047     /*
1048      * The generation bit for the END starts at 1 and The END page
1049      * offset counter starts at 0.
1050      */
1051     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1052         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1053     end.w0 |= cpu_to_be32(END_W0_VALID);
1054 
1055     /*
1056      * TODO: issue syncs required to ensure all in-flight interrupts
1057      * are complete on the old END
1058      */
1059 
1060 out:
1061     /* Update END */
1062     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1063     return H_SUCCESS;
1064 }
1065 
1066 /*
1067  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1068  * target and priority.
1069  *
1070  * Parameters:
1071  * Input:
1072  * - R4: "flags"
1073  *         Bits 0-62: Reserved
1074  *         Bit 63: Debug: Return debug data
1075  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1076  *       "ibm,ppc-interrupt-gserver#s"
1077  * - R6: "priority" is a valid priority not in
1078  *       "ibm,plat-res-int-priorities"
1079  *
1080  * Output:
1081  * - R4: "flags":
1082  *       Bits 0-61: Reserved
1083  *       Bit 62: The value of Event Queue Generation Number (g) per
1084  *              the XIVE spec if "Debug" = 1
1085  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1086  * - R5: The logical real address of the start of the EQ
1087  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1088  * - R7: The value of Event Queue Offset Counter per XIVE spec
1089  *       if "Debug" = 1, else 0
1090  *
1091  */
1092 
1093 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1094 
1095 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1096                                            sPAPRMachineState *spapr,
1097                                            target_ulong opcode,
1098                                            target_ulong *args)
1099 {
1100     sPAPRXive *xive = spapr->xive;
1101     target_ulong flags = args[0];
1102     target_ulong target = args[1];
1103     target_ulong priority = args[2];
1104     XiveEND *end;
1105     uint8_t end_blk;
1106     uint32_t end_idx;
1107 
1108     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1109         return H_FUNCTION;
1110     }
1111 
1112     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1113         return H_PARAMETER;
1114     }
1115 
1116     /*
1117      * H_STATE should be returned if a H_INT_RESET is in progress.
1118      * This is not needed when running the emulation under QEMU
1119      */
1120 
1121     if (spapr_xive_priority_is_reserved(priority)) {
1122         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1123                       " is reserved\n", priority);
1124         return H_P3;
1125     }
1126 
1127     /*
1128      * Validate that "target" is part of the list of threads allocated
1129      * to the partition. For that, find the END corresponding to the
1130      * target.
1131      */
1132     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1133         return H_P2;
1134     }
1135 
1136     assert(end_idx < xive->nr_ends);
1137     end = &xive->endt[end_idx];
1138 
1139     args[0] = 0;
1140     if (xive_end_is_notify(end)) {
1141         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1142     }
1143 
1144     if (xive_end_is_enqueue(end)) {
1145         args[1] = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1146             | be32_to_cpu(end->w3);
1147         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1148     } else {
1149         args[1] = 0;
1150         args[2] = 0;
1151     }
1152 
1153     /* TODO: do we need any locking on the END ? */
1154     if (flags & SPAPR_XIVE_END_DEBUG) {
1155         /* Load the event queue generation number into the return flags */
1156         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1157 
1158         /* Load R7 with the event queue offset counter */
1159         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1160     } else {
1161         args[3] = 0;
1162     }
1163 
1164     return H_SUCCESS;
1165 }
1166 
1167 /*
1168  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1169  * reporting cache line pair for the calling thread.  The reporting
1170  * cache lines will contain the OS interrupt context when the OS
1171  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1172  * interrupt. The reporting cache lines can be reset by inputting -1
1173  * in "reportingLine".  Issuing the CI store byte without reporting
1174  * cache lines registered will result in the data not being accessible
1175  * to the OS.
1176  *
1177  * Parameters:
1178  * Input:
1179  * - R4: "flags"
1180  *         Bits 0-63: Reserved
1181  * - R5: "reportingLine": The logical real address of the reporting cache
1182  *       line pair
1183  *
1184  * Output:
1185  * - None
1186  */
1187 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1188                                                 sPAPRMachineState *spapr,
1189                                                 target_ulong opcode,
1190                                                 target_ulong *args)
1191 {
1192     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1193         return H_FUNCTION;
1194     }
1195 
1196     /*
1197      * H_STATE should be returned if a H_INT_RESET is in progress.
1198      * This is not needed when running the emulation under QEMU
1199      */
1200 
1201     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1202     return H_FUNCTION;
1203 }
1204 
1205 /*
1206  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1207  * real address of the reporting cache line pair set for the input
1208  * "target".  If no reporting cache line pair has been set, -1 is
1209  * returned.
1210  *
1211  * Parameters:
1212  * Input:
1213  * - R4: "flags"
1214  *         Bits 0-63: Reserved
1215  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1216  *       "ibm,ppc-interrupt-gserver#s"
1217  * - R6: "reportingLine": The logical real address of the reporting
1218  *        cache line pair
1219  *
1220  * Output:
1221  * - R4: The logical real address of the reporting line if set, else -1
1222  */
1223 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1224                                                 sPAPRMachineState *spapr,
1225                                                 target_ulong opcode,
1226                                                 target_ulong *args)
1227 {
1228     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1229         return H_FUNCTION;
1230     }
1231 
1232     /*
1233      * H_STATE should be returned if a H_INT_RESET is in progress.
1234      * This is not needed when running the emulation under QEMU
1235      */
1236 
1237     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1238     return H_FUNCTION;
1239 }
1240 
1241 /*
1242  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1243  * page for the input "lisn".  This hcall is only supported for LISNs
1244  * that have the ESB hcall flag set to 1 when returned from hcall()
1245  * H_INT_GET_SOURCE_INFO.
1246  *
1247  * Parameters:
1248  * Input:
1249  * - R4: "flags"
1250  *         Bits 0-62: Reserved
1251  *         bit 63: Store: Store=1, store operation, else load operation
1252  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1253  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1254  *       ibm,query-interrupt-source-number RTAS call, or as
1255  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1256  * - R6: "esbOffset" is the offset into the ESB page for the load or
1257  *       store operation
1258  * - R7: "storeData" is the data to write for a store operation
1259  *
1260  * Output:
1261  * - R4: The value of the load if load operation, else -1
1262  */
1263 
1264 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1265 
1266 static target_ulong h_int_esb(PowerPCCPU *cpu,
1267                               sPAPRMachineState *spapr,
1268                               target_ulong opcode,
1269                               target_ulong *args)
1270 {
1271     sPAPRXive *xive = spapr->xive;
1272     XiveEAS eas;
1273     target_ulong flags  = args[0];
1274     target_ulong lisn   = args[1];
1275     target_ulong offset = args[2];
1276     target_ulong data   = args[3];
1277     hwaddr mmio_addr;
1278     XiveSource *xsrc = &xive->source;
1279 
1280     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1281         return H_FUNCTION;
1282     }
1283 
1284     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1285         return H_PARAMETER;
1286     }
1287 
1288     if (lisn >= xive->nr_irqs) {
1289         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1290                       lisn);
1291         return H_P2;
1292     }
1293 
1294     eas = xive->eat[lisn];
1295     if (!xive_eas_is_valid(&eas)) {
1296         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1297                       lisn);
1298         return H_P2;
1299     }
1300 
1301     if (offset > (1ull << xsrc->esb_shift)) {
1302         return H_P3;
1303     }
1304 
1305     mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1306 
1307     if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1308                       (flags & SPAPR_XIVE_ESB_STORE))) {
1309         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1310                       HWADDR_PRIx "\n", mmio_addr);
1311         return H_HARDWARE;
1312     }
1313     args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1314     return H_SUCCESS;
1315 }
1316 
1317 /*
1318  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1319  * ensure any in flight events for the input lisn are in the event
1320  * queue.
1321  *
1322  * Parameters:
1323  * Input:
1324  * - R4: "flags"
1325  *         Bits 0-63: Reserved
1326  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1327  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1328  *       ibm,query-interrupt-source-number RTAS call, or as
1329  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1330  *
1331  * Output:
1332  * - None
1333  */
1334 static target_ulong h_int_sync(PowerPCCPU *cpu,
1335                                sPAPRMachineState *spapr,
1336                                target_ulong opcode,
1337                                target_ulong *args)
1338 {
1339     sPAPRXive *xive = spapr->xive;
1340     XiveEAS eas;
1341     target_ulong flags = args[0];
1342     target_ulong lisn = args[1];
1343 
1344     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1345         return H_FUNCTION;
1346     }
1347 
1348     if (flags) {
1349         return H_PARAMETER;
1350     }
1351 
1352     if (lisn >= xive->nr_irqs) {
1353         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1354                       lisn);
1355         return H_P2;
1356     }
1357 
1358     eas = xive->eat[lisn];
1359     if (!xive_eas_is_valid(&eas)) {
1360         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1361                       lisn);
1362         return H_P2;
1363     }
1364 
1365     /*
1366      * H_STATE should be returned if a H_INT_RESET is in progress.
1367      * This is not needed when running the emulation under QEMU
1368      */
1369 
1370     /* This is not real hardware. Nothing to be done */
1371     return H_SUCCESS;
1372 }
1373 
1374 /*
1375  * The H_INT_RESET hcall() is used to reset all of the partition's
1376  * interrupt exploitation structures to their initial state.  This
1377  * means losing all previously set interrupt state set via
1378  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1379  *
1380  * Parameters:
1381  * Input:
1382  * - R4: "flags"
1383  *         Bits 0-63: Reserved
1384  *
1385  * Output:
1386  * - None
1387  */
1388 static target_ulong h_int_reset(PowerPCCPU *cpu,
1389                                 sPAPRMachineState *spapr,
1390                                 target_ulong opcode,
1391                                 target_ulong *args)
1392 {
1393     sPAPRXive *xive = spapr->xive;
1394     target_ulong flags   = args[0];
1395 
1396     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1397         return H_FUNCTION;
1398     }
1399 
1400     if (flags) {
1401         return H_PARAMETER;
1402     }
1403 
1404     device_reset(DEVICE(xive));
1405     return H_SUCCESS;
1406 }
1407 
1408 void spapr_xive_hcall_init(sPAPRMachineState *spapr)
1409 {
1410     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1411     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1412     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1413     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1414     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1415     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1416     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1417                              h_int_set_os_reporting_line);
1418     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1419                              h_int_get_os_reporting_line);
1420     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1421     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1422     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1423 }
1424 
1425 void spapr_dt_xive(sPAPRMachineState *spapr, uint32_t nr_servers, void *fdt,
1426                    uint32_t phandle)
1427 {
1428     sPAPRXive *xive = spapr->xive;
1429     int node;
1430     uint64_t timas[2 * 2];
1431     /* Interrupt number ranges for the IPIs */
1432     uint32_t lisn_ranges[] = {
1433         cpu_to_be32(0),
1434         cpu_to_be32(nr_servers),
1435     };
1436     /*
1437      * EQ size - the sizes of pages supported by the system 4K, 64K,
1438      * 2M, 16M. We only advertise 64K for the moment.
1439      */
1440     uint32_t eq_sizes[] = {
1441         cpu_to_be32(16), /* 64K */
1442     };
1443     /*
1444      * The following array is in sync with the reserved priorities
1445      * defined by the 'spapr_xive_priority_is_reserved' routine.
1446      */
1447     uint32_t plat_res_int_priorities[] = {
1448         cpu_to_be32(7),    /* start */
1449         cpu_to_be32(0xf8), /* count */
1450     };
1451     gchar *nodename;
1452 
1453     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1454     timas[0] = cpu_to_be64(xive->tm_base +
1455                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1456     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1457     timas[2] = cpu_to_be64(xive->tm_base +
1458                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1459     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1460 
1461     nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
1462                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
1463     _FDT(node = fdt_add_subnode(fdt, 0, nodename));
1464     g_free(nodename);
1465 
1466     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1467     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1468 
1469     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1470     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1471                      sizeof(eq_sizes)));
1472     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1473                      sizeof(lisn_ranges)));
1474 
1475     /* For Linux to link the LSIs to the interrupt controller. */
1476     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1477     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1478 
1479     /* For SLOF */
1480     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1481     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1482 
1483     /*
1484      * The "ibm,plat-res-int-priorities" property defines the priority
1485      * ranges reserved by the hypervisor
1486      */
1487     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1488                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1489 }
1490