1 /* 2 * QEMU Sparc SLAVIO interrupt controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sparc/sun4m.h" 26 #include "monitor/monitor.h" 27 #include "hw/sysbus.h" 28 #include "trace.h" 29 30 //#define DEBUG_IRQ_COUNT 31 32 /* 33 * Registers of interrupt controller in sun4m. 34 * 35 * This is the interrupt controller part of chip STP2001 (Slave I/O), also 36 * produced as NCR89C105. See 37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 38 * 39 * There is a system master controller and one for each cpu. 40 * 41 */ 42 43 #define MAX_CPUS 16 44 #define MAX_PILS 16 45 46 struct SLAVIO_INTCTLState; 47 48 typedef struct SLAVIO_CPUINTCTLState { 49 MemoryRegion iomem; 50 struct SLAVIO_INTCTLState *master; 51 uint32_t intreg_pending; 52 uint32_t cpu; 53 uint32_t irl_out; 54 } SLAVIO_CPUINTCTLState; 55 56 typedef struct SLAVIO_INTCTLState { 57 SysBusDevice busdev; 58 MemoryRegion iomem; 59 #ifdef DEBUG_IRQ_COUNT 60 uint64_t irq_count[32]; 61 #endif 62 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS]; 63 SLAVIO_CPUINTCTLState slaves[MAX_CPUS]; 64 uint32_t intregm_pending; 65 uint32_t intregm_disabled; 66 uint32_t target_cpu; 67 } SLAVIO_INTCTLState; 68 69 #define INTCTL_MAXADDR 0xf 70 #define INTCTL_SIZE (INTCTL_MAXADDR + 1) 71 #define INTCTLM_SIZE 0x14 72 #define MASTER_IRQ_MASK ~0x0fa2007f 73 #define MASTER_DISABLE 0x80000000 74 #define CPU_SOFTIRQ_MASK 0xfffe0000 75 #define CPU_IRQ_INT15_IN (1 << 15) 76 #define CPU_IRQ_TIMER_IN (1 << 14) 77 78 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs); 79 80 // per-cpu interrupt controller 81 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr, 82 unsigned size) 83 { 84 SLAVIO_CPUINTCTLState *s = opaque; 85 uint32_t saddr, ret; 86 87 saddr = addr >> 2; 88 switch (saddr) { 89 case 0: 90 ret = s->intreg_pending; 91 break; 92 default: 93 ret = 0; 94 break; 95 } 96 trace_slavio_intctl_mem_readl(s->cpu, addr, ret); 97 98 return ret; 99 } 100 101 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr, 102 uint64_t val, unsigned size) 103 { 104 SLAVIO_CPUINTCTLState *s = opaque; 105 uint32_t saddr; 106 107 saddr = addr >> 2; 108 trace_slavio_intctl_mem_writel(s->cpu, addr, val); 109 switch (saddr) { 110 case 1: // clear pending softints 111 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN; 112 s->intreg_pending &= ~val; 113 slavio_check_interrupts(s->master, 1); 114 trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending); 115 break; 116 case 2: // set softint 117 val &= CPU_SOFTIRQ_MASK; 118 s->intreg_pending |= val; 119 slavio_check_interrupts(s->master, 1); 120 trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending); 121 break; 122 default: 123 break; 124 } 125 } 126 127 static const MemoryRegionOps slavio_intctl_mem_ops = { 128 .read = slavio_intctl_mem_readl, 129 .write = slavio_intctl_mem_writel, 130 .endianness = DEVICE_NATIVE_ENDIAN, 131 .valid = { 132 .min_access_size = 4, 133 .max_access_size = 4, 134 }, 135 }; 136 137 // master system interrupt controller 138 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr, 139 unsigned size) 140 { 141 SLAVIO_INTCTLState *s = opaque; 142 uint32_t saddr, ret; 143 144 saddr = addr >> 2; 145 switch (saddr) { 146 case 0: 147 ret = s->intregm_pending & ~MASTER_DISABLE; 148 break; 149 case 1: 150 ret = s->intregm_disabled & MASTER_IRQ_MASK; 151 break; 152 case 4: 153 ret = s->target_cpu; 154 break; 155 default: 156 ret = 0; 157 break; 158 } 159 trace_slavio_intctlm_mem_readl(addr, ret); 160 161 return ret; 162 } 163 164 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr, 165 uint64_t val, unsigned size) 166 { 167 SLAVIO_INTCTLState *s = opaque; 168 uint32_t saddr; 169 170 saddr = addr >> 2; 171 trace_slavio_intctlm_mem_writel(addr, val); 172 switch (saddr) { 173 case 2: // clear (enable) 174 // Force clear unused bits 175 val &= MASTER_IRQ_MASK; 176 s->intregm_disabled &= ~val; 177 trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled); 178 slavio_check_interrupts(s, 1); 179 break; 180 case 3: // set (disable; doesn't affect pending) 181 // Force clear unused bits 182 val &= MASTER_IRQ_MASK; 183 s->intregm_disabled |= val; 184 slavio_check_interrupts(s, 1); 185 trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled); 186 break; 187 case 4: 188 s->target_cpu = val & (MAX_CPUS - 1); 189 slavio_check_interrupts(s, 1); 190 trace_slavio_intctlm_mem_writel_target(s->target_cpu); 191 break; 192 default: 193 break; 194 } 195 } 196 197 static const MemoryRegionOps slavio_intctlm_mem_ops = { 198 .read = slavio_intctlm_mem_readl, 199 .write = slavio_intctlm_mem_writel, 200 .endianness = DEVICE_NATIVE_ENDIAN, 201 .valid = { 202 .min_access_size = 4, 203 .max_access_size = 4, 204 }, 205 }; 206 207 void slavio_pic_info(Monitor *mon, DeviceState *dev) 208 { 209 SysBusDevice *sd; 210 SLAVIO_INTCTLState *s; 211 int i; 212 213 sd = SYS_BUS_DEVICE(dev); 214 s = FROM_SYSBUS(SLAVIO_INTCTLState, sd); 215 for (i = 0; i < MAX_CPUS; i++) { 216 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i, 217 s->slaves[i].intreg_pending); 218 } 219 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n", 220 s->intregm_pending, s->intregm_disabled); 221 } 222 223 void slavio_irq_info(Monitor *mon, DeviceState *dev) 224 { 225 #ifndef DEBUG_IRQ_COUNT 226 monitor_printf(mon, "irq statistic code not compiled.\n"); 227 #else 228 SysBusDevice *sd; 229 SLAVIO_INTCTLState *s; 230 int i; 231 int64_t count; 232 233 sd = SYS_BUS_DEVICE(dev); 234 s = FROM_SYSBUS(SLAVIO_INTCTLState, sd); 235 monitor_printf(mon, "IRQ statistics:\n"); 236 for (i = 0; i < 32; i++) { 237 count = s->irq_count[i]; 238 if (count > 0) 239 monitor_printf(mon, "%2d: %" PRId64 "\n", i, count); 240 } 241 #endif 242 } 243 244 static const uint32_t intbit_to_level[] = { 245 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12, 246 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0, 247 }; 248 249 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs) 250 { 251 uint32_t pending = s->intregm_pending, pil_pending; 252 unsigned int i, j; 253 254 pending &= ~s->intregm_disabled; 255 256 trace_slavio_check_interrupts(pending, s->intregm_disabled); 257 for (i = 0; i < MAX_CPUS; i++) { 258 pil_pending = 0; 259 260 /* If we are the current interrupt target, get hard interrupts */ 261 if (pending && !(s->intregm_disabled & MASTER_DISABLE) && 262 (i == s->target_cpu)) { 263 for (j = 0; j < 32; j++) { 264 if ((pending & (1 << j)) && intbit_to_level[j]) { 265 pil_pending |= 1 << intbit_to_level[j]; 266 } 267 } 268 } 269 270 /* Calculate current pending hard interrupts for display */ 271 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN | 272 CPU_IRQ_TIMER_IN; 273 if (i == s->target_cpu) { 274 for (j = 0; j < 32; j++) { 275 if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) { 276 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j]; 277 } 278 } 279 } 280 281 /* Level 15 and CPU timer interrupts are only masked when 282 the MASTER_DISABLE bit is set */ 283 if (!(s->intregm_disabled & MASTER_DISABLE)) { 284 pil_pending |= s->slaves[i].intreg_pending & 285 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN); 286 } 287 288 /* Add soft interrupts */ 289 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16; 290 291 if (set_irqs) { 292 /* Since there is not really an interrupt 0 (and pil_pending 293 * and irl_out bit zero are thus always zero) there is no need 294 * to do anything with cpu_irqs[i][0] and it is OK not to do 295 * the j=0 iteration of this loop. 296 */ 297 for (j = MAX_PILS-1; j > 0; j--) { 298 if (pil_pending & (1 << j)) { 299 if (!(s->slaves[i].irl_out & (1 << j))) { 300 qemu_irq_raise(s->cpu_irqs[i][j]); 301 } 302 } else { 303 if (s->slaves[i].irl_out & (1 << j)) { 304 qemu_irq_lower(s->cpu_irqs[i][j]); 305 } 306 } 307 } 308 } 309 s->slaves[i].irl_out = pil_pending; 310 } 311 } 312 313 /* 314 * "irq" here is the bit number in the system interrupt register to 315 * separate serial and keyboard interrupts sharing a level. 316 */ 317 static void slavio_set_irq(void *opaque, int irq, int level) 318 { 319 SLAVIO_INTCTLState *s = opaque; 320 uint32_t mask = 1 << irq; 321 uint32_t pil = intbit_to_level[irq]; 322 unsigned int i; 323 324 trace_slavio_set_irq(s->target_cpu, irq, pil, level); 325 if (pil > 0) { 326 if (level) { 327 #ifdef DEBUG_IRQ_COUNT 328 s->irq_count[pil]++; 329 #endif 330 s->intregm_pending |= mask; 331 if (pil == 15) { 332 for (i = 0; i < MAX_CPUS; i++) { 333 s->slaves[i].intreg_pending |= 1 << pil; 334 } 335 } 336 } else { 337 s->intregm_pending &= ~mask; 338 if (pil == 15) { 339 for (i = 0; i < MAX_CPUS; i++) { 340 s->slaves[i].intreg_pending &= ~(1 << pil); 341 } 342 } 343 } 344 slavio_check_interrupts(s, 1); 345 } 346 } 347 348 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) 349 { 350 SLAVIO_INTCTLState *s = opaque; 351 352 trace_slavio_set_timer_irq_cpu(cpu, level); 353 354 if (level) { 355 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN; 356 } else { 357 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN; 358 } 359 360 slavio_check_interrupts(s, 1); 361 } 362 363 static void slavio_set_irq_all(void *opaque, int irq, int level) 364 { 365 if (irq < 32) { 366 slavio_set_irq(opaque, irq, level); 367 } else { 368 slavio_set_timer_irq_cpu(opaque, irq - 32, level); 369 } 370 } 371 372 static int vmstate_intctl_post_load(void *opaque, int version_id) 373 { 374 SLAVIO_INTCTLState *s = opaque; 375 376 slavio_check_interrupts(s, 0); 377 return 0; 378 } 379 380 static const VMStateDescription vmstate_intctl_cpu = { 381 .name ="slavio_intctl_cpu", 382 .version_id = 1, 383 .minimum_version_id = 1, 384 .minimum_version_id_old = 1, 385 .fields = (VMStateField []) { 386 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState), 387 VMSTATE_END_OF_LIST() 388 } 389 }; 390 391 static const VMStateDescription vmstate_intctl = { 392 .name ="slavio_intctl", 393 .version_id = 1, 394 .minimum_version_id = 1, 395 .minimum_version_id_old = 1, 396 .post_load = vmstate_intctl_post_load, 397 .fields = (VMStateField []) { 398 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1, 399 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState), 400 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState), 401 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState), 402 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState), 403 VMSTATE_END_OF_LIST() 404 } 405 }; 406 407 static void slavio_intctl_reset(DeviceState *d) 408 { 409 SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev); 410 int i; 411 412 for (i = 0; i < MAX_CPUS; i++) { 413 s->slaves[i].intreg_pending = 0; 414 s->slaves[i].irl_out = 0; 415 } 416 s->intregm_disabled = ~MASTER_IRQ_MASK; 417 s->intregm_pending = 0; 418 s->target_cpu = 0; 419 slavio_check_interrupts(s, 0); 420 } 421 422 static int slavio_intctl_init1(SysBusDevice *dev) 423 { 424 SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev); 425 unsigned int i, j; 426 char slave_name[45]; 427 428 qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS); 429 memory_region_init_io(&s->iomem, OBJECT(s), &slavio_intctlm_mem_ops, s, 430 "master-interrupt-controller", INTCTLM_SIZE); 431 sysbus_init_mmio(dev, &s->iomem); 432 433 for (i = 0; i < MAX_CPUS; i++) { 434 snprintf(slave_name, sizeof(slave_name), 435 "slave-interrupt-controller-%i", i); 436 for (j = 0; j < MAX_PILS; j++) { 437 sysbus_init_irq(dev, &s->cpu_irqs[i][j]); 438 } 439 memory_region_init_io(&s->slaves[i].iomem, OBJECT(s), 440 &slavio_intctl_mem_ops, 441 &s->slaves[i], slave_name, INTCTL_SIZE); 442 sysbus_init_mmio(dev, &s->slaves[i].iomem); 443 s->slaves[i].cpu = i; 444 s->slaves[i].master = s; 445 } 446 447 return 0; 448 } 449 450 static void slavio_intctl_class_init(ObjectClass *klass, void *data) 451 { 452 DeviceClass *dc = DEVICE_CLASS(klass); 453 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 454 455 k->init = slavio_intctl_init1; 456 dc->reset = slavio_intctl_reset; 457 dc->vmsd = &vmstate_intctl; 458 } 459 460 static const TypeInfo slavio_intctl_info = { 461 .name = "slavio_intctl", 462 .parent = TYPE_SYS_BUS_DEVICE, 463 .instance_size = sizeof(SLAVIO_INTCTLState), 464 .class_init = slavio_intctl_class_init, 465 }; 466 467 static void slavio_intctl_register_types(void) 468 { 469 type_register_static(&slavio_intctl_info); 470 } 471 472 type_init(slavio_intctl_register_types) 473