1 /* 2 * QEMU Sparc SLAVIO interrupt controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "migration/vmstate.h" 27 #include "qemu/module.h" 28 #include "hw/sysbus.h" 29 #include "hw/intc/intc.h" 30 #include "hw/irq.h" 31 #include "trace.h" 32 #include "qom/object.h" 33 34 //#define DEBUG_IRQ_COUNT 35 36 /* 37 * Registers of interrupt controller in sun4m. 38 * 39 * This is the interrupt controller part of chip STP2001 (Slave I/O), also 40 * produced as NCR89C105. See 41 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 42 * 43 * There is a system master controller and one for each cpu. 44 * 45 */ 46 47 #define MAX_CPUS 16 48 #define MAX_PILS 16 49 50 struct SLAVIO_INTCTLState; 51 52 typedef struct SLAVIO_CPUINTCTLState { 53 MemoryRegion iomem; 54 struct SLAVIO_INTCTLState *master; 55 uint32_t intreg_pending; 56 uint32_t cpu; 57 uint32_t irl_out; 58 } SLAVIO_CPUINTCTLState; 59 60 #define TYPE_SLAVIO_INTCTL "slavio_intctl" 61 OBJECT_DECLARE_SIMPLE_TYPE(SLAVIO_INTCTLState, SLAVIO_INTCTL) 62 63 struct SLAVIO_INTCTLState { 64 SysBusDevice parent_obj; 65 66 MemoryRegion iomem; 67 #ifdef DEBUG_IRQ_COUNT 68 uint64_t irq_count[32]; 69 #endif 70 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS]; 71 SLAVIO_CPUINTCTLState slaves[MAX_CPUS]; 72 uint32_t intregm_pending; 73 uint32_t intregm_disabled; 74 uint32_t target_cpu; 75 }; 76 77 #define INTCTL_MAXADDR 0xf 78 #define INTCTL_SIZE (INTCTL_MAXADDR + 1) 79 #define INTCTLM_SIZE 0x14 80 #define MASTER_IRQ_MASK ~0x0fa2007f 81 #define MASTER_DISABLE 0x80000000 82 #define CPU_SOFTIRQ_MASK 0xfffe0000 83 #define CPU_IRQ_INT15_IN (1 << 15) 84 #define CPU_IRQ_TIMER_IN (1 << 14) 85 86 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs); 87 88 // per-cpu interrupt controller 89 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr, 90 unsigned size) 91 { 92 SLAVIO_CPUINTCTLState *s = opaque; 93 uint32_t saddr, ret; 94 95 saddr = addr >> 2; 96 switch (saddr) { 97 case 0: 98 ret = s->intreg_pending; 99 break; 100 default: 101 ret = 0; 102 break; 103 } 104 trace_slavio_intctl_mem_readl(s->cpu, addr, ret); 105 106 return ret; 107 } 108 109 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr, 110 uint64_t val, unsigned size) 111 { 112 SLAVIO_CPUINTCTLState *s = opaque; 113 uint32_t saddr; 114 115 saddr = addr >> 2; 116 trace_slavio_intctl_mem_writel(s->cpu, addr, val); 117 switch (saddr) { 118 case 1: // clear pending softints 119 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN; 120 s->intreg_pending &= ~val; 121 slavio_check_interrupts(s->master, 1); 122 trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending); 123 break; 124 case 2: // set softint 125 val &= CPU_SOFTIRQ_MASK; 126 s->intreg_pending |= val; 127 slavio_check_interrupts(s->master, 1); 128 trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending); 129 break; 130 default: 131 break; 132 } 133 } 134 135 static const MemoryRegionOps slavio_intctl_mem_ops = { 136 .read = slavio_intctl_mem_readl, 137 .write = slavio_intctl_mem_writel, 138 .endianness = DEVICE_NATIVE_ENDIAN, 139 .valid = { 140 .min_access_size = 4, 141 .max_access_size = 4, 142 }, 143 }; 144 145 // master system interrupt controller 146 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr, 147 unsigned size) 148 { 149 SLAVIO_INTCTLState *s = opaque; 150 uint32_t saddr, ret; 151 152 saddr = addr >> 2; 153 switch (saddr) { 154 case 0: 155 ret = s->intregm_pending & ~MASTER_DISABLE; 156 break; 157 case 1: 158 ret = s->intregm_disabled & MASTER_IRQ_MASK; 159 break; 160 case 4: 161 ret = s->target_cpu; 162 break; 163 default: 164 ret = 0; 165 break; 166 } 167 trace_slavio_intctlm_mem_readl(addr, ret); 168 169 return ret; 170 } 171 172 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr, 173 uint64_t val, unsigned size) 174 { 175 SLAVIO_INTCTLState *s = opaque; 176 uint32_t saddr; 177 178 saddr = addr >> 2; 179 trace_slavio_intctlm_mem_writel(addr, val); 180 switch (saddr) { 181 case 2: // clear (enable) 182 // Force clear unused bits 183 val &= MASTER_IRQ_MASK; 184 s->intregm_disabled &= ~val; 185 trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled); 186 slavio_check_interrupts(s, 1); 187 break; 188 case 3: // set (disable; doesn't affect pending) 189 // Force clear unused bits 190 val &= MASTER_IRQ_MASK; 191 s->intregm_disabled |= val; 192 slavio_check_interrupts(s, 1); 193 trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled); 194 break; 195 case 4: 196 s->target_cpu = val & (MAX_CPUS - 1); 197 slavio_check_interrupts(s, 1); 198 trace_slavio_intctlm_mem_writel_target(s->target_cpu); 199 break; 200 default: 201 break; 202 } 203 } 204 205 static const MemoryRegionOps slavio_intctlm_mem_ops = { 206 .read = slavio_intctlm_mem_readl, 207 .write = slavio_intctlm_mem_writel, 208 .endianness = DEVICE_NATIVE_ENDIAN, 209 .valid = { 210 .min_access_size = 4, 211 .max_access_size = 4, 212 }, 213 }; 214 215 static const uint32_t intbit_to_level[] = { 216 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12, 217 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0, 218 }; 219 220 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs) 221 { 222 uint32_t pending = s->intregm_pending, pil_pending; 223 unsigned int i, j; 224 225 pending &= ~s->intregm_disabled; 226 227 trace_slavio_check_interrupts(pending, s->intregm_disabled); 228 for (i = 0; i < MAX_CPUS; i++) { 229 pil_pending = 0; 230 231 /* If we are the current interrupt target, get hard interrupts */ 232 if (pending && !(s->intregm_disabled & MASTER_DISABLE) && 233 (i == s->target_cpu)) { 234 for (j = 0; j < 32; j++) { 235 if ((pending & (1 << j)) && intbit_to_level[j]) { 236 pil_pending |= 1 << intbit_to_level[j]; 237 } 238 } 239 } 240 241 /* Calculate current pending hard interrupts for display */ 242 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN | 243 CPU_IRQ_TIMER_IN; 244 if (i == s->target_cpu) { 245 for (j = 0; j < 32; j++) { 246 if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) { 247 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j]; 248 } 249 } 250 } 251 252 /* Level 15 and CPU timer interrupts are only masked when 253 the MASTER_DISABLE bit is set */ 254 if (!(s->intregm_disabled & MASTER_DISABLE)) { 255 pil_pending |= s->slaves[i].intreg_pending & 256 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN); 257 } 258 259 /* Add soft interrupts */ 260 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16; 261 262 if (set_irqs) { 263 /* Since there is not really an interrupt 0 (and pil_pending 264 * and irl_out bit zero are thus always zero) there is no need 265 * to do anything with cpu_irqs[i][0] and it is OK not to do 266 * the j=0 iteration of this loop. 267 */ 268 for (j = MAX_PILS-1; j > 0; j--) { 269 if (pil_pending & (1 << j)) { 270 if (!(s->slaves[i].irl_out & (1 << j))) { 271 qemu_irq_raise(s->cpu_irqs[i][j]); 272 } 273 } else { 274 if (s->slaves[i].irl_out & (1 << j)) { 275 qemu_irq_lower(s->cpu_irqs[i][j]); 276 } 277 } 278 } 279 } 280 s->slaves[i].irl_out = pil_pending; 281 } 282 } 283 284 /* 285 * "irq" here is the bit number in the system interrupt register to 286 * separate serial and keyboard interrupts sharing a level. 287 */ 288 static void slavio_set_irq(void *opaque, int irq, int level) 289 { 290 SLAVIO_INTCTLState *s = opaque; 291 uint32_t mask = 1 << irq; 292 uint32_t pil = intbit_to_level[irq]; 293 unsigned int i; 294 295 trace_slavio_set_irq(s->target_cpu, irq, pil, level); 296 if (pil > 0) { 297 if (level) { 298 #ifdef DEBUG_IRQ_COUNT 299 s->irq_count[pil]++; 300 #endif 301 s->intregm_pending |= mask; 302 if (pil == 15) { 303 for (i = 0; i < MAX_CPUS; i++) { 304 s->slaves[i].intreg_pending |= 1 << pil; 305 } 306 } 307 } else { 308 s->intregm_pending &= ~mask; 309 if (pil == 15) { 310 for (i = 0; i < MAX_CPUS; i++) { 311 s->slaves[i].intreg_pending &= ~(1 << pil); 312 } 313 } 314 } 315 slavio_check_interrupts(s, 1); 316 } 317 } 318 319 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) 320 { 321 SLAVIO_INTCTLState *s = opaque; 322 323 trace_slavio_set_timer_irq_cpu(cpu, level); 324 325 if (level) { 326 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN; 327 } else { 328 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN; 329 } 330 331 slavio_check_interrupts(s, 1); 332 } 333 334 static void slavio_set_irq_all(void *opaque, int irq, int level) 335 { 336 if (irq < 32) { 337 slavio_set_irq(opaque, irq, level); 338 } else { 339 slavio_set_timer_irq_cpu(opaque, irq - 32, level); 340 } 341 } 342 343 static int vmstate_intctl_post_load(void *opaque, int version_id) 344 { 345 SLAVIO_INTCTLState *s = opaque; 346 347 slavio_check_interrupts(s, 0); 348 return 0; 349 } 350 351 static const VMStateDescription vmstate_intctl_cpu = { 352 .name ="slavio_intctl_cpu", 353 .version_id = 1, 354 .minimum_version_id = 1, 355 .fields = (const VMStateField[]) { 356 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState), 357 VMSTATE_END_OF_LIST() 358 } 359 }; 360 361 static const VMStateDescription vmstate_intctl = { 362 .name ="slavio_intctl", 363 .version_id = 1, 364 .minimum_version_id = 1, 365 .post_load = vmstate_intctl_post_load, 366 .fields = (const VMStateField[]) { 367 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1, 368 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState), 369 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState), 370 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState), 371 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState), 372 VMSTATE_END_OF_LIST() 373 } 374 }; 375 376 static void slavio_intctl_reset(DeviceState *d) 377 { 378 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d); 379 int i; 380 381 for (i = 0; i < MAX_CPUS; i++) { 382 s->slaves[i].intreg_pending = 0; 383 s->slaves[i].irl_out = 0; 384 } 385 s->intregm_disabled = ~MASTER_IRQ_MASK; 386 s->intregm_pending = 0; 387 s->target_cpu = 0; 388 slavio_check_interrupts(s, 0); 389 } 390 391 #ifdef DEBUG_IRQ_COUNT 392 static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj, 393 uint64_t **irq_counts, 394 unsigned int *nb_irqs) 395 { 396 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 397 *irq_counts = s->irq_count; 398 *nb_irqs = ARRAY_SIZE(s->irq_count); 399 return true; 400 } 401 #endif 402 403 static void slavio_intctl_print_info(InterruptStatsProvider *obj, GString *buf) 404 { 405 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 406 int i; 407 408 for (i = 0; i < MAX_CPUS; i++) { 409 g_string_append_printf(buf, "per-cpu %d: pending 0x%08x\n", i, 410 s->slaves[i].intreg_pending); 411 } 412 g_string_append_printf(buf, "master: pending 0x%08x, disabled 0x%08x\n", 413 s->intregm_pending, s->intregm_disabled); 414 } 415 416 static void slavio_intctl_init(Object *obj) 417 { 418 DeviceState *dev = DEVICE(obj); 419 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 420 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 421 unsigned int i, j; 422 char slave_name[45]; 423 424 qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS); 425 memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s, 426 "master-interrupt-controller", INTCTLM_SIZE); 427 sysbus_init_mmio(sbd, &s->iomem); 428 429 for (i = 0; i < MAX_CPUS; i++) { 430 snprintf(slave_name, sizeof(slave_name), 431 "slave-interrupt-controller-%i", i); 432 for (j = 0; j < MAX_PILS; j++) { 433 sysbus_init_irq(sbd, &s->cpu_irqs[i][j]); 434 } 435 memory_region_init_io(&s->slaves[i].iomem, OBJECT(s), 436 &slavio_intctl_mem_ops, 437 &s->slaves[i], slave_name, INTCTL_SIZE); 438 sysbus_init_mmio(sbd, &s->slaves[i].iomem); 439 s->slaves[i].cpu = i; 440 s->slaves[i].master = s; 441 } 442 } 443 444 static void slavio_intctl_class_init(ObjectClass *klass, void *data) 445 { 446 DeviceClass *dc = DEVICE_CLASS(klass); 447 InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass); 448 449 device_class_set_legacy_reset(dc, slavio_intctl_reset); 450 dc->vmsd = &vmstate_intctl; 451 #ifdef DEBUG_IRQ_COUNT 452 ic->get_statistics = slavio_intctl_get_statistics; 453 #endif 454 ic->print_info = slavio_intctl_print_info; 455 } 456 457 static const TypeInfo slavio_intctl_info = { 458 .name = TYPE_SLAVIO_INTCTL, 459 .parent = TYPE_SYS_BUS_DEVICE, 460 .instance_size = sizeof(SLAVIO_INTCTLState), 461 .instance_init = slavio_intctl_init, 462 .class_init = slavio_intctl_class_init, 463 .interfaces = (InterfaceInfo[]) { 464 { TYPE_INTERRUPT_STATS_PROVIDER }, 465 { } 466 }, 467 }; 468 469 static void slavio_intctl_register_types(void) 470 { 471 type_register_static(&slavio_intctl_info); 472 } 473 474 type_init(slavio_intctl_register_types) 475