xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 484d774c3a5cefd7991ff2bee9bd70977bcb9a67)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 
28 /*
29  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30  * use for the ESB pages and the TIMA pages
31  */
32 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
34 
35 /*
36  * The allocation of VP blocks is a complex operation in OPAL and the
37  * VP identifiers have a relation with the number of HW chips, the
38  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39  * controller model does not have the same constraints and can use a
40  * simple mapping scheme of the CPU vcpu_id
41  *
42  * These identifiers are never returned to the OS.
43  */
44 
45 #define SPAPR_XIVE_NVT_BASE 0x400
46 
47 /*
48  * sPAPR NVT and END indexing helpers
49  */
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
51 {
52     return nvt_idx - SPAPR_XIVE_NVT_BASE;
53 }
54 
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
57 {
58     assert(cpu);
59 
60     if (out_nvt_blk) {
61         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
62     }
63 
64     if (out_nvt_blk) {
65         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
66     }
67 }
68 
69 static int spapr_xive_target_to_nvt(uint32_t target,
70                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
71 {
72     PowerPCCPU *cpu = spapr_find_cpu(target);
73 
74     if (!cpu) {
75         return -1;
76     }
77 
78     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79     return 0;
80 }
81 
82 /*
83  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84  * priorities per CPU
85  */
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87                              uint32_t *out_server, uint8_t *out_prio)
88 {
89 
90     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
91 
92     if (out_server) {
93         *out_server = end_idx >> 3;
94     }
95 
96     if (out_prio) {
97         *out_prio = end_idx & 0x7;
98     }
99     return 0;
100 }
101 
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
104 {
105     assert(cpu);
106 
107     if (out_end_blk) {
108         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
109     }
110 
111     if (out_end_idx) {
112         *out_end_idx = (cpu->vcpu_id << 3) + prio;
113     }
114 }
115 
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
118 {
119     PowerPCCPU *cpu = spapr_find_cpu(target);
120 
121     if (!cpu) {
122         return -1;
123     }
124 
125     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126     return 0;
127 }
128 
129 /*
130  * On sPAPR machines, use a simplified output for the XIVE END
131  * structure dumping only the information related to the OS EQ.
132  */
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134                                           Monitor *mon)
135 {
136     uint64_t qaddr_base = xive_end_qaddr(end);
137     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140     uint32_t qentries = 1 << (qsize + 10);
141     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
143 
144     monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145                    spapr_xive_nvt_to_target(0, nvt),
146                    priority, qindex, qentries, qaddr_base, qgen);
147 
148     xive_end_queue_pic_print_info(end, 6, mon);
149 }
150 
151 /*
152  * kvm_irqchip_in_kernel() will cause the compiler to turn this
153  * info a nop if CONFIG_KVM isn't defined.
154  */
155 #define spapr_xive_in_kernel(xive) \
156     (kvm_irqchip_in_kernel() && (xive)->fd != -1)
157 
158 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
159 {
160     XiveSource *xsrc = &xive->source;
161     int i;
162 
163     if (spapr_xive_in_kernel(xive)) {
164         Error *local_err = NULL;
165 
166         kvmppc_xive_synchronize_state(xive, &local_err);
167         if (local_err) {
168             error_report_err(local_err);
169             return;
170         }
171     }
172 
173     monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
174 
175     for (i = 0; i < xive->nr_irqs; i++) {
176         uint8_t pq = xive_source_esb_get(xsrc, i);
177         XiveEAS *eas = &xive->eat[i];
178 
179         if (!xive_eas_is_valid(eas)) {
180             continue;
181         }
182 
183         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
184                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
185                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
186                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
187                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
188                        xive_eas_is_masked(eas) ? "M" : " ",
189                        (int) xive_get_field64(EAS_END_DATA, eas->w));
190 
191         if (!xive_eas_is_masked(eas)) {
192             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
193             XiveEND *end;
194 
195             assert(end_idx < xive->nr_ends);
196             end = &xive->endt[end_idx];
197 
198             if (xive_end_is_valid(end)) {
199                 spapr_xive_end_pic_print_info(xive, end, mon);
200             }
201         }
202         monitor_printf(mon, "\n");
203     }
204 }
205 
206 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
207 {
208     memory_region_set_enabled(&xive->source.esb_mmio, enable);
209     memory_region_set_enabled(&xive->tm_mmio, enable);
210 
211     /* Disable the END ESBs until a guest OS makes use of them */
212     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
213 }
214 
215 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
216                           uint64_t value, unsigned size)
217 {
218     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
219 
220     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
221 }
222 
223 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
224 {
225     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
226 
227     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
228 }
229 
230 const MemoryRegionOps spapr_xive_tm_ops = {
231     .read = spapr_xive_tm_read,
232     .write = spapr_xive_tm_write,
233     .endianness = DEVICE_BIG_ENDIAN,
234     .valid = {
235         .min_access_size = 1,
236         .max_access_size = 8,
237     },
238     .impl = {
239         .min_access_size = 1,
240         .max_access_size = 8,
241     },
242 };
243 
244 static void spapr_xive_end_reset(XiveEND *end)
245 {
246     memset(end, 0, sizeof(*end));
247 
248     /* switch off the escalation and notification ESBs */
249     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
250 }
251 
252 static void spapr_xive_reset(void *dev)
253 {
254     SpaprXive *xive = SPAPR_XIVE(dev);
255     int i;
256 
257     /*
258      * The XiveSource has its own reset handler, which mask off all
259      * IRQs (!P|Q)
260      */
261 
262     /* Mask all valid EASs in the IRQ number space. */
263     for (i = 0; i < xive->nr_irqs; i++) {
264         XiveEAS *eas = &xive->eat[i];
265         if (xive_eas_is_valid(eas)) {
266             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
267         } else {
268             eas->w = 0;
269         }
270     }
271 
272     /* Clear all ENDs */
273     for (i = 0; i < xive->nr_ends; i++) {
274         spapr_xive_end_reset(&xive->endt[i]);
275     }
276 }
277 
278 static void spapr_xive_instance_init(Object *obj)
279 {
280     SpaprXive *xive = SPAPR_XIVE(obj);
281 
282     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
283 
284     object_initialize_child(obj, "end_source", &xive->end_source,
285                             TYPE_XIVE_END_SOURCE);
286 
287     /* Not connected to the KVM XIVE device */
288     xive->fd = -1;
289 }
290 
291 static void spapr_xive_realize(DeviceState *dev, Error **errp)
292 {
293     SpaprXive *xive = SPAPR_XIVE(dev);
294     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
295     XiveSource *xsrc = &xive->source;
296     XiveENDSource *end_xsrc = &xive->end_source;
297     Error *local_err = NULL;
298 
299     /* Set by spapr_irq_init() */
300     g_assert(xive->nr_irqs);
301     g_assert(xive->nr_ends);
302 
303     sxc->parent_realize(dev, &local_err);
304     if (local_err) {
305         error_propagate(errp, local_err);
306         return;
307     }
308 
309     /*
310      * Initialize the internal sources, for IPIs and virtual devices.
311      */
312     object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
313                             &error_fatal);
314     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
315     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
316         return;
317     }
318     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
319 
320     /*
321      * Initialize the END ESB source
322      */
323     object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
324                             &error_fatal);
325     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
326                              &error_abort);
327     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
328         return;
329     }
330     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
331 
332     /* Set the mapping address of the END ESB pages after the source ESBs */
333     xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
334 
335     /*
336      * Allocate the routing tables
337      */
338     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
339     xive->endt = g_new0(XiveEND, xive->nr_ends);
340 
341     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
342                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
343 
344     qemu_register_reset(spapr_xive_reset, dev);
345 
346     /* TIMA initialization */
347     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
348                           xive, "xive.tima", 4ull << TM_SHIFT);
349     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
350 
351     /*
352      * Map all regions. These will be enabled or disabled at reset and
353      * can also be overridden by KVM memory regions if active
354      */
355     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
356     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
357     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
358 }
359 
360 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
361                               uint32_t eas_idx, XiveEAS *eas)
362 {
363     SpaprXive *xive = SPAPR_XIVE(xrtr);
364 
365     if (eas_idx >= xive->nr_irqs) {
366         return -1;
367     }
368 
369     *eas = xive->eat[eas_idx];
370     return 0;
371 }
372 
373 static int spapr_xive_get_end(XiveRouter *xrtr,
374                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
375 {
376     SpaprXive *xive = SPAPR_XIVE(xrtr);
377 
378     if (end_idx >= xive->nr_ends) {
379         return -1;
380     }
381 
382     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
383     return 0;
384 }
385 
386 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
387                                 uint32_t end_idx, XiveEND *end,
388                                 uint8_t word_number)
389 {
390     SpaprXive *xive = SPAPR_XIVE(xrtr);
391 
392     if (end_idx >= xive->nr_ends) {
393         return -1;
394     }
395 
396     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
397     return 0;
398 }
399 
400 static int spapr_xive_get_nvt(XiveRouter *xrtr,
401                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
402 {
403     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
404     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
405 
406     if (!cpu) {
407         /* TODO: should we assert() if we can find a NVT ? */
408         return -1;
409     }
410 
411     /*
412      * sPAPR does not maintain a NVT table. Return that the NVT is
413      * valid if we have found a matching CPU
414      */
415     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
416     return 0;
417 }
418 
419 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
420                                 uint32_t nvt_idx, XiveNVT *nvt,
421                                 uint8_t word_number)
422 {
423     /*
424      * We don't need to write back to the NVTs because the sPAPR
425      * machine should never hit a non-scheduled NVT. It should never
426      * get called.
427      */
428     g_assert_not_reached();
429 }
430 
431 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
432                                 uint8_t nvt_blk, uint32_t nvt_idx,
433                                 bool cam_ignore, uint8_t priority,
434                                 uint32_t logic_serv, XiveTCTXMatch *match)
435 {
436     CPUState *cs;
437     int count = 0;
438 
439     CPU_FOREACH(cs) {
440         PowerPCCPU *cpu = POWERPC_CPU(cs);
441         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
442         int ring;
443 
444         /*
445          * Skip partially initialized vCPUs. This can happen when
446          * vCPUs are hotplugged.
447          */
448         if (!tctx) {
449             continue;
450         }
451 
452         /*
453          * Check the thread context CAM lines and record matches.
454          */
455         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
456                                          cam_ignore, logic_serv);
457         /*
458          * Save the matching thread interrupt context and follow on to
459          * check for duplicates which are invalid.
460          */
461         if (ring != -1) {
462             if (match->tctx) {
463                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
464                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
465                 return -1;
466             }
467 
468             match->ring = ring;
469             match->tctx = tctx;
470             count++;
471         }
472     }
473 
474     return count;
475 }
476 
477 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
478 {
479     return SPAPR_XIVE_BLOCK_ID;
480 }
481 
482 static const VMStateDescription vmstate_spapr_xive_end = {
483     .name = TYPE_SPAPR_XIVE "/end",
484     .version_id = 1,
485     .minimum_version_id = 1,
486     .fields = (VMStateField []) {
487         VMSTATE_UINT32(w0, XiveEND),
488         VMSTATE_UINT32(w1, XiveEND),
489         VMSTATE_UINT32(w2, XiveEND),
490         VMSTATE_UINT32(w3, XiveEND),
491         VMSTATE_UINT32(w4, XiveEND),
492         VMSTATE_UINT32(w5, XiveEND),
493         VMSTATE_UINT32(w6, XiveEND),
494         VMSTATE_UINT32(w7, XiveEND),
495         VMSTATE_END_OF_LIST()
496     },
497 };
498 
499 static const VMStateDescription vmstate_spapr_xive_eas = {
500     .name = TYPE_SPAPR_XIVE "/eas",
501     .version_id = 1,
502     .minimum_version_id = 1,
503     .fields = (VMStateField []) {
504         VMSTATE_UINT64(w, XiveEAS),
505         VMSTATE_END_OF_LIST()
506     },
507 };
508 
509 static int vmstate_spapr_xive_pre_save(void *opaque)
510 {
511     SpaprXive *xive = SPAPR_XIVE(opaque);
512 
513     if (spapr_xive_in_kernel(xive)) {
514         return kvmppc_xive_pre_save(xive);
515     }
516 
517     return 0;
518 }
519 
520 /*
521  * Called by the sPAPR IRQ backend 'post_load' method at the machine
522  * level.
523  */
524 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
525 {
526     SpaprXive *xive = SPAPR_XIVE(intc);
527 
528     if (spapr_xive_in_kernel(xive)) {
529         return kvmppc_xive_post_load(xive, version_id);
530     }
531 
532     return 0;
533 }
534 
535 static const VMStateDescription vmstate_spapr_xive = {
536     .name = TYPE_SPAPR_XIVE,
537     .version_id = 1,
538     .minimum_version_id = 1,
539     .pre_save = vmstate_spapr_xive_pre_save,
540     .post_load = NULL, /* handled at the machine level */
541     .fields = (VMStateField[]) {
542         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
543         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
544                                      vmstate_spapr_xive_eas, XiveEAS),
545         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
546                                              vmstate_spapr_xive_end, XiveEND),
547         VMSTATE_END_OF_LIST()
548     },
549 };
550 
551 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
552                                 bool lsi, Error **errp)
553 {
554     SpaprXive *xive = SPAPR_XIVE(intc);
555     XiveSource *xsrc = &xive->source;
556 
557     assert(lisn < xive->nr_irqs);
558 
559     if (xive_eas_is_valid(&xive->eat[lisn])) {
560         error_setg(errp, "IRQ %d is not free", lisn);
561         return -EBUSY;
562     }
563 
564     /*
565      * Set default values when allocating an IRQ number
566      */
567     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
568     if (lsi) {
569         xive_source_irq_set_lsi(xsrc, lisn);
570     }
571 
572     if (spapr_xive_in_kernel(xive)) {
573         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
574     }
575 
576     return 0;
577 }
578 
579 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
580 {
581     SpaprXive *xive = SPAPR_XIVE(intc);
582     assert(lisn < xive->nr_irqs);
583 
584     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
585 }
586 
587 static Property spapr_xive_properties[] = {
588     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
589     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
590     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
591     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
592     DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
593     DEFINE_PROP_END_OF_LIST(),
594 };
595 
596 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
597                                       PowerPCCPU *cpu, Error **errp)
598 {
599     SpaprXive *xive = SPAPR_XIVE(intc);
600     Object *obj;
601     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
602 
603     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
604     if (!obj) {
605         return -1;
606     }
607 
608     spapr_cpu->tctx = XIVE_TCTX(obj);
609     return 0;
610 }
611 
612 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
613 {
614     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
615     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
616 }
617 
618 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
619                                      PowerPCCPU *cpu)
620 {
621     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
622     uint8_t  nvt_blk;
623     uint32_t nvt_idx;
624 
625     xive_tctx_reset(tctx);
626 
627     /*
628      * When a Virtual Processor is scheduled to run on a HW thread,
629      * the hypervisor pushes its identifier in the OS CAM line.
630      * Emulate the same behavior under QEMU.
631      */
632     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
633 
634     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
635 }
636 
637 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
638                                         PowerPCCPU *cpu)
639 {
640     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
641 
642     xive_tctx_destroy(spapr_cpu->tctx);
643     spapr_cpu->tctx = NULL;
644 }
645 
646 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
647 {
648     SpaprXive *xive = SPAPR_XIVE(intc);
649 
650     if (spapr_xive_in_kernel(xive)) {
651         kvmppc_xive_source_set_irq(&xive->source, irq, val);
652     } else {
653         xive_source_set_irq(&xive->source, irq, val);
654     }
655 }
656 
657 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
658 {
659     SpaprXive *xive = SPAPR_XIVE(intc);
660     CPUState *cs;
661 
662     CPU_FOREACH(cs) {
663         PowerPCCPU *cpu = POWERPC_CPU(cs);
664 
665         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
666     }
667 
668     spapr_xive_pic_print_info(xive, mon);
669 }
670 
671 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
672                           void *fdt, uint32_t phandle)
673 {
674     SpaprXive *xive = SPAPR_XIVE(intc);
675     int node;
676     uint64_t timas[2 * 2];
677     /* Interrupt number ranges for the IPIs */
678     uint32_t lisn_ranges[] = {
679         cpu_to_be32(SPAPR_IRQ_IPI),
680         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
681     };
682     /*
683      * EQ size - the sizes of pages supported by the system 4K, 64K,
684      * 2M, 16M. We only advertise 64K for the moment.
685      */
686     uint32_t eq_sizes[] = {
687         cpu_to_be32(16), /* 64K */
688     };
689     /*
690      * QEMU/KVM only needs to define a single range to reserve the
691      * escalation priority. A priority bitmask would have been more
692      * appropriate.
693      */
694     uint32_t plat_res_int_priorities[] = {
695         cpu_to_be32(xive->hv_prio),    /* start */
696         cpu_to_be32(0xff - xive->hv_prio), /* count */
697     };
698 
699     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
700     timas[0] = cpu_to_be64(xive->tm_base +
701                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
702     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
703     timas[2] = cpu_to_be64(xive->tm_base +
704                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
705     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
706 
707     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
708 
709     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
710     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
711 
712     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
713     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
714                      sizeof(eq_sizes)));
715     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
716                      sizeof(lisn_ranges)));
717 
718     /* For Linux to link the LSIs to the interrupt controller. */
719     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
720     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
721 
722     /* For SLOF */
723     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
724     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
725 
726     /*
727      * The "ibm,plat-res-int-priorities" property defines the priority
728      * ranges reserved by the hypervisor
729      */
730     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
731                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
732 }
733 
734 static int spapr_xive_activate(SpaprInterruptController *intc,
735                                uint32_t nr_servers, Error **errp)
736 {
737     SpaprXive *xive = SPAPR_XIVE(intc);
738 
739     if (kvm_enabled()) {
740         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
741                                     errp);
742         if (rc < 0) {
743             return rc;
744         }
745     }
746 
747     /* Activate the XIVE MMIOs */
748     spapr_xive_mmio_set_enabled(xive, true);
749 
750     return 0;
751 }
752 
753 static void spapr_xive_deactivate(SpaprInterruptController *intc)
754 {
755     SpaprXive *xive = SPAPR_XIVE(intc);
756 
757     spapr_xive_mmio_set_enabled(xive, false);
758 
759     if (spapr_xive_in_kernel(xive)) {
760         kvmppc_xive_disconnect(intc);
761     }
762 }
763 
764 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
765 {
766     return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
767 }
768 
769 static void spapr_xive_class_init(ObjectClass *klass, void *data)
770 {
771     DeviceClass *dc = DEVICE_CLASS(klass);
772     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
773     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
774     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
775     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
776 
777     dc->desc    = "sPAPR XIVE Interrupt Controller";
778     device_class_set_props(dc, spapr_xive_properties);
779     device_class_set_parent_realize(dc, spapr_xive_realize,
780                                     &sxc->parent_realize);
781     dc->vmsd    = &vmstate_spapr_xive;
782 
783     xrc->get_eas = spapr_xive_get_eas;
784     xrc->get_end = spapr_xive_get_end;
785     xrc->write_end = spapr_xive_write_end;
786     xrc->get_nvt = spapr_xive_get_nvt;
787     xrc->write_nvt = spapr_xive_write_nvt;
788     xrc->get_block_id = spapr_xive_get_block_id;
789 
790     sicc->activate = spapr_xive_activate;
791     sicc->deactivate = spapr_xive_deactivate;
792     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
793     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
794     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
795     sicc->claim_irq = spapr_xive_claim_irq;
796     sicc->free_irq = spapr_xive_free_irq;
797     sicc->set_irq = spapr_xive_set_irq;
798     sicc->print_info = spapr_xive_print_info;
799     sicc->dt = spapr_xive_dt;
800     sicc->post_load = spapr_xive_post_load;
801 
802     xpc->match_nvt  = spapr_xive_match_nvt;
803     xpc->in_kernel  = spapr_xive_in_kernel_xptr;
804 }
805 
806 static const TypeInfo spapr_xive_info = {
807     .name = TYPE_SPAPR_XIVE,
808     .parent = TYPE_XIVE_ROUTER,
809     .instance_init = spapr_xive_instance_init,
810     .instance_size = sizeof(SpaprXive),
811     .class_init = spapr_xive_class_init,
812     .class_size = sizeof(SpaprXiveClass),
813     .interfaces = (InterfaceInfo[]) {
814         { TYPE_SPAPR_INTC },
815         { }
816     },
817 };
818 
819 static void spapr_xive_register_types(void)
820 {
821     type_register_static(&spapr_xive_info);
822 }
823 
824 type_init(spapr_xive_register_types)
825 
826 /*
827  * XIVE hcalls
828  *
829  * The terminology used by the XIVE hcalls is the following :
830  *
831  *   TARGET vCPU number
832  *   EQ     Event Queue assigned by OS to receive event data
833  *   ESB    page for source interrupt management
834  *   LISN   Logical Interrupt Source Number identifying a source in the
835  *          machine
836  *   EISN   Effective Interrupt Source Number used by guest OS to
837  *          identify source in the guest
838  *
839  * The EAS, END, NVT structures are not exposed.
840  */
841 
842 /*
843  * On POWER9, the KVM XIVE device uses priority 7 for the escalation
844  * interrupts. So we only allow the guest to use priorities [0..6].
845  */
846 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
847 {
848     return priority >= xive->hv_prio;
849 }
850 
851 /*
852  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
853  * real address of the MMIO page through which the Event State Buffer
854  * entry associated with the value of the "lisn" parameter is managed.
855  *
856  * Parameters:
857  * Input
858  * - R4: "flags"
859  *         Bits 0-63 reserved
860  * - R5: "lisn" is per "interrupts", "interrupt-map", or
861  *       "ibm,xive-lisn-ranges" properties, or as returned by the
862  *       ibm,query-interrupt-source-number RTAS call, or as returned
863  *       by the H_ALLOCATE_VAS_WINDOW hcall
864  *
865  * Output
866  * - R4: "flags"
867  *         Bits 0-59: Reserved
868  *         Bit 60: H_INT_ESB must be used for Event State Buffer
869  *                 management
870  *         Bit 61: 1 == LSI  0 == MSI
871  *         Bit 62: the full function page supports trigger
872  *         Bit 63: Store EOI Supported
873  * - R5: Logical Real address of full function Event State Buffer
874  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
875  * - R6: Logical Real Address of trigger only Event State Buffer
876  *       management page or -1.
877  * - R7: Power of 2 page size for the ESB management pages returned in
878  *       R5 and R6.
879  */
880 
881 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
882 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
883 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
884                                                     on same page */
885 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
886 
887 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
888                                           SpaprMachineState *spapr,
889                                           target_ulong opcode,
890                                           target_ulong *args)
891 {
892     SpaprXive *xive = spapr->xive;
893     XiveSource *xsrc = &xive->source;
894     target_ulong flags  = args[0];
895     target_ulong lisn   = args[1];
896 
897     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
898         return H_FUNCTION;
899     }
900 
901     if (flags) {
902         return H_PARAMETER;
903     }
904 
905     if (lisn >= xive->nr_irqs) {
906         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
907                       lisn);
908         return H_P2;
909     }
910 
911     if (!xive_eas_is_valid(&xive->eat[lisn])) {
912         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
913                       lisn);
914         return H_P2;
915     }
916 
917     /*
918      * All sources are emulated under the main XIVE object and share
919      * the same characteristics.
920      */
921     args[0] = 0;
922     if (!xive_source_esb_has_2page(xsrc)) {
923         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
924     }
925     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
926         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
927     }
928 
929     /*
930      * Force the use of the H_INT_ESB hcall in case of an LSI
931      * interrupt. This is necessary under KVM to re-trigger the
932      * interrupt if the level is still asserted
933      */
934     if (xive_source_irq_is_lsi(xsrc, lisn)) {
935         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
936     }
937 
938     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
939         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
940     } else {
941         args[1] = -1;
942     }
943 
944     if (xive_source_esb_has_2page(xsrc) &&
945         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
946         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
947     } else {
948         args[2] = -1;
949     }
950 
951     if (xive_source_esb_has_2page(xsrc)) {
952         args[3] = xsrc->esb_shift - 1;
953     } else {
954         args[3] = xsrc->esb_shift;
955     }
956 
957     return H_SUCCESS;
958 }
959 
960 /*
961  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
962  * Interrupt Source to a target. The Logical Interrupt Source is
963  * designated with the "lisn" parameter and the target is designated
964  * with the "target" and "priority" parameters.  Upon return from the
965  * hcall(), no additional interrupts will be directed to the old EQ.
966  *
967  * Parameters:
968  * Input:
969  * - R4: "flags"
970  *         Bits 0-61: Reserved
971  *         Bit 62: set the "eisn" in the EAS
972  *         Bit 63: masks the interrupt source in the hardware interrupt
973  *       control structure. An interrupt masked by this mechanism will
974  *       be dropped, but it's source state bits will still be
975  *       set. There is no race-free way of unmasking and restoring the
976  *       source. Thus this should only be used in interrupts that are
977  *       also masked at the source, and only in cases where the
978  *       interrupt is not meant to be used for a large amount of time
979  *       because no valid target exists for it for example
980  * - R5: "lisn" is per "interrupts", "interrupt-map", or
981  *       "ibm,xive-lisn-ranges" properties, or as returned by the
982  *       ibm,query-interrupt-source-number RTAS call, or as returned by
983  *       the H_ALLOCATE_VAS_WINDOW hcall
984  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
985  *       "ibm,ppc-interrupt-gserver#s"
986  * - R7: "priority" is a valid priority not in
987  *       "ibm,plat-res-int-priorities"
988  * - R8: "eisn" is the guest EISN associated with the "lisn"
989  *
990  * Output:
991  * - None
992  */
993 
994 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
995 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
996 
997 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
998                                             SpaprMachineState *spapr,
999                                             target_ulong opcode,
1000                                             target_ulong *args)
1001 {
1002     SpaprXive *xive = spapr->xive;
1003     XiveEAS eas, new_eas;
1004     target_ulong flags    = args[0];
1005     target_ulong lisn     = args[1];
1006     target_ulong target   = args[2];
1007     target_ulong priority = args[3];
1008     target_ulong eisn     = args[4];
1009     uint8_t end_blk;
1010     uint32_t end_idx;
1011 
1012     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1013         return H_FUNCTION;
1014     }
1015 
1016     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1017         return H_PARAMETER;
1018     }
1019 
1020     if (lisn >= xive->nr_irqs) {
1021         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1022                       lisn);
1023         return H_P2;
1024     }
1025 
1026     eas = xive->eat[lisn];
1027     if (!xive_eas_is_valid(&eas)) {
1028         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1029                       lisn);
1030         return H_P2;
1031     }
1032 
1033     /* priority 0xff is used to reset the EAS */
1034     if (priority == 0xff) {
1035         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1036         goto out;
1037     }
1038 
1039     if (flags & SPAPR_XIVE_SRC_MASK) {
1040         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1041     } else {
1042         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1043     }
1044 
1045     if (spapr_xive_priority_is_reserved(xive, priority)) {
1046         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1047                       " is reserved\n", priority);
1048         return H_P4;
1049     }
1050 
1051     /*
1052      * Validate that "target" is part of the list of threads allocated
1053      * to the partition. For that, find the END corresponding to the
1054      * target.
1055      */
1056     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1057         return H_P3;
1058     }
1059 
1060     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1061     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1062 
1063     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1064         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1065     }
1066 
1067     if (spapr_xive_in_kernel(xive)) {
1068         Error *local_err = NULL;
1069 
1070         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1071         if (local_err) {
1072             error_report_err(local_err);
1073             return H_HARDWARE;
1074         }
1075     }
1076 
1077 out:
1078     xive->eat[lisn] = new_eas;
1079     return H_SUCCESS;
1080 }
1081 
1082 /*
1083  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1084  * target/priority pair is assigned to the specified Logical Interrupt
1085  * Source.
1086  *
1087  * Parameters:
1088  * Input:
1089  * - R4: "flags"
1090  *         Bits 0-63 Reserved
1091  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1092  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1093  *       ibm,query-interrupt-source-number RTAS call, or as
1094  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1095  *
1096  * Output:
1097  * - R4: Target to which the specified Logical Interrupt Source is
1098  *       assigned
1099  * - R5: Priority to which the specified Logical Interrupt Source is
1100  *       assigned
1101  * - R6: EISN for the specified Logical Interrupt Source (this will be
1102  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1103  */
1104 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1105                                             SpaprMachineState *spapr,
1106                                             target_ulong opcode,
1107                                             target_ulong *args)
1108 {
1109     SpaprXive *xive = spapr->xive;
1110     target_ulong flags = args[0];
1111     target_ulong lisn = args[1];
1112     XiveEAS eas;
1113     XiveEND *end;
1114     uint8_t nvt_blk;
1115     uint32_t end_idx, nvt_idx;
1116 
1117     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1118         return H_FUNCTION;
1119     }
1120 
1121     if (flags) {
1122         return H_PARAMETER;
1123     }
1124 
1125     if (lisn >= xive->nr_irqs) {
1126         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1127                       lisn);
1128         return H_P2;
1129     }
1130 
1131     eas = xive->eat[lisn];
1132     if (!xive_eas_is_valid(&eas)) {
1133         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1134                       lisn);
1135         return H_P2;
1136     }
1137 
1138     /* EAS_END_BLOCK is unused on sPAPR */
1139     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1140 
1141     assert(end_idx < xive->nr_ends);
1142     end = &xive->endt[end_idx];
1143 
1144     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1145     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1146     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1147 
1148     if (xive_eas_is_masked(&eas)) {
1149         args[1] = 0xff;
1150     } else {
1151         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1152     }
1153 
1154     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1155 
1156     return H_SUCCESS;
1157 }
1158 
1159 /*
1160  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1161  * address of the notification management page associated with the
1162  * specified target and priority.
1163  *
1164  * Parameters:
1165  * Input:
1166  * - R4: "flags"
1167  *         Bits 0-63 Reserved
1168  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1169  *       "ibm,ppc-interrupt-gserver#s"
1170  * - R6: "priority" is a valid priority not in
1171  *       "ibm,plat-res-int-priorities"
1172  *
1173  * Output:
1174  * - R4: Logical real address of notification page
1175  * - R5: Power of 2 page size of the notification page
1176  */
1177 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1178                                          SpaprMachineState *spapr,
1179                                          target_ulong opcode,
1180                                          target_ulong *args)
1181 {
1182     SpaprXive *xive = spapr->xive;
1183     XiveENDSource *end_xsrc = &xive->end_source;
1184     target_ulong flags = args[0];
1185     target_ulong target = args[1];
1186     target_ulong priority = args[2];
1187     XiveEND *end;
1188     uint8_t end_blk;
1189     uint32_t end_idx;
1190 
1191     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1192         return H_FUNCTION;
1193     }
1194 
1195     if (flags) {
1196         return H_PARAMETER;
1197     }
1198 
1199     /*
1200      * H_STATE should be returned if a H_INT_RESET is in progress.
1201      * This is not needed when running the emulation under QEMU
1202      */
1203 
1204     if (spapr_xive_priority_is_reserved(xive, priority)) {
1205         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1206                       " is reserved\n", priority);
1207         return H_P3;
1208     }
1209 
1210     /*
1211      * Validate that "target" is part of the list of threads allocated
1212      * to the partition. For that, find the END corresponding to the
1213      * target.
1214      */
1215     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1216         return H_P2;
1217     }
1218 
1219     assert(end_idx < xive->nr_ends);
1220     end = &xive->endt[end_idx];
1221 
1222     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1223     if (xive_end_is_enqueue(end)) {
1224         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1225     } else {
1226         args[1] = 0;
1227     }
1228 
1229     return H_SUCCESS;
1230 }
1231 
1232 /*
1233  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1234  * a given "target" and "priority".  It is also used to set the
1235  * notification config associated with the EQ.  An EQ size of 0 is
1236  * used to reset the EQ config for a given target and priority. If
1237  * resetting the EQ config, the END associated with the given "target"
1238  * and "priority" will be changed to disable queueing.
1239  *
1240  * Upon return from the hcall(), no additional interrupts will be
1241  * directed to the old EQ (if one was set). The old EQ (if one was
1242  * set) should be investigated for interrupts that occurred prior to
1243  * or during the hcall().
1244  *
1245  * Parameters:
1246  * Input:
1247  * - R4: "flags"
1248  *         Bits 0-62: Reserved
1249  *         Bit 63: Unconditional Notify (n) per the XIVE spec
1250  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1251  *       "ibm,ppc-interrupt-gserver#s"
1252  * - R6: "priority" is a valid priority not in
1253  *       "ibm,plat-res-int-priorities"
1254  * - R7: "eventQueue": The logical real address of the start of the EQ
1255  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1256  *
1257  * Output:
1258  * - None
1259  */
1260 
1261 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1262 
1263 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1264                                            SpaprMachineState *spapr,
1265                                            target_ulong opcode,
1266                                            target_ulong *args)
1267 {
1268     SpaprXive *xive = spapr->xive;
1269     target_ulong flags = args[0];
1270     target_ulong target = args[1];
1271     target_ulong priority = args[2];
1272     target_ulong qpage = args[3];
1273     target_ulong qsize = args[4];
1274     XiveEND end;
1275     uint8_t end_blk, nvt_blk;
1276     uint32_t end_idx, nvt_idx;
1277 
1278     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1279         return H_FUNCTION;
1280     }
1281 
1282     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1283         return H_PARAMETER;
1284     }
1285 
1286     /*
1287      * H_STATE should be returned if a H_INT_RESET is in progress.
1288      * This is not needed when running the emulation under QEMU
1289      */
1290 
1291     if (spapr_xive_priority_is_reserved(xive, priority)) {
1292         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1293                       " is reserved\n", priority);
1294         return H_P3;
1295     }
1296 
1297     /*
1298      * Validate that "target" is part of the list of threads allocated
1299      * to the partition. For that, find the END corresponding to the
1300      * target.
1301      */
1302 
1303     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1304         return H_P2;
1305     }
1306 
1307     assert(end_idx < xive->nr_ends);
1308     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1309 
1310     switch (qsize) {
1311     case 12:
1312     case 16:
1313     case 21:
1314     case 24:
1315         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1316             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1317                           " is not naturally aligned with %" HWADDR_PRIx "\n",
1318                           qpage, (hwaddr)1 << qsize);
1319             return H_P4;
1320         }
1321         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1322         end.w3 = cpu_to_be32(qpage & 0xffffffff);
1323         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1324         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1325         break;
1326     case 0:
1327         /* reset queue and disable queueing */
1328         spapr_xive_end_reset(&end);
1329         goto out;
1330 
1331     default:
1332         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1333                       qsize);
1334         return H_P5;
1335     }
1336 
1337     if (qsize) {
1338         hwaddr plen = 1 << qsize;
1339         void *eq;
1340 
1341         /*
1342          * Validate the guest EQ. We should also check that the queue
1343          * has been zeroed by the OS.
1344          */
1345         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1346                                MEMTXATTRS_UNSPECIFIED);
1347         if (plen != 1 << qsize) {
1348             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1349                           HWADDR_PRIx "\n", qpage);
1350             return H_P4;
1351         }
1352         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1353     }
1354 
1355     /* "target" should have been validated above */
1356     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1357         g_assert_not_reached();
1358     }
1359 
1360     /*
1361      * Ensure the priority and target are correctly set (they will not
1362      * be right after allocation)
1363      */
1364     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1365         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1366     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1367 
1368     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1369         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1370     } else {
1371         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1372     }
1373 
1374     /*
1375      * The generation bit for the END starts at 1 and The END page
1376      * offset counter starts at 0.
1377      */
1378     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1379         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1380     end.w0 |= cpu_to_be32(END_W0_VALID);
1381 
1382     /*
1383      * TODO: issue syncs required to ensure all in-flight interrupts
1384      * are complete on the old END
1385      */
1386 
1387 out:
1388     if (spapr_xive_in_kernel(xive)) {
1389         Error *local_err = NULL;
1390 
1391         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1392         if (local_err) {
1393             error_report_err(local_err);
1394             return H_HARDWARE;
1395         }
1396     }
1397 
1398     /* Update END */
1399     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1400     return H_SUCCESS;
1401 }
1402 
1403 /*
1404  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1405  * target and priority.
1406  *
1407  * Parameters:
1408  * Input:
1409  * - R4: "flags"
1410  *         Bits 0-62: Reserved
1411  *         Bit 63: Debug: Return debug data
1412  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1413  *       "ibm,ppc-interrupt-gserver#s"
1414  * - R6: "priority" is a valid priority not in
1415  *       "ibm,plat-res-int-priorities"
1416  *
1417  * Output:
1418  * - R4: "flags":
1419  *       Bits 0-61: Reserved
1420  *       Bit 62: The value of Event Queue Generation Number (g) per
1421  *              the XIVE spec if "Debug" = 1
1422  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1423  * - R5: The logical real address of the start of the EQ
1424  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1425  * - R7: The value of Event Queue Offset Counter per XIVE spec
1426  *       if "Debug" = 1, else 0
1427  *
1428  */
1429 
1430 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1431 
1432 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1433                                            SpaprMachineState *spapr,
1434                                            target_ulong opcode,
1435                                            target_ulong *args)
1436 {
1437     SpaprXive *xive = spapr->xive;
1438     target_ulong flags = args[0];
1439     target_ulong target = args[1];
1440     target_ulong priority = args[2];
1441     XiveEND *end;
1442     uint8_t end_blk;
1443     uint32_t end_idx;
1444 
1445     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1446         return H_FUNCTION;
1447     }
1448 
1449     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1450         return H_PARAMETER;
1451     }
1452 
1453     /*
1454      * H_STATE should be returned if a H_INT_RESET is in progress.
1455      * This is not needed when running the emulation under QEMU
1456      */
1457 
1458     if (spapr_xive_priority_is_reserved(xive, priority)) {
1459         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1460                       " is reserved\n", priority);
1461         return H_P3;
1462     }
1463 
1464     /*
1465      * Validate that "target" is part of the list of threads allocated
1466      * to the partition. For that, find the END corresponding to the
1467      * target.
1468      */
1469     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1470         return H_P2;
1471     }
1472 
1473     assert(end_idx < xive->nr_ends);
1474     end = &xive->endt[end_idx];
1475 
1476     args[0] = 0;
1477     if (xive_end_is_notify(end)) {
1478         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1479     }
1480 
1481     if (xive_end_is_enqueue(end)) {
1482         args[1] = xive_end_qaddr(end);
1483         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1484     } else {
1485         args[1] = 0;
1486         args[2] = 0;
1487     }
1488 
1489     if (spapr_xive_in_kernel(xive)) {
1490         Error *local_err = NULL;
1491 
1492         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1493         if (local_err) {
1494             error_report_err(local_err);
1495             return H_HARDWARE;
1496         }
1497     }
1498 
1499     /* TODO: do we need any locking on the END ? */
1500     if (flags & SPAPR_XIVE_END_DEBUG) {
1501         /* Load the event queue generation number into the return flags */
1502         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1503 
1504         /* Load R7 with the event queue offset counter */
1505         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1506     } else {
1507         args[3] = 0;
1508     }
1509 
1510     return H_SUCCESS;
1511 }
1512 
1513 /*
1514  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1515  * reporting cache line pair for the calling thread.  The reporting
1516  * cache lines will contain the OS interrupt context when the OS
1517  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1518  * interrupt. The reporting cache lines can be reset by inputting -1
1519  * in "reportingLine".  Issuing the CI store byte without reporting
1520  * cache lines registered will result in the data not being accessible
1521  * to the OS.
1522  *
1523  * Parameters:
1524  * Input:
1525  * - R4: "flags"
1526  *         Bits 0-63: Reserved
1527  * - R5: "reportingLine": The logical real address of the reporting cache
1528  *       line pair
1529  *
1530  * Output:
1531  * - None
1532  */
1533 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1534                                                 SpaprMachineState *spapr,
1535                                                 target_ulong opcode,
1536                                                 target_ulong *args)
1537 {
1538     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1539         return H_FUNCTION;
1540     }
1541 
1542     /*
1543      * H_STATE should be returned if a H_INT_RESET is in progress.
1544      * This is not needed when running the emulation under QEMU
1545      */
1546 
1547     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1548     return H_FUNCTION;
1549 }
1550 
1551 /*
1552  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1553  * real address of the reporting cache line pair set for the input
1554  * "target".  If no reporting cache line pair has been set, -1 is
1555  * returned.
1556  *
1557  * Parameters:
1558  * Input:
1559  * - R4: "flags"
1560  *         Bits 0-63: Reserved
1561  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1562  *       "ibm,ppc-interrupt-gserver#s"
1563  * - R6: "reportingLine": The logical real address of the reporting
1564  *        cache line pair
1565  *
1566  * Output:
1567  * - R4: The logical real address of the reporting line if set, else -1
1568  */
1569 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1570                                                 SpaprMachineState *spapr,
1571                                                 target_ulong opcode,
1572                                                 target_ulong *args)
1573 {
1574     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1575         return H_FUNCTION;
1576     }
1577 
1578     /*
1579      * H_STATE should be returned if a H_INT_RESET is in progress.
1580      * This is not needed when running the emulation under QEMU
1581      */
1582 
1583     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1584     return H_FUNCTION;
1585 }
1586 
1587 /*
1588  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1589  * page for the input "lisn".  This hcall is only supported for LISNs
1590  * that have the ESB hcall flag set to 1 when returned from hcall()
1591  * H_INT_GET_SOURCE_INFO.
1592  *
1593  * Parameters:
1594  * Input:
1595  * - R4: "flags"
1596  *         Bits 0-62: Reserved
1597  *         bit 63: Store: Store=1, store operation, else load operation
1598  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1599  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1600  *       ibm,query-interrupt-source-number RTAS call, or as
1601  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1602  * - R6: "esbOffset" is the offset into the ESB page for the load or
1603  *       store operation
1604  * - R7: "storeData" is the data to write for a store operation
1605  *
1606  * Output:
1607  * - R4: The value of the load if load operation, else -1
1608  */
1609 
1610 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1611 
1612 static target_ulong h_int_esb(PowerPCCPU *cpu,
1613                               SpaprMachineState *spapr,
1614                               target_ulong opcode,
1615                               target_ulong *args)
1616 {
1617     SpaprXive *xive = spapr->xive;
1618     XiveEAS eas;
1619     target_ulong flags  = args[0];
1620     target_ulong lisn   = args[1];
1621     target_ulong offset = args[2];
1622     target_ulong data   = args[3];
1623     hwaddr mmio_addr;
1624     XiveSource *xsrc = &xive->source;
1625 
1626     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1627         return H_FUNCTION;
1628     }
1629 
1630     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1631         return H_PARAMETER;
1632     }
1633 
1634     if (lisn >= xive->nr_irqs) {
1635         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1636                       lisn);
1637         return H_P2;
1638     }
1639 
1640     eas = xive->eat[lisn];
1641     if (!xive_eas_is_valid(&eas)) {
1642         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1643                       lisn);
1644         return H_P2;
1645     }
1646 
1647     if (offset > (1ull << xsrc->esb_shift)) {
1648         return H_P3;
1649     }
1650 
1651     if (spapr_xive_in_kernel(xive)) {
1652         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1653                                      flags & SPAPR_XIVE_ESB_STORE);
1654     } else {
1655         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1656 
1657         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1658                           (flags & SPAPR_XIVE_ESB_STORE))) {
1659             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1660                           HWADDR_PRIx "\n", mmio_addr);
1661             return H_HARDWARE;
1662         }
1663         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1664     }
1665     return H_SUCCESS;
1666 }
1667 
1668 /*
1669  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1670  * ensure any in flight events for the input lisn are in the event
1671  * queue.
1672  *
1673  * Parameters:
1674  * Input:
1675  * - R4: "flags"
1676  *         Bits 0-63: Reserved
1677  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1678  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1679  *       ibm,query-interrupt-source-number RTAS call, or as
1680  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1681  *
1682  * Output:
1683  * - None
1684  */
1685 static target_ulong h_int_sync(PowerPCCPU *cpu,
1686                                SpaprMachineState *spapr,
1687                                target_ulong opcode,
1688                                target_ulong *args)
1689 {
1690     SpaprXive *xive = spapr->xive;
1691     XiveEAS eas;
1692     target_ulong flags = args[0];
1693     target_ulong lisn = args[1];
1694 
1695     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1696         return H_FUNCTION;
1697     }
1698 
1699     if (flags) {
1700         return H_PARAMETER;
1701     }
1702 
1703     if (lisn >= xive->nr_irqs) {
1704         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1705                       lisn);
1706         return H_P2;
1707     }
1708 
1709     eas = xive->eat[lisn];
1710     if (!xive_eas_is_valid(&eas)) {
1711         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1712                       lisn);
1713         return H_P2;
1714     }
1715 
1716     /*
1717      * H_STATE should be returned if a H_INT_RESET is in progress.
1718      * This is not needed when running the emulation under QEMU
1719      */
1720 
1721     /*
1722      * This is not real hardware. Nothing to be done unless when
1723      * under KVM
1724      */
1725 
1726     if (spapr_xive_in_kernel(xive)) {
1727         Error *local_err = NULL;
1728 
1729         kvmppc_xive_sync_source(xive, lisn, &local_err);
1730         if (local_err) {
1731             error_report_err(local_err);
1732             return H_HARDWARE;
1733         }
1734     }
1735     return H_SUCCESS;
1736 }
1737 
1738 /*
1739  * The H_INT_RESET hcall() is used to reset all of the partition's
1740  * interrupt exploitation structures to their initial state.  This
1741  * means losing all previously set interrupt state set via
1742  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1743  *
1744  * Parameters:
1745  * Input:
1746  * - R4: "flags"
1747  *         Bits 0-63: Reserved
1748  *
1749  * Output:
1750  * - None
1751  */
1752 static target_ulong h_int_reset(PowerPCCPU *cpu,
1753                                 SpaprMachineState *spapr,
1754                                 target_ulong opcode,
1755                                 target_ulong *args)
1756 {
1757     SpaprXive *xive = spapr->xive;
1758     target_ulong flags   = args[0];
1759 
1760     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1761         return H_FUNCTION;
1762     }
1763 
1764     if (flags) {
1765         return H_PARAMETER;
1766     }
1767 
1768     device_legacy_reset(DEVICE(xive));
1769 
1770     if (spapr_xive_in_kernel(xive)) {
1771         Error *local_err = NULL;
1772 
1773         kvmppc_xive_reset(xive, &local_err);
1774         if (local_err) {
1775             error_report_err(local_err);
1776             return H_HARDWARE;
1777         }
1778     }
1779     return H_SUCCESS;
1780 }
1781 
1782 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1783 {
1784     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1785     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1786     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1787     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1788     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1789     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1790     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1791                              h_int_set_os_reporting_line);
1792     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1793                              h_int_get_os_reporting_line);
1794     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1795     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1796     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1797 }
1798