xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 3c4b89c3)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 
28 /*
29  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30  * use for the ESB pages and the TIMA pages
31  */
32 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
34 
35 /*
36  * The allocation of VP blocks is a complex operation in OPAL and the
37  * VP identifiers have a relation with the number of HW chips, the
38  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39  * controller model does not have the same constraints and can use a
40  * simple mapping scheme of the CPU vcpu_id
41  *
42  * These identifiers are never returned to the OS.
43  */
44 
45 #define SPAPR_XIVE_NVT_BASE 0x400
46 
47 /*
48  * sPAPR NVT and END indexing helpers
49  */
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
51 {
52     return nvt_idx - SPAPR_XIVE_NVT_BASE;
53 }
54 
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
57 {
58     assert(cpu);
59 
60     if (out_nvt_blk) {
61         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
62     }
63 
64     if (out_nvt_blk) {
65         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
66     }
67 }
68 
69 static int spapr_xive_target_to_nvt(uint32_t target,
70                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
71 {
72     PowerPCCPU *cpu = spapr_find_cpu(target);
73 
74     if (!cpu) {
75         return -1;
76     }
77 
78     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79     return 0;
80 }
81 
82 /*
83  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84  * priorities per CPU
85  */
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87                              uint32_t *out_server, uint8_t *out_prio)
88 {
89 
90     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
91 
92     if (out_server) {
93         *out_server = end_idx >> 3;
94     }
95 
96     if (out_prio) {
97         *out_prio = end_idx & 0x7;
98     }
99     return 0;
100 }
101 
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
104 {
105     assert(cpu);
106 
107     if (out_end_blk) {
108         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
109     }
110 
111     if (out_end_idx) {
112         *out_end_idx = (cpu->vcpu_id << 3) + prio;
113     }
114 }
115 
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
118 {
119     PowerPCCPU *cpu = spapr_find_cpu(target);
120 
121     if (!cpu) {
122         return -1;
123     }
124 
125     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126     return 0;
127 }
128 
129 /*
130  * On sPAPR machines, use a simplified output for the XIVE END
131  * structure dumping only the information related to the OS EQ.
132  */
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134                                           Monitor *mon)
135 {
136     uint64_t qaddr_base = xive_end_qaddr(end);
137     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140     uint32_t qentries = 1 << (qsize + 10);
141     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
143 
144     monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145                    spapr_xive_nvt_to_target(0, nvt),
146                    priority, qindex, qentries, qaddr_base, qgen);
147 
148     xive_end_queue_pic_print_info(end, 6, mon);
149 }
150 
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
152 {
153     XiveSource *xsrc = &xive->source;
154     int i;
155 
156     if (kvm_irqchip_in_kernel()) {
157         Error *local_err = NULL;
158 
159         kvmppc_xive_synchronize_state(xive, &local_err);
160         if (local_err) {
161             error_report_err(local_err);
162             return;
163         }
164     }
165 
166     monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
167 
168     for (i = 0; i < xive->nr_irqs; i++) {
169         uint8_t pq = xive_source_esb_get(xsrc, i);
170         XiveEAS *eas = &xive->eat[i];
171 
172         if (!xive_eas_is_valid(eas)) {
173             continue;
174         }
175 
176         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
177                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
179                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181                        xive_eas_is_masked(eas) ? "M" : " ",
182                        (int) xive_get_field64(EAS_END_DATA, eas->w));
183 
184         if (!xive_eas_is_masked(eas)) {
185             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186             XiveEND *end;
187 
188             assert(end_idx < xive->nr_ends);
189             end = &xive->endt[end_idx];
190 
191             if (xive_end_is_valid(end)) {
192                 spapr_xive_end_pic_print_info(xive, end, mon);
193             }
194         }
195         monitor_printf(mon, "\n");
196     }
197 }
198 
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
200 {
201     memory_region_set_enabled(&xive->source.esb_mmio, enable);
202     memory_region_set_enabled(&xive->tm_mmio, enable);
203 
204     /* Disable the END ESBs until a guest OS makes use of them */
205     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
206 }
207 
208 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
209                           uint64_t value, unsigned size)
210 {
211     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
212 
213     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
214 }
215 
216 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
217 {
218     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
219 
220     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
221 }
222 
223 const MemoryRegionOps spapr_xive_tm_ops = {
224     .read = spapr_xive_tm_read,
225     .write = spapr_xive_tm_write,
226     .endianness = DEVICE_BIG_ENDIAN,
227     .valid = {
228         .min_access_size = 1,
229         .max_access_size = 8,
230     },
231     .impl = {
232         .min_access_size = 1,
233         .max_access_size = 8,
234     },
235 };
236 
237 static void spapr_xive_end_reset(XiveEND *end)
238 {
239     memset(end, 0, sizeof(*end));
240 
241     /* switch off the escalation and notification ESBs */
242     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
243 }
244 
245 static void spapr_xive_reset(void *dev)
246 {
247     SpaprXive *xive = SPAPR_XIVE(dev);
248     int i;
249 
250     /*
251      * The XiveSource has its own reset handler, which mask off all
252      * IRQs (!P|Q)
253      */
254 
255     /* Mask all valid EASs in the IRQ number space. */
256     for (i = 0; i < xive->nr_irqs; i++) {
257         XiveEAS *eas = &xive->eat[i];
258         if (xive_eas_is_valid(eas)) {
259             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
260         } else {
261             eas->w = 0;
262         }
263     }
264 
265     /* Clear all ENDs */
266     for (i = 0; i < xive->nr_ends; i++) {
267         spapr_xive_end_reset(&xive->endt[i]);
268     }
269 }
270 
271 static void spapr_xive_instance_init(Object *obj)
272 {
273     SpaprXive *xive = SPAPR_XIVE(obj);
274 
275     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
276 
277     object_initialize_child(obj, "end_source", &xive->end_source,
278                             TYPE_XIVE_END_SOURCE);
279 
280     /* Not connected to the KVM XIVE device */
281     xive->fd = -1;
282 }
283 
284 static void spapr_xive_realize(DeviceState *dev, Error **errp)
285 {
286     SpaprXive *xive = SPAPR_XIVE(dev);
287     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
288     XiveSource *xsrc = &xive->source;
289     XiveENDSource *end_xsrc = &xive->end_source;
290     Error *local_err = NULL;
291 
292     sxc->parent_realize(dev, &local_err);
293     if (local_err) {
294         error_propagate(errp, local_err);
295         return;
296     }
297 
298     if (!xive->nr_irqs) {
299         error_setg(errp, "Number of interrupt needs to be greater 0");
300         return;
301     }
302 
303     if (!xive->nr_ends) {
304         error_setg(errp, "Number of interrupt needs to be greater 0");
305         return;
306     }
307 
308     /*
309      * Initialize the internal sources, for IPIs and virtual devices.
310      */
311     object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
312                             &error_fatal);
313     object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
314                              &error_abort);
315     if (!qdev_realize(DEVICE(xsrc), NULL, &local_err)) {
316         error_propagate(errp, local_err);
317         return;
318     }
319     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
320 
321     /*
322      * Initialize the END ESB source
323      */
324     object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
325                             &error_fatal);
326     object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
327                              &error_abort);
328     if (!qdev_realize(DEVICE(end_xsrc), NULL, &local_err)) {
329         error_propagate(errp, local_err);
330         return;
331     }
332     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
333 
334     /* Set the mapping address of the END ESB pages after the source ESBs */
335     xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
336 
337     /*
338      * Allocate the routing tables
339      */
340     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
341     xive->endt = g_new0(XiveEND, xive->nr_ends);
342 
343     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
344                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
345 
346     qemu_register_reset(spapr_xive_reset, dev);
347 
348     /* TIMA initialization */
349     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
350                           xive, "xive.tima", 4ull << TM_SHIFT);
351     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
352 
353     /*
354      * Map all regions. These will be enabled or disabled at reset and
355      * can also be overridden by KVM memory regions if active
356      */
357     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
358     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
359     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
360 }
361 
362 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
363                               uint32_t eas_idx, XiveEAS *eas)
364 {
365     SpaprXive *xive = SPAPR_XIVE(xrtr);
366 
367     if (eas_idx >= xive->nr_irqs) {
368         return -1;
369     }
370 
371     *eas = xive->eat[eas_idx];
372     return 0;
373 }
374 
375 static int spapr_xive_get_end(XiveRouter *xrtr,
376                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
377 {
378     SpaprXive *xive = SPAPR_XIVE(xrtr);
379 
380     if (end_idx >= xive->nr_ends) {
381         return -1;
382     }
383 
384     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
385     return 0;
386 }
387 
388 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
389                                 uint32_t end_idx, XiveEND *end,
390                                 uint8_t word_number)
391 {
392     SpaprXive *xive = SPAPR_XIVE(xrtr);
393 
394     if (end_idx >= xive->nr_ends) {
395         return -1;
396     }
397 
398     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
399     return 0;
400 }
401 
402 static int spapr_xive_get_nvt(XiveRouter *xrtr,
403                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
404 {
405     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
406     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
407 
408     if (!cpu) {
409         /* TODO: should we assert() if we can find a NVT ? */
410         return -1;
411     }
412 
413     /*
414      * sPAPR does not maintain a NVT table. Return that the NVT is
415      * valid if we have found a matching CPU
416      */
417     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
418     return 0;
419 }
420 
421 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
422                                 uint32_t nvt_idx, XiveNVT *nvt,
423                                 uint8_t word_number)
424 {
425     /*
426      * We don't need to write back to the NVTs because the sPAPR
427      * machine should never hit a non-scheduled NVT. It should never
428      * get called.
429      */
430     g_assert_not_reached();
431 }
432 
433 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
434                                 uint8_t nvt_blk, uint32_t nvt_idx,
435                                 bool cam_ignore, uint8_t priority,
436                                 uint32_t logic_serv, XiveTCTXMatch *match)
437 {
438     CPUState *cs;
439     int count = 0;
440 
441     CPU_FOREACH(cs) {
442         PowerPCCPU *cpu = POWERPC_CPU(cs);
443         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
444         int ring;
445 
446         /*
447          * Skip partially initialized vCPUs. This can happen when
448          * vCPUs are hotplugged.
449          */
450         if (!tctx) {
451             continue;
452         }
453 
454         /*
455          * Check the thread context CAM lines and record matches.
456          */
457         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
458                                          cam_ignore, logic_serv);
459         /*
460          * Save the matching thread interrupt context and follow on to
461          * check for duplicates which are invalid.
462          */
463         if (ring != -1) {
464             if (match->tctx) {
465                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
466                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
467                 return -1;
468             }
469 
470             match->ring = ring;
471             match->tctx = tctx;
472             count++;
473         }
474     }
475 
476     return count;
477 }
478 
479 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
480 {
481     return SPAPR_XIVE_BLOCK_ID;
482 }
483 
484 static const VMStateDescription vmstate_spapr_xive_end = {
485     .name = TYPE_SPAPR_XIVE "/end",
486     .version_id = 1,
487     .minimum_version_id = 1,
488     .fields = (VMStateField []) {
489         VMSTATE_UINT32(w0, XiveEND),
490         VMSTATE_UINT32(w1, XiveEND),
491         VMSTATE_UINT32(w2, XiveEND),
492         VMSTATE_UINT32(w3, XiveEND),
493         VMSTATE_UINT32(w4, XiveEND),
494         VMSTATE_UINT32(w5, XiveEND),
495         VMSTATE_UINT32(w6, XiveEND),
496         VMSTATE_UINT32(w7, XiveEND),
497         VMSTATE_END_OF_LIST()
498     },
499 };
500 
501 static const VMStateDescription vmstate_spapr_xive_eas = {
502     .name = TYPE_SPAPR_XIVE "/eas",
503     .version_id = 1,
504     .minimum_version_id = 1,
505     .fields = (VMStateField []) {
506         VMSTATE_UINT64(w, XiveEAS),
507         VMSTATE_END_OF_LIST()
508     },
509 };
510 
511 static int vmstate_spapr_xive_pre_save(void *opaque)
512 {
513     if (kvm_irqchip_in_kernel()) {
514         return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
515     }
516 
517     return 0;
518 }
519 
520 /*
521  * Called by the sPAPR IRQ backend 'post_load' method at the machine
522  * level.
523  */
524 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
525 {
526     if (kvm_irqchip_in_kernel()) {
527         return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
528     }
529 
530     return 0;
531 }
532 
533 static const VMStateDescription vmstate_spapr_xive = {
534     .name = TYPE_SPAPR_XIVE,
535     .version_id = 1,
536     .minimum_version_id = 1,
537     .pre_save = vmstate_spapr_xive_pre_save,
538     .post_load = NULL, /* handled at the machine level */
539     .fields = (VMStateField[]) {
540         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
541         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
542                                      vmstate_spapr_xive_eas, XiveEAS),
543         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
544                                              vmstate_spapr_xive_end, XiveEND),
545         VMSTATE_END_OF_LIST()
546     },
547 };
548 
549 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
550                                 bool lsi, Error **errp)
551 {
552     SpaprXive *xive = SPAPR_XIVE(intc);
553     XiveSource *xsrc = &xive->source;
554 
555     assert(lisn < xive->nr_irqs);
556 
557     if (xive_eas_is_valid(&xive->eat[lisn])) {
558         error_setg(errp, "IRQ %d is not free", lisn);
559         return -EBUSY;
560     }
561 
562     /*
563      * Set default values when allocating an IRQ number
564      */
565     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
566     if (lsi) {
567         xive_source_irq_set_lsi(xsrc, lisn);
568     }
569 
570     if (kvm_irqchip_in_kernel()) {
571         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
572     }
573 
574     return 0;
575 }
576 
577 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
578 {
579     SpaprXive *xive = SPAPR_XIVE(intc);
580     assert(lisn < xive->nr_irqs);
581 
582     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
583 }
584 
585 static Property spapr_xive_properties[] = {
586     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
587     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
588     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
589     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
590     DEFINE_PROP_END_OF_LIST(),
591 };
592 
593 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
594                                       PowerPCCPU *cpu, Error **errp)
595 {
596     SpaprXive *xive = SPAPR_XIVE(intc);
597     Object *obj;
598     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
599 
600     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
601     if (!obj) {
602         return -1;
603     }
604 
605     spapr_cpu->tctx = XIVE_TCTX(obj);
606     return 0;
607 }
608 
609 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
610 {
611     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
612     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
613 }
614 
615 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
616                                      PowerPCCPU *cpu)
617 {
618     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
619     uint8_t  nvt_blk;
620     uint32_t nvt_idx;
621 
622     xive_tctx_reset(tctx);
623 
624     /*
625      * When a Virtual Processor is scheduled to run on a HW thread,
626      * the hypervisor pushes its identifier in the OS CAM line.
627      * Emulate the same behavior under QEMU.
628      */
629     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
630 
631     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
632 }
633 
634 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
635                                         PowerPCCPU *cpu)
636 {
637     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
638 
639     xive_tctx_destroy(spapr_cpu->tctx);
640     spapr_cpu->tctx = NULL;
641 }
642 
643 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
644 {
645     SpaprXive *xive = SPAPR_XIVE(intc);
646 
647     if (kvm_irqchip_in_kernel()) {
648         kvmppc_xive_source_set_irq(&xive->source, irq, val);
649     } else {
650         xive_source_set_irq(&xive->source, irq, val);
651     }
652 }
653 
654 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
655 {
656     SpaprXive *xive = SPAPR_XIVE(intc);
657     CPUState *cs;
658 
659     CPU_FOREACH(cs) {
660         PowerPCCPU *cpu = POWERPC_CPU(cs);
661 
662         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
663     }
664 
665     spapr_xive_pic_print_info(xive, mon);
666 }
667 
668 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
669                           void *fdt, uint32_t phandle)
670 {
671     SpaprXive *xive = SPAPR_XIVE(intc);
672     int node;
673     uint64_t timas[2 * 2];
674     /* Interrupt number ranges for the IPIs */
675     uint32_t lisn_ranges[] = {
676         cpu_to_be32(SPAPR_IRQ_IPI),
677         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
678     };
679     /*
680      * EQ size - the sizes of pages supported by the system 4K, 64K,
681      * 2M, 16M. We only advertise 64K for the moment.
682      */
683     uint32_t eq_sizes[] = {
684         cpu_to_be32(16), /* 64K */
685     };
686     /*
687      * The following array is in sync with the reserved priorities
688      * defined by the 'spapr_xive_priority_is_reserved' routine.
689      */
690     uint32_t plat_res_int_priorities[] = {
691         cpu_to_be32(7),    /* start */
692         cpu_to_be32(0xf8), /* count */
693     };
694 
695     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
696     timas[0] = cpu_to_be64(xive->tm_base +
697                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
698     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
699     timas[2] = cpu_to_be64(xive->tm_base +
700                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
701     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
702 
703     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
704 
705     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
706     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
707 
708     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
709     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
710                      sizeof(eq_sizes)));
711     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
712                      sizeof(lisn_ranges)));
713 
714     /* For Linux to link the LSIs to the interrupt controller. */
715     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
716     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
717 
718     /* For SLOF */
719     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
720     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
721 
722     /*
723      * The "ibm,plat-res-int-priorities" property defines the priority
724      * ranges reserved by the hypervisor
725      */
726     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
727                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
728 }
729 
730 static int spapr_xive_activate(SpaprInterruptController *intc,
731                                uint32_t nr_servers, Error **errp)
732 {
733     SpaprXive *xive = SPAPR_XIVE(intc);
734 
735     if (kvm_enabled()) {
736         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
737                                     errp);
738         if (rc < 0) {
739             return rc;
740         }
741     }
742 
743     /* Activate the XIVE MMIOs */
744     spapr_xive_mmio_set_enabled(xive, true);
745 
746     return 0;
747 }
748 
749 static void spapr_xive_deactivate(SpaprInterruptController *intc)
750 {
751     SpaprXive *xive = SPAPR_XIVE(intc);
752 
753     spapr_xive_mmio_set_enabled(xive, false);
754 
755     if (kvm_irqchip_in_kernel()) {
756         kvmppc_xive_disconnect(intc);
757     }
758 }
759 
760 static void spapr_xive_class_init(ObjectClass *klass, void *data)
761 {
762     DeviceClass *dc = DEVICE_CLASS(klass);
763     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
764     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
765     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
766     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
767 
768     dc->desc    = "sPAPR XIVE Interrupt Controller";
769     device_class_set_props(dc, spapr_xive_properties);
770     device_class_set_parent_realize(dc, spapr_xive_realize,
771                                     &sxc->parent_realize);
772     dc->vmsd    = &vmstate_spapr_xive;
773 
774     xrc->get_eas = spapr_xive_get_eas;
775     xrc->get_end = spapr_xive_get_end;
776     xrc->write_end = spapr_xive_write_end;
777     xrc->get_nvt = spapr_xive_get_nvt;
778     xrc->write_nvt = spapr_xive_write_nvt;
779     xrc->get_block_id = spapr_xive_get_block_id;
780 
781     sicc->activate = spapr_xive_activate;
782     sicc->deactivate = spapr_xive_deactivate;
783     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
784     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
785     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
786     sicc->claim_irq = spapr_xive_claim_irq;
787     sicc->free_irq = spapr_xive_free_irq;
788     sicc->set_irq = spapr_xive_set_irq;
789     sicc->print_info = spapr_xive_print_info;
790     sicc->dt = spapr_xive_dt;
791     sicc->post_load = spapr_xive_post_load;
792 
793     xpc->match_nvt  = spapr_xive_match_nvt;
794 }
795 
796 static const TypeInfo spapr_xive_info = {
797     .name = TYPE_SPAPR_XIVE,
798     .parent = TYPE_XIVE_ROUTER,
799     .instance_init = spapr_xive_instance_init,
800     .instance_size = sizeof(SpaprXive),
801     .class_init = spapr_xive_class_init,
802     .class_size = sizeof(SpaprXiveClass),
803     .interfaces = (InterfaceInfo[]) {
804         { TYPE_SPAPR_INTC },
805         { }
806     },
807 };
808 
809 static void spapr_xive_register_types(void)
810 {
811     type_register_static(&spapr_xive_info);
812 }
813 
814 type_init(spapr_xive_register_types)
815 
816 /*
817  * XIVE hcalls
818  *
819  * The terminology used by the XIVE hcalls is the following :
820  *
821  *   TARGET vCPU number
822  *   EQ     Event Queue assigned by OS to receive event data
823  *   ESB    page for source interrupt management
824  *   LISN   Logical Interrupt Source Number identifying a source in the
825  *          machine
826  *   EISN   Effective Interrupt Source Number used by guest OS to
827  *          identify source in the guest
828  *
829  * The EAS, END, NVT structures are not exposed.
830  */
831 
832 /*
833  * Linux hosts under OPAL reserve priority 7 for their own escalation
834  * interrupts (DD2.X POWER9). So we only allow the guest to use
835  * priorities [0..6].
836  */
837 static bool spapr_xive_priority_is_reserved(uint8_t priority)
838 {
839     switch (priority) {
840     case 0 ... 6:
841         return false;
842     case 7: /* OPAL escalation queue */
843     default:
844         return true;
845     }
846 }
847 
848 /*
849  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
850  * real address of the MMIO page through which the Event State Buffer
851  * entry associated with the value of the "lisn" parameter is managed.
852  *
853  * Parameters:
854  * Input
855  * - R4: "flags"
856  *         Bits 0-63 reserved
857  * - R5: "lisn" is per "interrupts", "interrupt-map", or
858  *       "ibm,xive-lisn-ranges" properties, or as returned by the
859  *       ibm,query-interrupt-source-number RTAS call, or as returned
860  *       by the H_ALLOCATE_VAS_WINDOW hcall
861  *
862  * Output
863  * - R4: "flags"
864  *         Bits 0-59: Reserved
865  *         Bit 60: H_INT_ESB must be used for Event State Buffer
866  *                 management
867  *         Bit 61: 1 == LSI  0 == MSI
868  *         Bit 62: the full function page supports trigger
869  *         Bit 63: Store EOI Supported
870  * - R5: Logical Real address of full function Event State Buffer
871  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
872  * - R6: Logical Real Address of trigger only Event State Buffer
873  *       management page or -1.
874  * - R7: Power of 2 page size for the ESB management pages returned in
875  *       R5 and R6.
876  */
877 
878 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
879 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
880 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
881                                                     on same page */
882 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
883 
884 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
885                                           SpaprMachineState *spapr,
886                                           target_ulong opcode,
887                                           target_ulong *args)
888 {
889     SpaprXive *xive = spapr->xive;
890     XiveSource *xsrc = &xive->source;
891     target_ulong flags  = args[0];
892     target_ulong lisn   = args[1];
893 
894     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
895         return H_FUNCTION;
896     }
897 
898     if (flags) {
899         return H_PARAMETER;
900     }
901 
902     if (lisn >= xive->nr_irqs) {
903         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
904                       lisn);
905         return H_P2;
906     }
907 
908     if (!xive_eas_is_valid(&xive->eat[lisn])) {
909         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
910                       lisn);
911         return H_P2;
912     }
913 
914     /*
915      * All sources are emulated under the main XIVE object and share
916      * the same characteristics.
917      */
918     args[0] = 0;
919     if (!xive_source_esb_has_2page(xsrc)) {
920         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
921     }
922     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
923         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
924     }
925 
926     /*
927      * Force the use of the H_INT_ESB hcall in case of an LSI
928      * interrupt. This is necessary under KVM to re-trigger the
929      * interrupt if the level is still asserted
930      */
931     if (xive_source_irq_is_lsi(xsrc, lisn)) {
932         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
933     }
934 
935     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
936         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
937     } else {
938         args[1] = -1;
939     }
940 
941     if (xive_source_esb_has_2page(xsrc) &&
942         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
943         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
944     } else {
945         args[2] = -1;
946     }
947 
948     if (xive_source_esb_has_2page(xsrc)) {
949         args[3] = xsrc->esb_shift - 1;
950     } else {
951         args[3] = xsrc->esb_shift;
952     }
953 
954     return H_SUCCESS;
955 }
956 
957 /*
958  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
959  * Interrupt Source to a target. The Logical Interrupt Source is
960  * designated with the "lisn" parameter and the target is designated
961  * with the "target" and "priority" parameters.  Upon return from the
962  * hcall(), no additional interrupts will be directed to the old EQ.
963  *
964  * Parameters:
965  * Input:
966  * - R4: "flags"
967  *         Bits 0-61: Reserved
968  *         Bit 62: set the "eisn" in the EAS
969  *         Bit 63: masks the interrupt source in the hardware interrupt
970  *       control structure. An interrupt masked by this mechanism will
971  *       be dropped, but it's source state bits will still be
972  *       set. There is no race-free way of unmasking and restoring the
973  *       source. Thus this should only be used in interrupts that are
974  *       also masked at the source, and only in cases where the
975  *       interrupt is not meant to be used for a large amount of time
976  *       because no valid target exists for it for example
977  * - R5: "lisn" is per "interrupts", "interrupt-map", or
978  *       "ibm,xive-lisn-ranges" properties, or as returned by the
979  *       ibm,query-interrupt-source-number RTAS call, or as returned by
980  *       the H_ALLOCATE_VAS_WINDOW hcall
981  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
982  *       "ibm,ppc-interrupt-gserver#s"
983  * - R7: "priority" is a valid priority not in
984  *       "ibm,plat-res-int-priorities"
985  * - R8: "eisn" is the guest EISN associated with the "lisn"
986  *
987  * Output:
988  * - None
989  */
990 
991 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
992 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
993 
994 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
995                                             SpaprMachineState *spapr,
996                                             target_ulong opcode,
997                                             target_ulong *args)
998 {
999     SpaprXive *xive = spapr->xive;
1000     XiveEAS eas, new_eas;
1001     target_ulong flags    = args[0];
1002     target_ulong lisn     = args[1];
1003     target_ulong target   = args[2];
1004     target_ulong priority = args[3];
1005     target_ulong eisn     = args[4];
1006     uint8_t end_blk;
1007     uint32_t end_idx;
1008 
1009     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1010         return H_FUNCTION;
1011     }
1012 
1013     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1014         return H_PARAMETER;
1015     }
1016 
1017     if (lisn >= xive->nr_irqs) {
1018         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1019                       lisn);
1020         return H_P2;
1021     }
1022 
1023     eas = xive->eat[lisn];
1024     if (!xive_eas_is_valid(&eas)) {
1025         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1026                       lisn);
1027         return H_P2;
1028     }
1029 
1030     /* priority 0xff is used to reset the EAS */
1031     if (priority == 0xff) {
1032         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1033         goto out;
1034     }
1035 
1036     if (flags & SPAPR_XIVE_SRC_MASK) {
1037         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1038     } else {
1039         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1040     }
1041 
1042     if (spapr_xive_priority_is_reserved(priority)) {
1043         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1044                       " is reserved\n", priority);
1045         return H_P4;
1046     }
1047 
1048     /*
1049      * Validate that "target" is part of the list of threads allocated
1050      * to the partition. For that, find the END corresponding to the
1051      * target.
1052      */
1053     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1054         return H_P3;
1055     }
1056 
1057     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1058     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1059 
1060     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1061         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1062     }
1063 
1064     if (kvm_irqchip_in_kernel()) {
1065         Error *local_err = NULL;
1066 
1067         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1068         if (local_err) {
1069             error_report_err(local_err);
1070             return H_HARDWARE;
1071         }
1072     }
1073 
1074 out:
1075     xive->eat[lisn] = new_eas;
1076     return H_SUCCESS;
1077 }
1078 
1079 /*
1080  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1081  * target/priority pair is assigned to the specified Logical Interrupt
1082  * Source.
1083  *
1084  * Parameters:
1085  * Input:
1086  * - R4: "flags"
1087  *         Bits 0-63 Reserved
1088  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1089  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1090  *       ibm,query-interrupt-source-number RTAS call, or as
1091  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1092  *
1093  * Output:
1094  * - R4: Target to which the specified Logical Interrupt Source is
1095  *       assigned
1096  * - R5: Priority to which the specified Logical Interrupt Source is
1097  *       assigned
1098  * - R6: EISN for the specified Logical Interrupt Source (this will be
1099  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1100  */
1101 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1102                                             SpaprMachineState *spapr,
1103                                             target_ulong opcode,
1104                                             target_ulong *args)
1105 {
1106     SpaprXive *xive = spapr->xive;
1107     target_ulong flags = args[0];
1108     target_ulong lisn = args[1];
1109     XiveEAS eas;
1110     XiveEND *end;
1111     uint8_t nvt_blk;
1112     uint32_t end_idx, nvt_idx;
1113 
1114     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1115         return H_FUNCTION;
1116     }
1117 
1118     if (flags) {
1119         return H_PARAMETER;
1120     }
1121 
1122     if (lisn >= xive->nr_irqs) {
1123         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1124                       lisn);
1125         return H_P2;
1126     }
1127 
1128     eas = xive->eat[lisn];
1129     if (!xive_eas_is_valid(&eas)) {
1130         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1131                       lisn);
1132         return H_P2;
1133     }
1134 
1135     /* EAS_END_BLOCK is unused on sPAPR */
1136     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1137 
1138     assert(end_idx < xive->nr_ends);
1139     end = &xive->endt[end_idx];
1140 
1141     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1142     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1143     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1144 
1145     if (xive_eas_is_masked(&eas)) {
1146         args[1] = 0xff;
1147     } else {
1148         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1149     }
1150 
1151     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1152 
1153     return H_SUCCESS;
1154 }
1155 
1156 /*
1157  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1158  * address of the notification management page associated with the
1159  * specified target and priority.
1160  *
1161  * Parameters:
1162  * Input:
1163  * - R4: "flags"
1164  *         Bits 0-63 Reserved
1165  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1166  *       "ibm,ppc-interrupt-gserver#s"
1167  * - R6: "priority" is a valid priority not in
1168  *       "ibm,plat-res-int-priorities"
1169  *
1170  * Output:
1171  * - R4: Logical real address of notification page
1172  * - R5: Power of 2 page size of the notification page
1173  */
1174 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1175                                          SpaprMachineState *spapr,
1176                                          target_ulong opcode,
1177                                          target_ulong *args)
1178 {
1179     SpaprXive *xive = spapr->xive;
1180     XiveENDSource *end_xsrc = &xive->end_source;
1181     target_ulong flags = args[0];
1182     target_ulong target = args[1];
1183     target_ulong priority = args[2];
1184     XiveEND *end;
1185     uint8_t end_blk;
1186     uint32_t end_idx;
1187 
1188     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1189         return H_FUNCTION;
1190     }
1191 
1192     if (flags) {
1193         return H_PARAMETER;
1194     }
1195 
1196     /*
1197      * H_STATE should be returned if a H_INT_RESET is in progress.
1198      * This is not needed when running the emulation under QEMU
1199      */
1200 
1201     if (spapr_xive_priority_is_reserved(priority)) {
1202         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1203                       " is reserved\n", priority);
1204         return H_P3;
1205     }
1206 
1207     /*
1208      * Validate that "target" is part of the list of threads allocated
1209      * to the partition. For that, find the END corresponding to the
1210      * target.
1211      */
1212     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1213         return H_P2;
1214     }
1215 
1216     assert(end_idx < xive->nr_ends);
1217     end = &xive->endt[end_idx];
1218 
1219     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1220     if (xive_end_is_enqueue(end)) {
1221         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1222     } else {
1223         args[1] = 0;
1224     }
1225 
1226     return H_SUCCESS;
1227 }
1228 
1229 /*
1230  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1231  * a given "target" and "priority".  It is also used to set the
1232  * notification config associated with the EQ.  An EQ size of 0 is
1233  * used to reset the EQ config for a given target and priority. If
1234  * resetting the EQ config, the END associated with the given "target"
1235  * and "priority" will be changed to disable queueing.
1236  *
1237  * Upon return from the hcall(), no additional interrupts will be
1238  * directed to the old EQ (if one was set). The old EQ (if one was
1239  * set) should be investigated for interrupts that occurred prior to
1240  * or during the hcall().
1241  *
1242  * Parameters:
1243  * Input:
1244  * - R4: "flags"
1245  *         Bits 0-62: Reserved
1246  *         Bit 63: Unconditional Notify (n) per the XIVE spec
1247  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1248  *       "ibm,ppc-interrupt-gserver#s"
1249  * - R6: "priority" is a valid priority not in
1250  *       "ibm,plat-res-int-priorities"
1251  * - R7: "eventQueue": The logical real address of the start of the EQ
1252  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1253  *
1254  * Output:
1255  * - None
1256  */
1257 
1258 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1259 
1260 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1261                                            SpaprMachineState *spapr,
1262                                            target_ulong opcode,
1263                                            target_ulong *args)
1264 {
1265     SpaprXive *xive = spapr->xive;
1266     target_ulong flags = args[0];
1267     target_ulong target = args[1];
1268     target_ulong priority = args[2];
1269     target_ulong qpage = args[3];
1270     target_ulong qsize = args[4];
1271     XiveEND end;
1272     uint8_t end_blk, nvt_blk;
1273     uint32_t end_idx, nvt_idx;
1274 
1275     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1276         return H_FUNCTION;
1277     }
1278 
1279     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1280         return H_PARAMETER;
1281     }
1282 
1283     /*
1284      * H_STATE should be returned if a H_INT_RESET is in progress.
1285      * This is not needed when running the emulation under QEMU
1286      */
1287 
1288     if (spapr_xive_priority_is_reserved(priority)) {
1289         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1290                       " is reserved\n", priority);
1291         return H_P3;
1292     }
1293 
1294     /*
1295      * Validate that "target" is part of the list of threads allocated
1296      * to the partition. For that, find the END corresponding to the
1297      * target.
1298      */
1299 
1300     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1301         return H_P2;
1302     }
1303 
1304     assert(end_idx < xive->nr_ends);
1305     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1306 
1307     switch (qsize) {
1308     case 12:
1309     case 16:
1310     case 21:
1311     case 24:
1312         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1313             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1314                           " is not naturally aligned with %" HWADDR_PRIx "\n",
1315                           qpage, (hwaddr)1 << qsize);
1316             return H_P4;
1317         }
1318         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1319         end.w3 = cpu_to_be32(qpage & 0xffffffff);
1320         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1321         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1322         break;
1323     case 0:
1324         /* reset queue and disable queueing */
1325         spapr_xive_end_reset(&end);
1326         goto out;
1327 
1328     default:
1329         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1330                       qsize);
1331         return H_P5;
1332     }
1333 
1334     if (qsize) {
1335         hwaddr plen = 1 << qsize;
1336         void *eq;
1337 
1338         /*
1339          * Validate the guest EQ. We should also check that the queue
1340          * has been zeroed by the OS.
1341          */
1342         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1343                                MEMTXATTRS_UNSPECIFIED);
1344         if (plen != 1 << qsize) {
1345             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1346                           HWADDR_PRIx "\n", qpage);
1347             return H_P4;
1348         }
1349         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1350     }
1351 
1352     /* "target" should have been validated above */
1353     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1354         g_assert_not_reached();
1355     }
1356 
1357     /*
1358      * Ensure the priority and target are correctly set (they will not
1359      * be right after allocation)
1360      */
1361     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1362         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1363     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1364 
1365     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1366         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1367     } else {
1368         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1369     }
1370 
1371     /*
1372      * The generation bit for the END starts at 1 and The END page
1373      * offset counter starts at 0.
1374      */
1375     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1376         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1377     end.w0 |= cpu_to_be32(END_W0_VALID);
1378 
1379     /*
1380      * TODO: issue syncs required to ensure all in-flight interrupts
1381      * are complete on the old END
1382      */
1383 
1384 out:
1385     if (kvm_irqchip_in_kernel()) {
1386         Error *local_err = NULL;
1387 
1388         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1389         if (local_err) {
1390             error_report_err(local_err);
1391             return H_HARDWARE;
1392         }
1393     }
1394 
1395     /* Update END */
1396     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1397     return H_SUCCESS;
1398 }
1399 
1400 /*
1401  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1402  * target and priority.
1403  *
1404  * Parameters:
1405  * Input:
1406  * - R4: "flags"
1407  *         Bits 0-62: Reserved
1408  *         Bit 63: Debug: Return debug data
1409  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1410  *       "ibm,ppc-interrupt-gserver#s"
1411  * - R6: "priority" is a valid priority not in
1412  *       "ibm,plat-res-int-priorities"
1413  *
1414  * Output:
1415  * - R4: "flags":
1416  *       Bits 0-61: Reserved
1417  *       Bit 62: The value of Event Queue Generation Number (g) per
1418  *              the XIVE spec if "Debug" = 1
1419  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1420  * - R5: The logical real address of the start of the EQ
1421  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1422  * - R7: The value of Event Queue Offset Counter per XIVE spec
1423  *       if "Debug" = 1, else 0
1424  *
1425  */
1426 
1427 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1428 
1429 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1430                                            SpaprMachineState *spapr,
1431                                            target_ulong opcode,
1432                                            target_ulong *args)
1433 {
1434     SpaprXive *xive = spapr->xive;
1435     target_ulong flags = args[0];
1436     target_ulong target = args[1];
1437     target_ulong priority = args[2];
1438     XiveEND *end;
1439     uint8_t end_blk;
1440     uint32_t end_idx;
1441 
1442     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1443         return H_FUNCTION;
1444     }
1445 
1446     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1447         return H_PARAMETER;
1448     }
1449 
1450     /*
1451      * H_STATE should be returned if a H_INT_RESET is in progress.
1452      * This is not needed when running the emulation under QEMU
1453      */
1454 
1455     if (spapr_xive_priority_is_reserved(priority)) {
1456         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1457                       " is reserved\n", priority);
1458         return H_P3;
1459     }
1460 
1461     /*
1462      * Validate that "target" is part of the list of threads allocated
1463      * to the partition. For that, find the END corresponding to the
1464      * target.
1465      */
1466     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1467         return H_P2;
1468     }
1469 
1470     assert(end_idx < xive->nr_ends);
1471     end = &xive->endt[end_idx];
1472 
1473     args[0] = 0;
1474     if (xive_end_is_notify(end)) {
1475         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1476     }
1477 
1478     if (xive_end_is_enqueue(end)) {
1479         args[1] = xive_end_qaddr(end);
1480         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1481     } else {
1482         args[1] = 0;
1483         args[2] = 0;
1484     }
1485 
1486     if (kvm_irqchip_in_kernel()) {
1487         Error *local_err = NULL;
1488 
1489         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1490         if (local_err) {
1491             error_report_err(local_err);
1492             return H_HARDWARE;
1493         }
1494     }
1495 
1496     /* TODO: do we need any locking on the END ? */
1497     if (flags & SPAPR_XIVE_END_DEBUG) {
1498         /* Load the event queue generation number into the return flags */
1499         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1500 
1501         /* Load R7 with the event queue offset counter */
1502         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1503     } else {
1504         args[3] = 0;
1505     }
1506 
1507     return H_SUCCESS;
1508 }
1509 
1510 /*
1511  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1512  * reporting cache line pair for the calling thread.  The reporting
1513  * cache lines will contain the OS interrupt context when the OS
1514  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1515  * interrupt. The reporting cache lines can be reset by inputting -1
1516  * in "reportingLine".  Issuing the CI store byte without reporting
1517  * cache lines registered will result in the data not being accessible
1518  * to the OS.
1519  *
1520  * Parameters:
1521  * Input:
1522  * - R4: "flags"
1523  *         Bits 0-63: Reserved
1524  * - R5: "reportingLine": The logical real address of the reporting cache
1525  *       line pair
1526  *
1527  * Output:
1528  * - None
1529  */
1530 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1531                                                 SpaprMachineState *spapr,
1532                                                 target_ulong opcode,
1533                                                 target_ulong *args)
1534 {
1535     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1536         return H_FUNCTION;
1537     }
1538 
1539     /*
1540      * H_STATE should be returned if a H_INT_RESET is in progress.
1541      * This is not needed when running the emulation under QEMU
1542      */
1543 
1544     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1545     return H_FUNCTION;
1546 }
1547 
1548 /*
1549  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1550  * real address of the reporting cache line pair set for the input
1551  * "target".  If no reporting cache line pair has been set, -1 is
1552  * returned.
1553  *
1554  * Parameters:
1555  * Input:
1556  * - R4: "flags"
1557  *         Bits 0-63: Reserved
1558  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1559  *       "ibm,ppc-interrupt-gserver#s"
1560  * - R6: "reportingLine": The logical real address of the reporting
1561  *        cache line pair
1562  *
1563  * Output:
1564  * - R4: The logical real address of the reporting line if set, else -1
1565  */
1566 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1567                                                 SpaprMachineState *spapr,
1568                                                 target_ulong opcode,
1569                                                 target_ulong *args)
1570 {
1571     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1572         return H_FUNCTION;
1573     }
1574 
1575     /*
1576      * H_STATE should be returned if a H_INT_RESET is in progress.
1577      * This is not needed when running the emulation under QEMU
1578      */
1579 
1580     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1581     return H_FUNCTION;
1582 }
1583 
1584 /*
1585  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1586  * page for the input "lisn".  This hcall is only supported for LISNs
1587  * that have the ESB hcall flag set to 1 when returned from hcall()
1588  * H_INT_GET_SOURCE_INFO.
1589  *
1590  * Parameters:
1591  * Input:
1592  * - R4: "flags"
1593  *         Bits 0-62: Reserved
1594  *         bit 63: Store: Store=1, store operation, else load operation
1595  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1596  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1597  *       ibm,query-interrupt-source-number RTAS call, or as
1598  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1599  * - R6: "esbOffset" is the offset into the ESB page for the load or
1600  *       store operation
1601  * - R7: "storeData" is the data to write for a store operation
1602  *
1603  * Output:
1604  * - R4: The value of the load if load operation, else -1
1605  */
1606 
1607 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1608 
1609 static target_ulong h_int_esb(PowerPCCPU *cpu,
1610                               SpaprMachineState *spapr,
1611                               target_ulong opcode,
1612                               target_ulong *args)
1613 {
1614     SpaprXive *xive = spapr->xive;
1615     XiveEAS eas;
1616     target_ulong flags  = args[0];
1617     target_ulong lisn   = args[1];
1618     target_ulong offset = args[2];
1619     target_ulong data   = args[3];
1620     hwaddr mmio_addr;
1621     XiveSource *xsrc = &xive->source;
1622 
1623     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1624         return H_FUNCTION;
1625     }
1626 
1627     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1628         return H_PARAMETER;
1629     }
1630 
1631     if (lisn >= xive->nr_irqs) {
1632         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1633                       lisn);
1634         return H_P2;
1635     }
1636 
1637     eas = xive->eat[lisn];
1638     if (!xive_eas_is_valid(&eas)) {
1639         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1640                       lisn);
1641         return H_P2;
1642     }
1643 
1644     if (offset > (1ull << xsrc->esb_shift)) {
1645         return H_P3;
1646     }
1647 
1648     if (kvm_irqchip_in_kernel()) {
1649         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1650                                      flags & SPAPR_XIVE_ESB_STORE);
1651     } else {
1652         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1653 
1654         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1655                           (flags & SPAPR_XIVE_ESB_STORE))) {
1656             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1657                           HWADDR_PRIx "\n", mmio_addr);
1658             return H_HARDWARE;
1659         }
1660         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1661     }
1662     return H_SUCCESS;
1663 }
1664 
1665 /*
1666  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1667  * ensure any in flight events for the input lisn are in the event
1668  * queue.
1669  *
1670  * Parameters:
1671  * Input:
1672  * - R4: "flags"
1673  *         Bits 0-63: Reserved
1674  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1675  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1676  *       ibm,query-interrupt-source-number RTAS call, or as
1677  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1678  *
1679  * Output:
1680  * - None
1681  */
1682 static target_ulong h_int_sync(PowerPCCPU *cpu,
1683                                SpaprMachineState *spapr,
1684                                target_ulong opcode,
1685                                target_ulong *args)
1686 {
1687     SpaprXive *xive = spapr->xive;
1688     XiveEAS eas;
1689     target_ulong flags = args[0];
1690     target_ulong lisn = args[1];
1691 
1692     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1693         return H_FUNCTION;
1694     }
1695 
1696     if (flags) {
1697         return H_PARAMETER;
1698     }
1699 
1700     if (lisn >= xive->nr_irqs) {
1701         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1702                       lisn);
1703         return H_P2;
1704     }
1705 
1706     eas = xive->eat[lisn];
1707     if (!xive_eas_is_valid(&eas)) {
1708         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1709                       lisn);
1710         return H_P2;
1711     }
1712 
1713     /*
1714      * H_STATE should be returned if a H_INT_RESET is in progress.
1715      * This is not needed when running the emulation under QEMU
1716      */
1717 
1718     /*
1719      * This is not real hardware. Nothing to be done unless when
1720      * under KVM
1721      */
1722 
1723     if (kvm_irqchip_in_kernel()) {
1724         Error *local_err = NULL;
1725 
1726         kvmppc_xive_sync_source(xive, lisn, &local_err);
1727         if (local_err) {
1728             error_report_err(local_err);
1729             return H_HARDWARE;
1730         }
1731     }
1732     return H_SUCCESS;
1733 }
1734 
1735 /*
1736  * The H_INT_RESET hcall() is used to reset all of the partition's
1737  * interrupt exploitation structures to their initial state.  This
1738  * means losing all previously set interrupt state set via
1739  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1740  *
1741  * Parameters:
1742  * Input:
1743  * - R4: "flags"
1744  *         Bits 0-63: Reserved
1745  *
1746  * Output:
1747  * - None
1748  */
1749 static target_ulong h_int_reset(PowerPCCPU *cpu,
1750                                 SpaprMachineState *spapr,
1751                                 target_ulong opcode,
1752                                 target_ulong *args)
1753 {
1754     SpaprXive *xive = spapr->xive;
1755     target_ulong flags   = args[0];
1756 
1757     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1758         return H_FUNCTION;
1759     }
1760 
1761     if (flags) {
1762         return H_PARAMETER;
1763     }
1764 
1765     device_legacy_reset(DEVICE(xive));
1766 
1767     if (kvm_irqchip_in_kernel()) {
1768         Error *local_err = NULL;
1769 
1770         kvmppc_xive_reset(xive, &local_err);
1771         if (local_err) {
1772             error_report_err(local_err);
1773             return H_HARDWARE;
1774         }
1775     }
1776     return H_SUCCESS;
1777 }
1778 
1779 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1780 {
1781     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1782     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1783     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1784     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1785     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1786     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1787     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1788                              h_int_set_os_reporting_line);
1789     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1790                              h_int_get_os_reporting_line);
1791     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1792     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1793     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1794 }
1795