xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 10be627d)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 #include "trace.h"
28 
29 /*
30  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
31  * use for the ESB pages and the TIMA pages
32  */
33 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
34 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
35 
36 /*
37  * The allocation of VP blocks is a complex operation in OPAL and the
38  * VP identifiers have a relation with the number of HW chips, the
39  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
40  * controller model does not have the same constraints and can use a
41  * simple mapping scheme of the CPU vcpu_id
42  *
43  * These identifiers are never returned to the OS.
44  */
45 
46 #define SPAPR_XIVE_NVT_BASE 0x400
47 
48 /*
49  * sPAPR NVT and END indexing helpers
50  */
51 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 {
53     return nvt_idx - SPAPR_XIVE_NVT_BASE;
54 }
55 
56 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
57                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 {
59     assert(cpu);
60 
61     if (out_nvt_blk) {
62         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
63     }
64 
65     if (out_nvt_blk) {
66         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
67     }
68 }
69 
70 static int spapr_xive_target_to_nvt(uint32_t target,
71                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 {
73     PowerPCCPU *cpu = spapr_find_cpu(target);
74 
75     if (!cpu) {
76         return -1;
77     }
78 
79     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
80     return 0;
81 }
82 
83 /*
84  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
85  * priorities per CPU
86  */
87 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
88                              uint32_t *out_server, uint8_t *out_prio)
89 {
90 
91     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 
93     if (out_server) {
94         *out_server = end_idx >> 3;
95     }
96 
97     if (out_prio) {
98         *out_prio = end_idx & 0x7;
99     }
100     return 0;
101 }
102 
103 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
104                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
105 {
106     assert(cpu);
107 
108     if (out_end_blk) {
109         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
110     }
111 
112     if (out_end_idx) {
113         *out_end_idx = (cpu->vcpu_id << 3) + prio;
114     }
115 }
116 
117 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
118                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
119 {
120     PowerPCCPU *cpu = spapr_find_cpu(target);
121 
122     if (!cpu) {
123         return -1;
124     }
125 
126     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
127     return 0;
128 }
129 
130 /*
131  * On sPAPR machines, use a simplified output for the XIVE END
132  * structure dumping only the information related to the OS EQ.
133  */
134 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
135                                           Monitor *mon)
136 {
137     uint64_t qaddr_base = xive_end_qaddr(end);
138     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
139     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
140     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
141     uint32_t qentries = 1 << (qsize + 10);
142     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
143     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 
145     monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
146                    spapr_xive_nvt_to_target(0, nvt),
147                    priority, qindex, qentries, qaddr_base, qgen);
148 
149     xive_end_queue_pic_print_info(end, 6, mon);
150 }
151 
152 /*
153  * kvm_irqchip_in_kernel() will cause the compiler to turn this
154  * info a nop if CONFIG_KVM isn't defined.
155  */
156 #define spapr_xive_in_kernel(xive) \
157     (kvm_irqchip_in_kernel() && (xive)->fd != -1)
158 
159 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
160 {
161     XiveSource *xsrc = &xive->source;
162     int i;
163 
164     if (spapr_xive_in_kernel(xive)) {
165         Error *local_err = NULL;
166 
167         kvmppc_xive_synchronize_state(xive, &local_err);
168         if (local_err) {
169             error_report_err(local_err);
170             return;
171         }
172     }
173 
174     monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
175 
176     for (i = 0; i < xive->nr_irqs; i++) {
177         uint8_t pq = xive_source_esb_get(xsrc, i);
178         XiveEAS *eas = &xive->eat[i];
179 
180         if (!xive_eas_is_valid(eas)) {
181             continue;
182         }
183 
184         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
185                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
186                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
187                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
188                        xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
189                        xive_eas_is_masked(eas) ? "M" : " ",
190                        (int) xive_get_field64(EAS_END_DATA, eas->w));
191 
192         if (!xive_eas_is_masked(eas)) {
193             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
194             XiveEND *end;
195 
196             assert(end_idx < xive->nr_ends);
197             end = &xive->endt[end_idx];
198 
199             if (xive_end_is_valid(end)) {
200                 spapr_xive_end_pic_print_info(xive, end, mon);
201             }
202         }
203         monitor_printf(mon, "\n");
204     }
205 }
206 
207 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
208 {
209     memory_region_set_enabled(&xive->source.esb_mmio, enable);
210     memory_region_set_enabled(&xive->tm_mmio, enable);
211 
212     /* Disable the END ESBs until a guest OS makes use of them */
213     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
214 }
215 
216 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
217                           uint64_t value, unsigned size)
218 {
219     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
220 
221     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
222 }
223 
224 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
225 {
226     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
227 
228     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
229 }
230 
231 const MemoryRegionOps spapr_xive_tm_ops = {
232     .read = spapr_xive_tm_read,
233     .write = spapr_xive_tm_write,
234     .endianness = DEVICE_BIG_ENDIAN,
235     .valid = {
236         .min_access_size = 1,
237         .max_access_size = 8,
238     },
239     .impl = {
240         .min_access_size = 1,
241         .max_access_size = 8,
242     },
243 };
244 
245 static void spapr_xive_end_reset(XiveEND *end)
246 {
247     memset(end, 0, sizeof(*end));
248 
249     /* switch off the escalation and notification ESBs */
250     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
251 }
252 
253 static void spapr_xive_reset(void *dev)
254 {
255     SpaprXive *xive = SPAPR_XIVE(dev);
256     int i;
257 
258     /*
259      * The XiveSource has its own reset handler, which mask off all
260      * IRQs (!P|Q)
261      */
262 
263     /* Mask all valid EASs in the IRQ number space. */
264     for (i = 0; i < xive->nr_irqs; i++) {
265         XiveEAS *eas = &xive->eat[i];
266         if (xive_eas_is_valid(eas)) {
267             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
268         } else {
269             eas->w = 0;
270         }
271     }
272 
273     /* Clear all ENDs */
274     for (i = 0; i < xive->nr_ends; i++) {
275         spapr_xive_end_reset(&xive->endt[i]);
276     }
277 }
278 
279 static void spapr_xive_instance_init(Object *obj)
280 {
281     SpaprXive *xive = SPAPR_XIVE(obj);
282 
283     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
284 
285     object_initialize_child(obj, "end_source", &xive->end_source,
286                             TYPE_XIVE_END_SOURCE);
287 
288     /* Not connected to the KVM XIVE device */
289     xive->fd = -1;
290 }
291 
292 static void spapr_xive_realize(DeviceState *dev, Error **errp)
293 {
294     SpaprXive *xive = SPAPR_XIVE(dev);
295     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
296     XiveSource *xsrc = &xive->source;
297     XiveENDSource *end_xsrc = &xive->end_source;
298     Error *local_err = NULL;
299 
300     /* Set by spapr_irq_init() */
301     g_assert(xive->nr_irqs);
302     g_assert(xive->nr_ends);
303 
304     sxc->parent_realize(dev, &local_err);
305     if (local_err) {
306         error_propagate(errp, local_err);
307         return;
308     }
309 
310     /*
311      * Initialize the internal sources, for IPIs and virtual devices.
312      */
313     object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
314                             &error_fatal);
315     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
316     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
317         return;
318     }
319     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
320 
321     /*
322      * Initialize the END ESB source
323      */
324     object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
325                             &error_fatal);
326     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
327                              &error_abort);
328     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
329         return;
330     }
331     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
332 
333     /* Set the mapping address of the END ESB pages after the source ESBs */
334     xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
335 
336     /*
337      * Allocate the routing tables
338      */
339     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
340     xive->endt = g_new0(XiveEND, xive->nr_ends);
341 
342     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
343                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
344 
345     qemu_register_reset(spapr_xive_reset, dev);
346 
347     /* TIMA initialization */
348     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
349                           xive, "xive.tima", 4ull << TM_SHIFT);
350     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
351 
352     /*
353      * Map all regions. These will be enabled or disabled at reset and
354      * can also be overridden by KVM memory regions if active
355      */
356     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
357     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
358     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
359 }
360 
361 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
362                               uint32_t eas_idx, XiveEAS *eas)
363 {
364     SpaprXive *xive = SPAPR_XIVE(xrtr);
365 
366     if (eas_idx >= xive->nr_irqs) {
367         return -1;
368     }
369 
370     *eas = xive->eat[eas_idx];
371     return 0;
372 }
373 
374 static int spapr_xive_get_end(XiveRouter *xrtr,
375                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
376 {
377     SpaprXive *xive = SPAPR_XIVE(xrtr);
378 
379     if (end_idx >= xive->nr_ends) {
380         return -1;
381     }
382 
383     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
384     return 0;
385 }
386 
387 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
388                                 uint32_t end_idx, XiveEND *end,
389                                 uint8_t word_number)
390 {
391     SpaprXive *xive = SPAPR_XIVE(xrtr);
392 
393     if (end_idx >= xive->nr_ends) {
394         return -1;
395     }
396 
397     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
398     return 0;
399 }
400 
401 static int spapr_xive_get_nvt(XiveRouter *xrtr,
402                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
403 {
404     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
405     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
406 
407     if (!cpu) {
408         /* TODO: should we assert() if we can find a NVT ? */
409         return -1;
410     }
411 
412     /*
413      * sPAPR does not maintain a NVT table. Return that the NVT is
414      * valid if we have found a matching CPU
415      */
416     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
417     return 0;
418 }
419 
420 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
421                                 uint32_t nvt_idx, XiveNVT *nvt,
422                                 uint8_t word_number)
423 {
424     /*
425      * We don't need to write back to the NVTs because the sPAPR
426      * machine should never hit a non-scheduled NVT. It should never
427      * get called.
428      */
429     g_assert_not_reached();
430 }
431 
432 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
433                                 uint8_t nvt_blk, uint32_t nvt_idx,
434                                 bool cam_ignore, uint8_t priority,
435                                 uint32_t logic_serv, XiveTCTXMatch *match)
436 {
437     CPUState *cs;
438     int count = 0;
439 
440     CPU_FOREACH(cs) {
441         PowerPCCPU *cpu = POWERPC_CPU(cs);
442         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
443         int ring;
444 
445         /*
446          * Skip partially initialized vCPUs. This can happen when
447          * vCPUs are hotplugged.
448          */
449         if (!tctx) {
450             continue;
451         }
452 
453         /*
454          * Check the thread context CAM lines and record matches.
455          */
456         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
457                                          cam_ignore, logic_serv);
458         /*
459          * Save the matching thread interrupt context and follow on to
460          * check for duplicates which are invalid.
461          */
462         if (ring != -1) {
463             if (match->tctx) {
464                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
465                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
466                 return -1;
467             }
468 
469             match->ring = ring;
470             match->tctx = tctx;
471             count++;
472         }
473     }
474 
475     return count;
476 }
477 
478 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
479 {
480     uint32_t cfg = 0;
481 
482     /*
483      * Let's claim GEN1 TIMA format. If running with KVM on P10, the
484      * correct answer is deep in the hardware and not accessible to
485      * us.  But it shouldn't matter as it only affects the presenter
486      * as seen by a guest OS.
487      */
488     cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
489 
490     return cfg;
491 }
492 
493 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
494 {
495     return SPAPR_XIVE_BLOCK_ID;
496 }
497 
498 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
499                              uint8_t *pq)
500 {
501     SpaprXive *xive = SPAPR_XIVE(xrtr);
502 
503     assert(SPAPR_XIVE_BLOCK_ID == blk);
504 
505     *pq = xive_source_esb_get(&xive->source, idx);
506     return 0;
507 }
508 
509 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
510                              uint8_t *pq)
511 {
512     SpaprXive *xive = SPAPR_XIVE(xrtr);
513 
514     assert(SPAPR_XIVE_BLOCK_ID == blk);
515 
516     *pq = xive_source_esb_set(&xive->source, idx, *pq);
517     return 0;
518 }
519 
520 
521 static const VMStateDescription vmstate_spapr_xive_end = {
522     .name = TYPE_SPAPR_XIVE "/end",
523     .version_id = 1,
524     .minimum_version_id = 1,
525     .fields = (VMStateField []) {
526         VMSTATE_UINT32(w0, XiveEND),
527         VMSTATE_UINT32(w1, XiveEND),
528         VMSTATE_UINT32(w2, XiveEND),
529         VMSTATE_UINT32(w3, XiveEND),
530         VMSTATE_UINT32(w4, XiveEND),
531         VMSTATE_UINT32(w5, XiveEND),
532         VMSTATE_UINT32(w6, XiveEND),
533         VMSTATE_UINT32(w7, XiveEND),
534         VMSTATE_END_OF_LIST()
535     },
536 };
537 
538 static const VMStateDescription vmstate_spapr_xive_eas = {
539     .name = TYPE_SPAPR_XIVE "/eas",
540     .version_id = 1,
541     .minimum_version_id = 1,
542     .fields = (VMStateField []) {
543         VMSTATE_UINT64(w, XiveEAS),
544         VMSTATE_END_OF_LIST()
545     },
546 };
547 
548 static int vmstate_spapr_xive_pre_save(void *opaque)
549 {
550     SpaprXive *xive = SPAPR_XIVE(opaque);
551 
552     if (spapr_xive_in_kernel(xive)) {
553         return kvmppc_xive_pre_save(xive);
554     }
555 
556     return 0;
557 }
558 
559 /*
560  * Called by the sPAPR IRQ backend 'post_load' method at the machine
561  * level.
562  */
563 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
564 {
565     SpaprXive *xive = SPAPR_XIVE(intc);
566 
567     if (spapr_xive_in_kernel(xive)) {
568         return kvmppc_xive_post_load(xive, version_id);
569     }
570 
571     return 0;
572 }
573 
574 static const VMStateDescription vmstate_spapr_xive = {
575     .name = TYPE_SPAPR_XIVE,
576     .version_id = 1,
577     .minimum_version_id = 1,
578     .pre_save = vmstate_spapr_xive_pre_save,
579     .post_load = NULL, /* handled at the machine level */
580     .fields = (VMStateField[]) {
581         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
582         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
583                                      vmstate_spapr_xive_eas, XiveEAS),
584         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
585                                              vmstate_spapr_xive_end, XiveEND),
586         VMSTATE_END_OF_LIST()
587     },
588 };
589 
590 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
591                                 bool lsi, Error **errp)
592 {
593     SpaprXive *xive = SPAPR_XIVE(intc);
594     XiveSource *xsrc = &xive->source;
595 
596     assert(lisn < xive->nr_irqs);
597 
598     trace_spapr_xive_claim_irq(lisn, lsi);
599 
600     if (xive_eas_is_valid(&xive->eat[lisn])) {
601         error_setg(errp, "IRQ %d is not free", lisn);
602         return -EBUSY;
603     }
604 
605     /*
606      * Set default values when allocating an IRQ number
607      */
608     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
609     if (lsi) {
610         xive_source_irq_set_lsi(xsrc, lisn);
611     }
612 
613     if (spapr_xive_in_kernel(xive)) {
614         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
615     }
616 
617     return 0;
618 }
619 
620 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
621 {
622     SpaprXive *xive = SPAPR_XIVE(intc);
623     assert(lisn < xive->nr_irqs);
624 
625     trace_spapr_xive_free_irq(lisn);
626 
627     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
628 }
629 
630 static Property spapr_xive_properties[] = {
631     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
632     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
633     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
634     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
635     DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
636     DEFINE_PROP_END_OF_LIST(),
637 };
638 
639 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
640                                       PowerPCCPU *cpu, Error **errp)
641 {
642     SpaprXive *xive = SPAPR_XIVE(intc);
643     Object *obj;
644     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
645 
646     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
647     if (!obj) {
648         return -1;
649     }
650 
651     spapr_cpu->tctx = XIVE_TCTX(obj);
652     return 0;
653 }
654 
655 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
656 {
657     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
658     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
659 }
660 
661 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
662                                      PowerPCCPU *cpu)
663 {
664     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
665     uint8_t  nvt_blk;
666     uint32_t nvt_idx;
667 
668     xive_tctx_reset(tctx);
669 
670     /*
671      * When a Virtual Processor is scheduled to run on a HW thread,
672      * the hypervisor pushes its identifier in the OS CAM line.
673      * Emulate the same behavior under QEMU.
674      */
675     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
676 
677     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
678 }
679 
680 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
681                                         PowerPCCPU *cpu)
682 {
683     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
684 
685     xive_tctx_destroy(spapr_cpu->tctx);
686     spapr_cpu->tctx = NULL;
687 }
688 
689 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
690 {
691     SpaprXive *xive = SPAPR_XIVE(intc);
692 
693     trace_spapr_xive_set_irq(irq, val);
694 
695     if (spapr_xive_in_kernel(xive)) {
696         kvmppc_xive_source_set_irq(&xive->source, irq, val);
697     } else {
698         xive_source_set_irq(&xive->source, irq, val);
699     }
700 }
701 
702 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
703 {
704     SpaprXive *xive = SPAPR_XIVE(intc);
705     CPUState *cs;
706 
707     CPU_FOREACH(cs) {
708         PowerPCCPU *cpu = POWERPC_CPU(cs);
709 
710         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
711     }
712 
713     spapr_xive_pic_print_info(xive, mon);
714 }
715 
716 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
717                           void *fdt, uint32_t phandle)
718 {
719     SpaprXive *xive = SPAPR_XIVE(intc);
720     int node;
721     uint64_t timas[2 * 2];
722     /* Interrupt number ranges for the IPIs */
723     uint32_t lisn_ranges[] = {
724         cpu_to_be32(SPAPR_IRQ_IPI),
725         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
726     };
727     /*
728      * EQ size - the sizes of pages supported by the system 4K, 64K,
729      * 2M, 16M. We only advertise 64K for the moment.
730      */
731     uint32_t eq_sizes[] = {
732         cpu_to_be32(16), /* 64K */
733     };
734     /*
735      * QEMU/KVM only needs to define a single range to reserve the
736      * escalation priority. A priority bitmask would have been more
737      * appropriate.
738      */
739     uint32_t plat_res_int_priorities[] = {
740         cpu_to_be32(xive->hv_prio),    /* start */
741         cpu_to_be32(0xff - xive->hv_prio), /* count */
742     };
743 
744     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
745     timas[0] = cpu_to_be64(xive->tm_base +
746                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
747     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
748     timas[2] = cpu_to_be64(xive->tm_base +
749                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
750     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
751 
752     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
753 
754     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
755     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
756 
757     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
758     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
759                      sizeof(eq_sizes)));
760     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
761                      sizeof(lisn_ranges)));
762 
763     /* For Linux to link the LSIs to the interrupt controller. */
764     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
765     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
766 
767     /* For SLOF */
768     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
769     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
770 
771     /*
772      * The "ibm,plat-res-int-priorities" property defines the priority
773      * ranges reserved by the hypervisor
774      */
775     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
776                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
777 }
778 
779 static int spapr_xive_activate(SpaprInterruptController *intc,
780                                uint32_t nr_servers, Error **errp)
781 {
782     SpaprXive *xive = SPAPR_XIVE(intc);
783 
784     if (kvm_enabled()) {
785         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
786                                     errp);
787         if (rc < 0) {
788             return rc;
789         }
790     }
791 
792     /* Activate the XIVE MMIOs */
793     spapr_xive_mmio_set_enabled(xive, true);
794 
795     return 0;
796 }
797 
798 static void spapr_xive_deactivate(SpaprInterruptController *intc)
799 {
800     SpaprXive *xive = SPAPR_XIVE(intc);
801 
802     spapr_xive_mmio_set_enabled(xive, false);
803 
804     if (spapr_xive_in_kernel(xive)) {
805         kvmppc_xive_disconnect(intc);
806     }
807 }
808 
809 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
810 {
811     return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
812 }
813 
814 static void spapr_xive_class_init(ObjectClass *klass, void *data)
815 {
816     DeviceClass *dc = DEVICE_CLASS(klass);
817     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
818     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
819     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
820     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
821 
822     dc->desc    = "sPAPR XIVE Interrupt Controller";
823     device_class_set_props(dc, spapr_xive_properties);
824     device_class_set_parent_realize(dc, spapr_xive_realize,
825                                     &sxc->parent_realize);
826     dc->vmsd    = &vmstate_spapr_xive;
827 
828     xrc->get_eas = spapr_xive_get_eas;
829     xrc->get_pq  = spapr_xive_get_pq;
830     xrc->set_pq  = spapr_xive_set_pq;
831     xrc->get_end = spapr_xive_get_end;
832     xrc->write_end = spapr_xive_write_end;
833     xrc->get_nvt = spapr_xive_get_nvt;
834     xrc->write_nvt = spapr_xive_write_nvt;
835     xrc->get_block_id = spapr_xive_get_block_id;
836 
837     sicc->activate = spapr_xive_activate;
838     sicc->deactivate = spapr_xive_deactivate;
839     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
840     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
841     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
842     sicc->claim_irq = spapr_xive_claim_irq;
843     sicc->free_irq = spapr_xive_free_irq;
844     sicc->set_irq = spapr_xive_set_irq;
845     sicc->print_info = spapr_xive_print_info;
846     sicc->dt = spapr_xive_dt;
847     sicc->post_load = spapr_xive_post_load;
848 
849     xpc->match_nvt  = spapr_xive_match_nvt;
850     xpc->get_config = spapr_xive_presenter_get_config;
851     xpc->in_kernel  = spapr_xive_in_kernel_xptr;
852 }
853 
854 static const TypeInfo spapr_xive_info = {
855     .name = TYPE_SPAPR_XIVE,
856     .parent = TYPE_XIVE_ROUTER,
857     .instance_init = spapr_xive_instance_init,
858     .instance_size = sizeof(SpaprXive),
859     .class_init = spapr_xive_class_init,
860     .class_size = sizeof(SpaprXiveClass),
861     .interfaces = (InterfaceInfo[]) {
862         { TYPE_SPAPR_INTC },
863         { }
864     },
865 };
866 
867 static void spapr_xive_register_types(void)
868 {
869     type_register_static(&spapr_xive_info);
870 }
871 
872 type_init(spapr_xive_register_types)
873 
874 /*
875  * XIVE hcalls
876  *
877  * The terminology used by the XIVE hcalls is the following :
878  *
879  *   TARGET vCPU number
880  *   EQ     Event Queue assigned by OS to receive event data
881  *   ESB    page for source interrupt management
882  *   LISN   Logical Interrupt Source Number identifying a source in the
883  *          machine
884  *   EISN   Effective Interrupt Source Number used by guest OS to
885  *          identify source in the guest
886  *
887  * The EAS, END, NVT structures are not exposed.
888  */
889 
890 /*
891  * On POWER9, the KVM XIVE device uses priority 7 for the escalation
892  * interrupts. So we only allow the guest to use priorities [0..6].
893  */
894 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
895 {
896     return priority >= xive->hv_prio;
897 }
898 
899 /*
900  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
901  * real address of the MMIO page through which the Event State Buffer
902  * entry associated with the value of the "lisn" parameter is managed.
903  *
904  * Parameters:
905  * Input
906  * - R4: "flags"
907  *         Bits 0-63 reserved
908  * - R5: "lisn" is per "interrupts", "interrupt-map", or
909  *       "ibm,xive-lisn-ranges" properties, or as returned by the
910  *       ibm,query-interrupt-source-number RTAS call, or as returned
911  *       by the H_ALLOCATE_VAS_WINDOW hcall
912  *
913  * Output
914  * - R4: "flags"
915  *         Bits 0-59: Reserved
916  *         Bit 60: H_INT_ESB must be used for Event State Buffer
917  *                 management
918  *         Bit 61: 1 == LSI  0 == MSI
919  *         Bit 62: the full function page supports trigger
920  *         Bit 63: Store EOI Supported
921  * - R5: Logical Real address of full function Event State Buffer
922  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
923  * - R6: Logical Real Address of trigger only Event State Buffer
924  *       management page or -1.
925  * - R7: Power of 2 page size for the ESB management pages returned in
926  *       R5 and R6.
927  */
928 
929 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
930 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
931 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
932                                                     on same page */
933 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
934 
935 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
936                                           SpaprMachineState *spapr,
937                                           target_ulong opcode,
938                                           target_ulong *args)
939 {
940     SpaprXive *xive = spapr->xive;
941     XiveSource *xsrc = &xive->source;
942     target_ulong flags  = args[0];
943     target_ulong lisn   = args[1];
944 
945     trace_spapr_xive_get_source_info(flags, lisn);
946 
947     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
948         return H_FUNCTION;
949     }
950 
951     if (flags) {
952         return H_PARAMETER;
953     }
954 
955     if (lisn >= xive->nr_irqs) {
956         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
957                       lisn);
958         return H_P2;
959     }
960 
961     if (!xive_eas_is_valid(&xive->eat[lisn])) {
962         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
963                       lisn);
964         return H_P2;
965     }
966 
967     /*
968      * All sources are emulated under the main XIVE object and share
969      * the same characteristics.
970      */
971     args[0] = 0;
972     if (!xive_source_esb_has_2page(xsrc)) {
973         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
974     }
975     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
976         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
977     }
978 
979     /*
980      * Force the use of the H_INT_ESB hcall in case of an LSI
981      * interrupt. This is necessary under KVM to re-trigger the
982      * interrupt if the level is still asserted
983      */
984     if (xive_source_irq_is_lsi(xsrc, lisn)) {
985         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
986     }
987 
988     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
989         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
990     } else {
991         args[1] = -1;
992     }
993 
994     if (xive_source_esb_has_2page(xsrc) &&
995         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
996         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
997     } else {
998         args[2] = -1;
999     }
1000 
1001     if (xive_source_esb_has_2page(xsrc)) {
1002         args[3] = xsrc->esb_shift - 1;
1003     } else {
1004         args[3] = xsrc->esb_shift;
1005     }
1006 
1007     return H_SUCCESS;
1008 }
1009 
1010 /*
1011  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1012  * Interrupt Source to a target. The Logical Interrupt Source is
1013  * designated with the "lisn" parameter and the target is designated
1014  * with the "target" and "priority" parameters.  Upon return from the
1015  * hcall(), no additional interrupts will be directed to the old EQ.
1016  *
1017  * Parameters:
1018  * Input:
1019  * - R4: "flags"
1020  *         Bits 0-61: Reserved
1021  *         Bit 62: set the "eisn" in the EAS
1022  *         Bit 63: masks the interrupt source in the hardware interrupt
1023  *       control structure. An interrupt masked by this mechanism will
1024  *       be dropped, but it's source state bits will still be
1025  *       set. There is no race-free way of unmasking and restoring the
1026  *       source. Thus this should only be used in interrupts that are
1027  *       also masked at the source, and only in cases where the
1028  *       interrupt is not meant to be used for a large amount of time
1029  *       because no valid target exists for it for example
1030  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1031  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1032  *       ibm,query-interrupt-source-number RTAS call, or as returned by
1033  *       the H_ALLOCATE_VAS_WINDOW hcall
1034  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1035  *       "ibm,ppc-interrupt-gserver#s"
1036  * - R7: "priority" is a valid priority not in
1037  *       "ibm,plat-res-int-priorities"
1038  * - R8: "eisn" is the guest EISN associated with the "lisn"
1039  *
1040  * Output:
1041  * - None
1042  */
1043 
1044 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1045 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
1046 
1047 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1048                                             SpaprMachineState *spapr,
1049                                             target_ulong opcode,
1050                                             target_ulong *args)
1051 {
1052     SpaprXive *xive = spapr->xive;
1053     XiveEAS eas, new_eas;
1054     target_ulong flags    = args[0];
1055     target_ulong lisn     = args[1];
1056     target_ulong target   = args[2];
1057     target_ulong priority = args[3];
1058     target_ulong eisn     = args[4];
1059     uint8_t end_blk;
1060     uint32_t end_idx;
1061 
1062     trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1063 
1064     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1065         return H_FUNCTION;
1066     }
1067 
1068     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1069         return H_PARAMETER;
1070     }
1071 
1072     if (lisn >= xive->nr_irqs) {
1073         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1074                       lisn);
1075         return H_P2;
1076     }
1077 
1078     eas = xive->eat[lisn];
1079     if (!xive_eas_is_valid(&eas)) {
1080         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1081                       lisn);
1082         return H_P2;
1083     }
1084 
1085     /* priority 0xff is used to reset the EAS */
1086     if (priority == 0xff) {
1087         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1088         goto out;
1089     }
1090 
1091     if (flags & SPAPR_XIVE_SRC_MASK) {
1092         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1093     } else {
1094         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1095     }
1096 
1097     if (spapr_xive_priority_is_reserved(xive, priority)) {
1098         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1099                       " is reserved\n", priority);
1100         return H_P4;
1101     }
1102 
1103     /*
1104      * Validate that "target" is part of the list of threads allocated
1105      * to the partition. For that, find the END corresponding to the
1106      * target.
1107      */
1108     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1109         return H_P3;
1110     }
1111 
1112     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1113     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1114 
1115     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1116         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1117     }
1118 
1119     if (spapr_xive_in_kernel(xive)) {
1120         Error *local_err = NULL;
1121 
1122         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1123         if (local_err) {
1124             error_report_err(local_err);
1125             return H_HARDWARE;
1126         }
1127     }
1128 
1129 out:
1130     xive->eat[lisn] = new_eas;
1131     return H_SUCCESS;
1132 }
1133 
1134 /*
1135  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1136  * target/priority pair is assigned to the specified Logical Interrupt
1137  * Source.
1138  *
1139  * Parameters:
1140  * Input:
1141  * - R4: "flags"
1142  *         Bits 0-63 Reserved
1143  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1144  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1145  *       ibm,query-interrupt-source-number RTAS call, or as
1146  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1147  *
1148  * Output:
1149  * - R4: Target to which the specified Logical Interrupt Source is
1150  *       assigned
1151  * - R5: Priority to which the specified Logical Interrupt Source is
1152  *       assigned
1153  * - R6: EISN for the specified Logical Interrupt Source (this will be
1154  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1155  */
1156 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1157                                             SpaprMachineState *spapr,
1158                                             target_ulong opcode,
1159                                             target_ulong *args)
1160 {
1161     SpaprXive *xive = spapr->xive;
1162     target_ulong flags = args[0];
1163     target_ulong lisn = args[1];
1164     XiveEAS eas;
1165     XiveEND *end;
1166     uint8_t nvt_blk;
1167     uint32_t end_idx, nvt_idx;
1168 
1169     trace_spapr_xive_get_source_config(flags, lisn);
1170 
1171     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1172         return H_FUNCTION;
1173     }
1174 
1175     if (flags) {
1176         return H_PARAMETER;
1177     }
1178 
1179     if (lisn >= xive->nr_irqs) {
1180         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1181                       lisn);
1182         return H_P2;
1183     }
1184 
1185     eas = xive->eat[lisn];
1186     if (!xive_eas_is_valid(&eas)) {
1187         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1188                       lisn);
1189         return H_P2;
1190     }
1191 
1192     /* EAS_END_BLOCK is unused on sPAPR */
1193     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1194 
1195     assert(end_idx < xive->nr_ends);
1196     end = &xive->endt[end_idx];
1197 
1198     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1199     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1200     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1201 
1202     if (xive_eas_is_masked(&eas)) {
1203         args[1] = 0xff;
1204     } else {
1205         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1206     }
1207 
1208     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1209 
1210     return H_SUCCESS;
1211 }
1212 
1213 /*
1214  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1215  * address of the notification management page associated with the
1216  * specified target and priority.
1217  *
1218  * Parameters:
1219  * Input:
1220  * - R4: "flags"
1221  *         Bits 0-63 Reserved
1222  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1223  *       "ibm,ppc-interrupt-gserver#s"
1224  * - R6: "priority" is a valid priority not in
1225  *       "ibm,plat-res-int-priorities"
1226  *
1227  * Output:
1228  * - R4: Logical real address of notification page
1229  * - R5: Power of 2 page size of the notification page
1230  */
1231 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1232                                          SpaprMachineState *spapr,
1233                                          target_ulong opcode,
1234                                          target_ulong *args)
1235 {
1236     SpaprXive *xive = spapr->xive;
1237     XiveENDSource *end_xsrc = &xive->end_source;
1238     target_ulong flags = args[0];
1239     target_ulong target = args[1];
1240     target_ulong priority = args[2];
1241     XiveEND *end;
1242     uint8_t end_blk;
1243     uint32_t end_idx;
1244 
1245     trace_spapr_xive_get_queue_info(flags, target, priority);
1246 
1247     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1248         return H_FUNCTION;
1249     }
1250 
1251     if (flags) {
1252         return H_PARAMETER;
1253     }
1254 
1255     /*
1256      * H_STATE should be returned if a H_INT_RESET is in progress.
1257      * This is not needed when running the emulation under QEMU
1258      */
1259 
1260     if (spapr_xive_priority_is_reserved(xive, priority)) {
1261         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1262                       " is reserved\n", priority);
1263         return H_P3;
1264     }
1265 
1266     /*
1267      * Validate that "target" is part of the list of threads allocated
1268      * to the partition. For that, find the END corresponding to the
1269      * target.
1270      */
1271     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1272         return H_P2;
1273     }
1274 
1275     assert(end_idx < xive->nr_ends);
1276     end = &xive->endt[end_idx];
1277 
1278     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1279     if (xive_end_is_enqueue(end)) {
1280         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1281     } else {
1282         args[1] = 0;
1283     }
1284 
1285     return H_SUCCESS;
1286 }
1287 
1288 /*
1289  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1290  * a given "target" and "priority".  It is also used to set the
1291  * notification config associated with the EQ.  An EQ size of 0 is
1292  * used to reset the EQ config for a given target and priority. If
1293  * resetting the EQ config, the END associated with the given "target"
1294  * and "priority" will be changed to disable queueing.
1295  *
1296  * Upon return from the hcall(), no additional interrupts will be
1297  * directed to the old EQ (if one was set). The old EQ (if one was
1298  * set) should be investigated for interrupts that occurred prior to
1299  * or during the hcall().
1300  *
1301  * Parameters:
1302  * Input:
1303  * - R4: "flags"
1304  *         Bits 0-62: Reserved
1305  *         Bit 63: Unconditional Notify (n) per the XIVE spec
1306  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1307  *       "ibm,ppc-interrupt-gserver#s"
1308  * - R6: "priority" is a valid priority not in
1309  *       "ibm,plat-res-int-priorities"
1310  * - R7: "eventQueue": The logical real address of the start of the EQ
1311  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1312  *
1313  * Output:
1314  * - None
1315  */
1316 
1317 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1318 
1319 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1320                                            SpaprMachineState *spapr,
1321                                            target_ulong opcode,
1322                                            target_ulong *args)
1323 {
1324     SpaprXive *xive = spapr->xive;
1325     target_ulong flags = args[0];
1326     target_ulong target = args[1];
1327     target_ulong priority = args[2];
1328     target_ulong qpage = args[3];
1329     target_ulong qsize = args[4];
1330     XiveEND end;
1331     uint8_t end_blk, nvt_blk;
1332     uint32_t end_idx, nvt_idx;
1333 
1334     trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1335 
1336     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1337         return H_FUNCTION;
1338     }
1339 
1340     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1341         return H_PARAMETER;
1342     }
1343 
1344     /*
1345      * H_STATE should be returned if a H_INT_RESET is in progress.
1346      * This is not needed when running the emulation under QEMU
1347      */
1348 
1349     if (spapr_xive_priority_is_reserved(xive, priority)) {
1350         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1351                       " is reserved\n", priority);
1352         return H_P3;
1353     }
1354 
1355     /*
1356      * Validate that "target" is part of the list of threads allocated
1357      * to the partition. For that, find the END corresponding to the
1358      * target.
1359      */
1360 
1361     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1362         return H_P2;
1363     }
1364 
1365     assert(end_idx < xive->nr_ends);
1366     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1367 
1368     switch (qsize) {
1369     case 12:
1370     case 16:
1371     case 21:
1372     case 24:
1373         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1374             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1375                           " is not naturally aligned with %" HWADDR_PRIx "\n",
1376                           qpage, (hwaddr)1 << qsize);
1377             return H_P4;
1378         }
1379         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1380         end.w3 = cpu_to_be32(qpage & 0xffffffff);
1381         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1382         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1383         break;
1384     case 0:
1385         /* reset queue and disable queueing */
1386         spapr_xive_end_reset(&end);
1387         goto out;
1388 
1389     default:
1390         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1391                       qsize);
1392         return H_P5;
1393     }
1394 
1395     if (qsize) {
1396         hwaddr plen = 1 << qsize;
1397         void *eq;
1398 
1399         /*
1400          * Validate the guest EQ. We should also check that the queue
1401          * has been zeroed by the OS.
1402          */
1403         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1404                                MEMTXATTRS_UNSPECIFIED);
1405         if (plen != 1 << qsize) {
1406             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1407                           HWADDR_PRIx "\n", qpage);
1408             return H_P4;
1409         }
1410         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1411     }
1412 
1413     /* "target" should have been validated above */
1414     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1415         g_assert_not_reached();
1416     }
1417 
1418     /*
1419      * Ensure the priority and target are correctly set (they will not
1420      * be right after allocation)
1421      */
1422     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1423         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1424     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1425 
1426     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1427         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1428     } else {
1429         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1430     }
1431 
1432     /*
1433      * The generation bit for the END starts at 1 and The END page
1434      * offset counter starts at 0.
1435      */
1436     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1437         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1438     end.w0 |= cpu_to_be32(END_W0_VALID);
1439 
1440     /*
1441      * TODO: issue syncs required to ensure all in-flight interrupts
1442      * are complete on the old END
1443      */
1444 
1445 out:
1446     if (spapr_xive_in_kernel(xive)) {
1447         Error *local_err = NULL;
1448 
1449         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1450         if (local_err) {
1451             error_report_err(local_err);
1452             return H_HARDWARE;
1453         }
1454     }
1455 
1456     /* Update END */
1457     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1458     return H_SUCCESS;
1459 }
1460 
1461 /*
1462  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1463  * target and priority.
1464  *
1465  * Parameters:
1466  * Input:
1467  * - R4: "flags"
1468  *         Bits 0-62: Reserved
1469  *         Bit 63: Debug: Return debug data
1470  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1471  *       "ibm,ppc-interrupt-gserver#s"
1472  * - R6: "priority" is a valid priority not in
1473  *       "ibm,plat-res-int-priorities"
1474  *
1475  * Output:
1476  * - R4: "flags":
1477  *       Bits 0-61: Reserved
1478  *       Bit 62: The value of Event Queue Generation Number (g) per
1479  *              the XIVE spec if "Debug" = 1
1480  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1481  * - R5: The logical real address of the start of the EQ
1482  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1483  * - R7: The value of Event Queue Offset Counter per XIVE spec
1484  *       if "Debug" = 1, else 0
1485  *
1486  */
1487 
1488 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1489 
1490 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1491                                            SpaprMachineState *spapr,
1492                                            target_ulong opcode,
1493                                            target_ulong *args)
1494 {
1495     SpaprXive *xive = spapr->xive;
1496     target_ulong flags = args[0];
1497     target_ulong target = args[1];
1498     target_ulong priority = args[2];
1499     XiveEND *end;
1500     uint8_t end_blk;
1501     uint32_t end_idx;
1502 
1503     trace_spapr_xive_get_queue_config(flags, target, priority);
1504 
1505     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1506         return H_FUNCTION;
1507     }
1508 
1509     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1510         return H_PARAMETER;
1511     }
1512 
1513     /*
1514      * H_STATE should be returned if a H_INT_RESET is in progress.
1515      * This is not needed when running the emulation under QEMU
1516      */
1517 
1518     if (spapr_xive_priority_is_reserved(xive, priority)) {
1519         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1520                       " is reserved\n", priority);
1521         return H_P3;
1522     }
1523 
1524     /*
1525      * Validate that "target" is part of the list of threads allocated
1526      * to the partition. For that, find the END corresponding to the
1527      * target.
1528      */
1529     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1530         return H_P2;
1531     }
1532 
1533     assert(end_idx < xive->nr_ends);
1534     end = &xive->endt[end_idx];
1535 
1536     args[0] = 0;
1537     if (xive_end_is_notify(end)) {
1538         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1539     }
1540 
1541     if (xive_end_is_enqueue(end)) {
1542         args[1] = xive_end_qaddr(end);
1543         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1544     } else {
1545         args[1] = 0;
1546         args[2] = 0;
1547     }
1548 
1549     if (spapr_xive_in_kernel(xive)) {
1550         Error *local_err = NULL;
1551 
1552         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1553         if (local_err) {
1554             error_report_err(local_err);
1555             return H_HARDWARE;
1556         }
1557     }
1558 
1559     /* TODO: do we need any locking on the END ? */
1560     if (flags & SPAPR_XIVE_END_DEBUG) {
1561         /* Load the event queue generation number into the return flags */
1562         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1563 
1564         /* Load R7 with the event queue offset counter */
1565         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1566     } else {
1567         args[3] = 0;
1568     }
1569 
1570     return H_SUCCESS;
1571 }
1572 
1573 /*
1574  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1575  * reporting cache line pair for the calling thread.  The reporting
1576  * cache lines will contain the OS interrupt context when the OS
1577  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1578  * interrupt. The reporting cache lines can be reset by inputting -1
1579  * in "reportingLine".  Issuing the CI store byte without reporting
1580  * cache lines registered will result in the data not being accessible
1581  * to the OS.
1582  *
1583  * Parameters:
1584  * Input:
1585  * - R4: "flags"
1586  *         Bits 0-63: Reserved
1587  * - R5: "reportingLine": The logical real address of the reporting cache
1588  *       line pair
1589  *
1590  * Output:
1591  * - None
1592  */
1593 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1594                                                 SpaprMachineState *spapr,
1595                                                 target_ulong opcode,
1596                                                 target_ulong *args)
1597 {
1598     target_ulong flags   = args[0];
1599 
1600     trace_spapr_xive_set_os_reporting_line(flags);
1601 
1602     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1603         return H_FUNCTION;
1604     }
1605 
1606     /*
1607      * H_STATE should be returned if a H_INT_RESET is in progress.
1608      * This is not needed when running the emulation under QEMU
1609      */
1610 
1611     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1612     return H_FUNCTION;
1613 }
1614 
1615 /*
1616  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1617  * real address of the reporting cache line pair set for the input
1618  * "target".  If no reporting cache line pair has been set, -1 is
1619  * returned.
1620  *
1621  * Parameters:
1622  * Input:
1623  * - R4: "flags"
1624  *         Bits 0-63: Reserved
1625  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1626  *       "ibm,ppc-interrupt-gserver#s"
1627  * - R6: "reportingLine": The logical real address of the reporting
1628  *        cache line pair
1629  *
1630  * Output:
1631  * - R4: The logical real address of the reporting line if set, else -1
1632  */
1633 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1634                                                 SpaprMachineState *spapr,
1635                                                 target_ulong opcode,
1636                                                 target_ulong *args)
1637 {
1638     target_ulong flags   = args[0];
1639 
1640     trace_spapr_xive_get_os_reporting_line(flags);
1641 
1642     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1643         return H_FUNCTION;
1644     }
1645 
1646     /*
1647      * H_STATE should be returned if a H_INT_RESET is in progress.
1648      * This is not needed when running the emulation under QEMU
1649      */
1650 
1651     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1652     return H_FUNCTION;
1653 }
1654 
1655 /*
1656  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1657  * page for the input "lisn".  This hcall is only supported for LISNs
1658  * that have the ESB hcall flag set to 1 when returned from hcall()
1659  * H_INT_GET_SOURCE_INFO.
1660  *
1661  * Parameters:
1662  * Input:
1663  * - R4: "flags"
1664  *         Bits 0-62: Reserved
1665  *         bit 63: Store: Store=1, store operation, else load operation
1666  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1667  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1668  *       ibm,query-interrupt-source-number RTAS call, or as
1669  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1670  * - R6: "esbOffset" is the offset into the ESB page for the load or
1671  *       store operation
1672  * - R7: "storeData" is the data to write for a store operation
1673  *
1674  * Output:
1675  * - R4: The value of the load if load operation, else -1
1676  */
1677 
1678 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1679 
1680 static target_ulong h_int_esb(PowerPCCPU *cpu,
1681                               SpaprMachineState *spapr,
1682                               target_ulong opcode,
1683                               target_ulong *args)
1684 {
1685     SpaprXive *xive = spapr->xive;
1686     XiveEAS eas;
1687     target_ulong flags  = args[0];
1688     target_ulong lisn   = args[1];
1689     target_ulong offset = args[2];
1690     target_ulong data   = args[3];
1691     hwaddr mmio_addr;
1692     XiveSource *xsrc = &xive->source;
1693 
1694     trace_spapr_xive_esb(flags, lisn, offset, data);
1695 
1696     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1697         return H_FUNCTION;
1698     }
1699 
1700     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1701         return H_PARAMETER;
1702     }
1703 
1704     if (lisn >= xive->nr_irqs) {
1705         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1706                       lisn);
1707         return H_P2;
1708     }
1709 
1710     eas = xive->eat[lisn];
1711     if (!xive_eas_is_valid(&eas)) {
1712         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1713                       lisn);
1714         return H_P2;
1715     }
1716 
1717     if (offset > (1ull << xsrc->esb_shift)) {
1718         return H_P3;
1719     }
1720 
1721     if (spapr_xive_in_kernel(xive)) {
1722         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1723                                      flags & SPAPR_XIVE_ESB_STORE);
1724     } else {
1725         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1726 
1727         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1728                           (flags & SPAPR_XIVE_ESB_STORE),
1729                           MEMTXATTRS_UNSPECIFIED)) {
1730             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1731                           HWADDR_PRIx "\n", mmio_addr);
1732             return H_HARDWARE;
1733         }
1734         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1735     }
1736     return H_SUCCESS;
1737 }
1738 
1739 /*
1740  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1741  * ensure any in flight events for the input lisn are in the event
1742  * queue.
1743  *
1744  * Parameters:
1745  * Input:
1746  * - R4: "flags"
1747  *         Bits 0-63: Reserved
1748  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1749  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1750  *       ibm,query-interrupt-source-number RTAS call, or as
1751  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1752  *
1753  * Output:
1754  * - None
1755  */
1756 static target_ulong h_int_sync(PowerPCCPU *cpu,
1757                                SpaprMachineState *spapr,
1758                                target_ulong opcode,
1759                                target_ulong *args)
1760 {
1761     SpaprXive *xive = spapr->xive;
1762     XiveEAS eas;
1763     target_ulong flags = args[0];
1764     target_ulong lisn = args[1];
1765 
1766     trace_spapr_xive_sync(flags, lisn);
1767 
1768     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1769         return H_FUNCTION;
1770     }
1771 
1772     if (flags) {
1773         return H_PARAMETER;
1774     }
1775 
1776     if (lisn >= xive->nr_irqs) {
1777         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1778                       lisn);
1779         return H_P2;
1780     }
1781 
1782     eas = xive->eat[lisn];
1783     if (!xive_eas_is_valid(&eas)) {
1784         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1785                       lisn);
1786         return H_P2;
1787     }
1788 
1789     /*
1790      * H_STATE should be returned if a H_INT_RESET is in progress.
1791      * This is not needed when running the emulation under QEMU
1792      */
1793 
1794     /*
1795      * This is not real hardware. Nothing to be done unless when
1796      * under KVM
1797      */
1798 
1799     if (spapr_xive_in_kernel(xive)) {
1800         Error *local_err = NULL;
1801 
1802         kvmppc_xive_sync_source(xive, lisn, &local_err);
1803         if (local_err) {
1804             error_report_err(local_err);
1805             return H_HARDWARE;
1806         }
1807     }
1808     return H_SUCCESS;
1809 }
1810 
1811 /*
1812  * The H_INT_RESET hcall() is used to reset all of the partition's
1813  * interrupt exploitation structures to their initial state.  This
1814  * means losing all previously set interrupt state set via
1815  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1816  *
1817  * Parameters:
1818  * Input:
1819  * - R4: "flags"
1820  *         Bits 0-63: Reserved
1821  *
1822  * Output:
1823  * - None
1824  */
1825 static target_ulong h_int_reset(PowerPCCPU *cpu,
1826                                 SpaprMachineState *spapr,
1827                                 target_ulong opcode,
1828                                 target_ulong *args)
1829 {
1830     SpaprXive *xive = spapr->xive;
1831     target_ulong flags   = args[0];
1832 
1833     trace_spapr_xive_reset(flags);
1834 
1835     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1836         return H_FUNCTION;
1837     }
1838 
1839     if (flags) {
1840         return H_PARAMETER;
1841     }
1842 
1843     device_cold_reset(DEVICE(xive));
1844 
1845     if (spapr_xive_in_kernel(xive)) {
1846         Error *local_err = NULL;
1847 
1848         kvmppc_xive_reset(xive, &local_err);
1849         if (local_err) {
1850             error_report_err(local_err);
1851             return H_HARDWARE;
1852         }
1853     }
1854     return H_SUCCESS;
1855 }
1856 
1857 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1858 {
1859     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1860     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1861     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1862     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1863     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1864     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1865     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1866                              h_int_set_os_reporting_line);
1867     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1868                              h_int_get_os_reporting_line);
1869     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1870     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1871     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1872 }
1873