xref: /openbmc/qemu/hw/intc/slavio_intctl.c (revision 9dbab31d)
1 /*
2  * QEMU Sparc SLAVIO interrupt controller emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "migration/vmstate.h"
27 #include "qemu/module.h"
28 #include "hw/sysbus.h"
29 #include "hw/intc/intc.h"
30 #include "hw/irq.h"
31 #include "trace.h"
32 #include "qom/object.h"
33 
34 //#define DEBUG_IRQ_COUNT
35 
36 /*
37  * Registers of interrupt controller in sun4m.
38  *
39  * This is the interrupt controller part of chip STP2001 (Slave I/O), also
40  * produced as NCR89C105. See
41  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42  *
43  * There is a system master controller and one for each cpu.
44  *
45  */
46 
47 #define MAX_CPUS 16
48 #define MAX_PILS 16
49 
50 struct SLAVIO_INTCTLState;
51 
52 typedef struct SLAVIO_CPUINTCTLState {
53     MemoryRegion iomem;
54     struct SLAVIO_INTCTLState *master;
55     uint32_t intreg_pending;
56     uint32_t cpu;
57     uint32_t irl_out;
58 } SLAVIO_CPUINTCTLState;
59 
60 #define TYPE_SLAVIO_INTCTL "slavio_intctl"
61 OBJECT_DECLARE_SIMPLE_TYPE(SLAVIO_INTCTLState, SLAVIO_INTCTL)
62 
63 struct SLAVIO_INTCTLState {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67 #ifdef DEBUG_IRQ_COUNT
68     uint64_t irq_count[32];
69 #endif
70     qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
71     SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
72     uint32_t intregm_pending;
73     uint32_t intregm_disabled;
74     uint32_t target_cpu;
75 };
76 
77 #define INTCTL_MAXADDR 0xf
78 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
79 #define INTCTLM_SIZE 0x14
80 #define MASTER_IRQ_MASK ~0x0fa2007f
81 #define MASTER_DISABLE 0x80000000
82 #define CPU_SOFTIRQ_MASK 0xfffe0000
83 #define CPU_IRQ_INT15_IN (1 << 15)
84 #define CPU_IRQ_TIMER_IN (1 << 14)
85 
86 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
87 
88 // per-cpu interrupt controller
89 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr,
90                                         unsigned size)
91 {
92     SLAVIO_CPUINTCTLState *s = opaque;
93     uint32_t saddr, ret;
94 
95     saddr = addr >> 2;
96     switch (saddr) {
97     case 0:
98         ret = s->intreg_pending;
99         break;
100     default:
101         ret = 0;
102         break;
103     }
104     trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
105 
106     return ret;
107 }
108 
109 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr,
110                                      uint64_t val, unsigned size)
111 {
112     SLAVIO_CPUINTCTLState *s = opaque;
113     uint32_t saddr;
114 
115     saddr = addr >> 2;
116     trace_slavio_intctl_mem_writel(s->cpu, addr, val);
117     switch (saddr) {
118     case 1: // clear pending softints
119         val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
120         s->intreg_pending &= ~val;
121         slavio_check_interrupts(s->master, 1);
122         trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
123         break;
124     case 2: // set softint
125         val &= CPU_SOFTIRQ_MASK;
126         s->intreg_pending |= val;
127         slavio_check_interrupts(s->master, 1);
128         trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
129         break;
130     default:
131         break;
132     }
133 }
134 
135 static const MemoryRegionOps slavio_intctl_mem_ops = {
136     .read = slavio_intctl_mem_readl,
137     .write = slavio_intctl_mem_writel,
138     .endianness = DEVICE_NATIVE_ENDIAN,
139     .valid = {
140         .min_access_size = 4,
141         .max_access_size = 4,
142     },
143 };
144 
145 // master system interrupt controller
146 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr,
147                                          unsigned size)
148 {
149     SLAVIO_INTCTLState *s = opaque;
150     uint32_t saddr, ret;
151 
152     saddr = addr >> 2;
153     switch (saddr) {
154     case 0:
155         ret = s->intregm_pending & ~MASTER_DISABLE;
156         break;
157     case 1:
158         ret = s->intregm_disabled & MASTER_IRQ_MASK;
159         break;
160     case 4:
161         ret = s->target_cpu;
162         break;
163     default:
164         ret = 0;
165         break;
166     }
167     trace_slavio_intctlm_mem_readl(addr, ret);
168 
169     return ret;
170 }
171 
172 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr,
173                                       uint64_t val, unsigned size)
174 {
175     SLAVIO_INTCTLState *s = opaque;
176     uint32_t saddr;
177 
178     saddr = addr >> 2;
179     trace_slavio_intctlm_mem_writel(addr, val);
180     switch (saddr) {
181     case 2: // clear (enable)
182         // Force clear unused bits
183         val &= MASTER_IRQ_MASK;
184         s->intregm_disabled &= ~val;
185         trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
186         slavio_check_interrupts(s, 1);
187         break;
188     case 3: // set (disable; doesn't affect pending)
189         // Force clear unused bits
190         val &= MASTER_IRQ_MASK;
191         s->intregm_disabled |= val;
192         slavio_check_interrupts(s, 1);
193         trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
194         break;
195     case 4:
196         s->target_cpu = val & (MAX_CPUS - 1);
197         slavio_check_interrupts(s, 1);
198         trace_slavio_intctlm_mem_writel_target(s->target_cpu);
199         break;
200     default:
201         break;
202     }
203 }
204 
205 static const MemoryRegionOps slavio_intctlm_mem_ops = {
206     .read = slavio_intctlm_mem_readl,
207     .write = slavio_intctlm_mem_writel,
208     .endianness = DEVICE_NATIVE_ENDIAN,
209     .valid = {
210         .min_access_size = 4,
211         .max_access_size = 4,
212     },
213 };
214 
215 static const uint32_t intbit_to_level[] = {
216     2, 3, 5, 7, 9, 11, 13, 2,   3, 5, 7, 9, 11, 13, 12, 12,
217     6, 13, 4, 10, 8, 9, 11, 0,  0, 0, 0, 15, 15, 15, 15, 0,
218 };
219 
220 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
221 {
222     uint32_t pending = s->intregm_pending, pil_pending;
223     unsigned int i, j;
224 
225     pending &= ~s->intregm_disabled;
226 
227     trace_slavio_check_interrupts(pending, s->intregm_disabled);
228     for (i = 0; i < MAX_CPUS; i++) {
229         pil_pending = 0;
230 
231         /* If we are the current interrupt target, get hard interrupts */
232         if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
233             (i == s->target_cpu)) {
234             for (j = 0; j < 32; j++) {
235                 if ((pending & (1 << j)) && intbit_to_level[j]) {
236                     pil_pending |= 1 << intbit_to_level[j];
237                 }
238             }
239         }
240 
241         /* Calculate current pending hard interrupts for display */
242         s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
243             CPU_IRQ_TIMER_IN;
244         if (i == s->target_cpu) {
245             for (j = 0; j < 32; j++) {
246                 if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) {
247                     s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
248                 }
249             }
250         }
251 
252         /* Level 15 and CPU timer interrupts are only masked when
253            the MASTER_DISABLE bit is set */
254         if (!(s->intregm_disabled & MASTER_DISABLE)) {
255             pil_pending |= s->slaves[i].intreg_pending &
256                 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
257         }
258 
259         /* Add soft interrupts */
260         pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
261 
262         if (set_irqs) {
263             /* Since there is not really an interrupt 0 (and pil_pending
264              * and irl_out bit zero are thus always zero) there is no need
265              * to do anything with cpu_irqs[i][0] and it is OK not to do
266              * the j=0 iteration of this loop.
267              */
268             for (j = MAX_PILS-1; j > 0; j--) {
269                 if (pil_pending & (1 << j)) {
270                     if (!(s->slaves[i].irl_out & (1 << j))) {
271                         qemu_irq_raise(s->cpu_irqs[i][j]);
272                     }
273                 } else {
274                     if (s->slaves[i].irl_out & (1 << j)) {
275                         qemu_irq_lower(s->cpu_irqs[i][j]);
276                     }
277                 }
278             }
279         }
280         s->slaves[i].irl_out = pil_pending;
281     }
282 }
283 
284 /*
285  * "irq" here is the bit number in the system interrupt register to
286  * separate serial and keyboard interrupts sharing a level.
287  */
288 static void slavio_set_irq(void *opaque, int irq, int level)
289 {
290     SLAVIO_INTCTLState *s = opaque;
291     uint32_t mask = 1 << irq;
292     uint32_t pil = intbit_to_level[irq];
293     unsigned int i;
294 
295     trace_slavio_set_irq(s->target_cpu, irq, pil, level);
296     if (pil > 0) {
297         if (level) {
298 #ifdef DEBUG_IRQ_COUNT
299             s->irq_count[pil]++;
300 #endif
301             s->intregm_pending |= mask;
302             if (pil == 15) {
303                 for (i = 0; i < MAX_CPUS; i++) {
304                     s->slaves[i].intreg_pending |= 1 << pil;
305                 }
306             }
307         } else {
308             s->intregm_pending &= ~mask;
309             if (pil == 15) {
310                 for (i = 0; i < MAX_CPUS; i++) {
311                     s->slaves[i].intreg_pending &= ~(1 << pil);
312                 }
313             }
314         }
315         slavio_check_interrupts(s, 1);
316     }
317 }
318 
319 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
320 {
321     SLAVIO_INTCTLState *s = opaque;
322 
323     trace_slavio_set_timer_irq_cpu(cpu, level);
324 
325     if (level) {
326         s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
327     } else {
328         s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
329     }
330 
331     slavio_check_interrupts(s, 1);
332 }
333 
334 static void slavio_set_irq_all(void *opaque, int irq, int level)
335 {
336     if (irq < 32) {
337         slavio_set_irq(opaque, irq, level);
338     } else {
339         slavio_set_timer_irq_cpu(opaque, irq - 32, level);
340     }
341 }
342 
343 static int vmstate_intctl_post_load(void *opaque, int version_id)
344 {
345     SLAVIO_INTCTLState *s = opaque;
346 
347     slavio_check_interrupts(s, 0);
348     return 0;
349 }
350 
351 static const VMStateDescription vmstate_intctl_cpu = {
352     .name ="slavio_intctl_cpu",
353     .version_id = 1,
354     .minimum_version_id = 1,
355     .fields = (const VMStateField[]) {
356         VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
357         VMSTATE_END_OF_LIST()
358     }
359 };
360 
361 static const VMStateDescription vmstate_intctl = {
362     .name ="slavio_intctl",
363     .version_id = 1,
364     .minimum_version_id = 1,
365     .post_load = vmstate_intctl_post_load,
366     .fields = (const VMStateField[]) {
367         VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
368                              vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
369         VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
370         VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
371         VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
372         VMSTATE_END_OF_LIST()
373     }
374 };
375 
376 static void slavio_intctl_reset(DeviceState *d)
377 {
378     SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d);
379     int i;
380 
381     for (i = 0; i < MAX_CPUS; i++) {
382         s->slaves[i].intreg_pending = 0;
383         s->slaves[i].irl_out = 0;
384     }
385     s->intregm_disabled = ~MASTER_IRQ_MASK;
386     s->intregm_pending = 0;
387     s->target_cpu = 0;
388     slavio_check_interrupts(s, 0);
389 }
390 
391 #ifdef DEBUG_IRQ_COUNT
392 static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj,
393                                          uint64_t **irq_counts,
394                                          unsigned int *nb_irqs)
395 {
396     SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
397     *irq_counts = s->irq_count;
398     *nb_irqs = ARRAY_SIZE(s->irq_count);
399     return true;
400 }
401 #endif
402 
403 static void slavio_intctl_print_info(InterruptStatsProvider *obj, GString *buf)
404 {
405     SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
406     int i;
407 
408     for (i = 0; i < MAX_CPUS; i++) {
409         g_string_append_printf(buf, "per-cpu %d: pending 0x%08x\n", i,
410                                s->slaves[i].intreg_pending);
411     }
412     g_string_append_printf(buf, "master: pending 0x%08x, disabled 0x%08x\n",
413                            s->intregm_pending, s->intregm_disabled);
414 }
415 
416 static void slavio_intctl_init(Object *obj)
417 {
418     DeviceState *dev = DEVICE(obj);
419     SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
420     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
421     unsigned int i, j;
422     char slave_name[45];
423 
424     qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS);
425     memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s,
426                           "master-interrupt-controller", INTCTLM_SIZE);
427     sysbus_init_mmio(sbd, &s->iomem);
428 
429     for (i = 0; i < MAX_CPUS; i++) {
430         snprintf(slave_name, sizeof(slave_name),
431                  "slave-interrupt-controller-%i", i);
432         for (j = 0; j < MAX_PILS; j++) {
433             sysbus_init_irq(sbd, &s->cpu_irqs[i][j]);
434         }
435         memory_region_init_io(&s->slaves[i].iomem, OBJECT(s),
436                               &slavio_intctl_mem_ops,
437                               &s->slaves[i], slave_name, INTCTL_SIZE);
438         sysbus_init_mmio(sbd, &s->slaves[i].iomem);
439         s->slaves[i].cpu = i;
440         s->slaves[i].master = s;
441     }
442 }
443 
444 static void slavio_intctl_class_init(ObjectClass *klass, void *data)
445 {
446     DeviceClass *dc = DEVICE_CLASS(klass);
447     InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass);
448 
449     dc->reset = slavio_intctl_reset;
450     dc->vmsd = &vmstate_intctl;
451 #ifdef DEBUG_IRQ_COUNT
452     ic->get_statistics = slavio_intctl_get_statistics;
453 #endif
454     ic->print_info = slavio_intctl_print_info;
455 }
456 
457 static const TypeInfo slavio_intctl_info = {
458     .name          = TYPE_SLAVIO_INTCTL,
459     .parent        = TYPE_SYS_BUS_DEVICE,
460     .instance_size = sizeof(SLAVIO_INTCTLState),
461     .instance_init = slavio_intctl_init,
462     .class_init    = slavio_intctl_class_init,
463     .interfaces = (InterfaceInfo[]) {
464         { TYPE_INTERRUPT_STATS_PROVIDER },
465         { }
466     },
467 };
468 
469 static void slavio_intctl_register_types(void)
470 {
471     type_register_static(&slavio_intctl_info);
472 }
473 
474 type_init(slavio_intctl_register_types)
475