1 /* 2 * QEMU Sparc SLAVIO interrupt controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sparc/sun4m.h" 26 #include "monitor/monitor.h" 27 #include "hw/sysbus.h" 28 #include "trace.h" 29 30 //#define DEBUG_IRQ_COUNT 31 32 /* 33 * Registers of interrupt controller in sun4m. 34 * 35 * This is the interrupt controller part of chip STP2001 (Slave I/O), also 36 * produced as NCR89C105. See 37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 38 * 39 * There is a system master controller and one for each cpu. 40 * 41 */ 42 43 #define MAX_CPUS 16 44 #define MAX_PILS 16 45 46 struct SLAVIO_INTCTLState; 47 48 typedef struct SLAVIO_CPUINTCTLState { 49 MemoryRegion iomem; 50 struct SLAVIO_INTCTLState *master; 51 uint32_t intreg_pending; 52 uint32_t cpu; 53 uint32_t irl_out; 54 } SLAVIO_CPUINTCTLState; 55 56 #define TYPE_SLAVIO_INTCTL "slavio_intctl" 57 #define SLAVIO_INTCTL(obj) \ 58 OBJECT_CHECK(SLAVIO_INTCTLState, (obj), TYPE_SLAVIO_INTCTL) 59 60 typedef struct SLAVIO_INTCTLState { 61 SysBusDevice parent_obj; 62 63 MemoryRegion iomem; 64 #ifdef DEBUG_IRQ_COUNT 65 uint64_t irq_count[32]; 66 #endif 67 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS]; 68 SLAVIO_CPUINTCTLState slaves[MAX_CPUS]; 69 uint32_t intregm_pending; 70 uint32_t intregm_disabled; 71 uint32_t target_cpu; 72 } SLAVIO_INTCTLState; 73 74 #define INTCTL_MAXADDR 0xf 75 #define INTCTL_SIZE (INTCTL_MAXADDR + 1) 76 #define INTCTLM_SIZE 0x14 77 #define MASTER_IRQ_MASK ~0x0fa2007f 78 #define MASTER_DISABLE 0x80000000 79 #define CPU_SOFTIRQ_MASK 0xfffe0000 80 #define CPU_IRQ_INT15_IN (1 << 15) 81 #define CPU_IRQ_TIMER_IN (1 << 14) 82 83 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs); 84 85 // per-cpu interrupt controller 86 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr, 87 unsigned size) 88 { 89 SLAVIO_CPUINTCTLState *s = opaque; 90 uint32_t saddr, ret; 91 92 saddr = addr >> 2; 93 switch (saddr) { 94 case 0: 95 ret = s->intreg_pending; 96 break; 97 default: 98 ret = 0; 99 break; 100 } 101 trace_slavio_intctl_mem_readl(s->cpu, addr, ret); 102 103 return ret; 104 } 105 106 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr, 107 uint64_t val, unsigned size) 108 { 109 SLAVIO_CPUINTCTLState *s = opaque; 110 uint32_t saddr; 111 112 saddr = addr >> 2; 113 trace_slavio_intctl_mem_writel(s->cpu, addr, val); 114 switch (saddr) { 115 case 1: // clear pending softints 116 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN; 117 s->intreg_pending &= ~val; 118 slavio_check_interrupts(s->master, 1); 119 trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending); 120 break; 121 case 2: // set softint 122 val &= CPU_SOFTIRQ_MASK; 123 s->intreg_pending |= val; 124 slavio_check_interrupts(s->master, 1); 125 trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending); 126 break; 127 default: 128 break; 129 } 130 } 131 132 static const MemoryRegionOps slavio_intctl_mem_ops = { 133 .read = slavio_intctl_mem_readl, 134 .write = slavio_intctl_mem_writel, 135 .endianness = DEVICE_NATIVE_ENDIAN, 136 .valid = { 137 .min_access_size = 4, 138 .max_access_size = 4, 139 }, 140 }; 141 142 // master system interrupt controller 143 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr, 144 unsigned size) 145 { 146 SLAVIO_INTCTLState *s = opaque; 147 uint32_t saddr, ret; 148 149 saddr = addr >> 2; 150 switch (saddr) { 151 case 0: 152 ret = s->intregm_pending & ~MASTER_DISABLE; 153 break; 154 case 1: 155 ret = s->intregm_disabled & MASTER_IRQ_MASK; 156 break; 157 case 4: 158 ret = s->target_cpu; 159 break; 160 default: 161 ret = 0; 162 break; 163 } 164 trace_slavio_intctlm_mem_readl(addr, ret); 165 166 return ret; 167 } 168 169 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr, 170 uint64_t val, unsigned size) 171 { 172 SLAVIO_INTCTLState *s = opaque; 173 uint32_t saddr; 174 175 saddr = addr >> 2; 176 trace_slavio_intctlm_mem_writel(addr, val); 177 switch (saddr) { 178 case 2: // clear (enable) 179 // Force clear unused bits 180 val &= MASTER_IRQ_MASK; 181 s->intregm_disabled &= ~val; 182 trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled); 183 slavio_check_interrupts(s, 1); 184 break; 185 case 3: // set (disable; doesn't affect pending) 186 // Force clear unused bits 187 val &= MASTER_IRQ_MASK; 188 s->intregm_disabled |= val; 189 slavio_check_interrupts(s, 1); 190 trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled); 191 break; 192 case 4: 193 s->target_cpu = val & (MAX_CPUS - 1); 194 slavio_check_interrupts(s, 1); 195 trace_slavio_intctlm_mem_writel_target(s->target_cpu); 196 break; 197 default: 198 break; 199 } 200 } 201 202 static const MemoryRegionOps slavio_intctlm_mem_ops = { 203 .read = slavio_intctlm_mem_readl, 204 .write = slavio_intctlm_mem_writel, 205 .endianness = DEVICE_NATIVE_ENDIAN, 206 .valid = { 207 .min_access_size = 4, 208 .max_access_size = 4, 209 }, 210 }; 211 212 void slavio_pic_info(Monitor *mon, DeviceState *dev) 213 { 214 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(dev); 215 int i; 216 217 for (i = 0; i < MAX_CPUS; i++) { 218 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i, 219 s->slaves[i].intreg_pending); 220 } 221 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n", 222 s->intregm_pending, s->intregm_disabled); 223 } 224 225 void slavio_irq_info(Monitor *mon, DeviceState *dev) 226 { 227 #ifndef DEBUG_IRQ_COUNT 228 monitor_printf(mon, "irq statistic code not compiled.\n"); 229 #else 230 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(dev); 231 int i; 232 int64_t count; 233 234 s = SLAVIO_INTCTL(dev); 235 monitor_printf(mon, "IRQ statistics:\n"); 236 for (i = 0; i < 32; i++) { 237 count = s->irq_count[i]; 238 if (count > 0) 239 monitor_printf(mon, "%2d: %" PRId64 "\n", i, count); 240 } 241 #endif 242 } 243 244 static const uint32_t intbit_to_level[] = { 245 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12, 246 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0, 247 }; 248 249 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs) 250 { 251 uint32_t pending = s->intregm_pending, pil_pending; 252 unsigned int i, j; 253 254 pending &= ~s->intregm_disabled; 255 256 trace_slavio_check_interrupts(pending, s->intregm_disabled); 257 for (i = 0; i < MAX_CPUS; i++) { 258 pil_pending = 0; 259 260 /* If we are the current interrupt target, get hard interrupts */ 261 if (pending && !(s->intregm_disabled & MASTER_DISABLE) && 262 (i == s->target_cpu)) { 263 for (j = 0; j < 32; j++) { 264 if ((pending & (1 << j)) && intbit_to_level[j]) { 265 pil_pending |= 1 << intbit_to_level[j]; 266 } 267 } 268 } 269 270 /* Calculate current pending hard interrupts for display */ 271 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN | 272 CPU_IRQ_TIMER_IN; 273 if (i == s->target_cpu) { 274 for (j = 0; j < 32; j++) { 275 if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) { 276 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j]; 277 } 278 } 279 } 280 281 /* Level 15 and CPU timer interrupts are only masked when 282 the MASTER_DISABLE bit is set */ 283 if (!(s->intregm_disabled & MASTER_DISABLE)) { 284 pil_pending |= s->slaves[i].intreg_pending & 285 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN); 286 } 287 288 /* Add soft interrupts */ 289 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16; 290 291 if (set_irqs) { 292 /* Since there is not really an interrupt 0 (and pil_pending 293 * and irl_out bit zero are thus always zero) there is no need 294 * to do anything with cpu_irqs[i][0] and it is OK not to do 295 * the j=0 iteration of this loop. 296 */ 297 for (j = MAX_PILS-1; j > 0; j--) { 298 if (pil_pending & (1 << j)) { 299 if (!(s->slaves[i].irl_out & (1 << j))) { 300 qemu_irq_raise(s->cpu_irqs[i][j]); 301 } 302 } else { 303 if (s->slaves[i].irl_out & (1 << j)) { 304 qemu_irq_lower(s->cpu_irqs[i][j]); 305 } 306 } 307 } 308 } 309 s->slaves[i].irl_out = pil_pending; 310 } 311 } 312 313 /* 314 * "irq" here is the bit number in the system interrupt register to 315 * separate serial and keyboard interrupts sharing a level. 316 */ 317 static void slavio_set_irq(void *opaque, int irq, int level) 318 { 319 SLAVIO_INTCTLState *s = opaque; 320 uint32_t mask = 1 << irq; 321 uint32_t pil = intbit_to_level[irq]; 322 unsigned int i; 323 324 trace_slavio_set_irq(s->target_cpu, irq, pil, level); 325 if (pil > 0) { 326 if (level) { 327 #ifdef DEBUG_IRQ_COUNT 328 s->irq_count[pil]++; 329 #endif 330 s->intregm_pending |= mask; 331 if (pil == 15) { 332 for (i = 0; i < MAX_CPUS; i++) { 333 s->slaves[i].intreg_pending |= 1 << pil; 334 } 335 } 336 } else { 337 s->intregm_pending &= ~mask; 338 if (pil == 15) { 339 for (i = 0; i < MAX_CPUS; i++) { 340 s->slaves[i].intreg_pending &= ~(1 << pil); 341 } 342 } 343 } 344 slavio_check_interrupts(s, 1); 345 } 346 } 347 348 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) 349 { 350 SLAVIO_INTCTLState *s = opaque; 351 352 trace_slavio_set_timer_irq_cpu(cpu, level); 353 354 if (level) { 355 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN; 356 } else { 357 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN; 358 } 359 360 slavio_check_interrupts(s, 1); 361 } 362 363 static void slavio_set_irq_all(void *opaque, int irq, int level) 364 { 365 if (irq < 32) { 366 slavio_set_irq(opaque, irq, level); 367 } else { 368 slavio_set_timer_irq_cpu(opaque, irq - 32, level); 369 } 370 } 371 372 static int vmstate_intctl_post_load(void *opaque, int version_id) 373 { 374 SLAVIO_INTCTLState *s = opaque; 375 376 slavio_check_interrupts(s, 0); 377 return 0; 378 } 379 380 static const VMStateDescription vmstate_intctl_cpu = { 381 .name ="slavio_intctl_cpu", 382 .version_id = 1, 383 .minimum_version_id = 1, 384 .minimum_version_id_old = 1, 385 .fields = (VMStateField []) { 386 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState), 387 VMSTATE_END_OF_LIST() 388 } 389 }; 390 391 static const VMStateDescription vmstate_intctl = { 392 .name ="slavio_intctl", 393 .version_id = 1, 394 .minimum_version_id = 1, 395 .minimum_version_id_old = 1, 396 .post_load = vmstate_intctl_post_load, 397 .fields = (VMStateField []) { 398 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1, 399 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState), 400 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState), 401 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState), 402 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState), 403 VMSTATE_END_OF_LIST() 404 } 405 }; 406 407 static void slavio_intctl_reset(DeviceState *d) 408 { 409 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d); 410 int i; 411 412 for (i = 0; i < MAX_CPUS; i++) { 413 s->slaves[i].intreg_pending = 0; 414 s->slaves[i].irl_out = 0; 415 } 416 s->intregm_disabled = ~MASTER_IRQ_MASK; 417 s->intregm_pending = 0; 418 s->target_cpu = 0; 419 slavio_check_interrupts(s, 0); 420 } 421 422 static int slavio_intctl_init1(SysBusDevice *sbd) 423 { 424 DeviceState *dev = DEVICE(sbd); 425 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(dev); 426 unsigned int i, j; 427 char slave_name[45]; 428 429 qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS); 430 memory_region_init_io(&s->iomem, OBJECT(s), &slavio_intctlm_mem_ops, s, 431 "master-interrupt-controller", INTCTLM_SIZE); 432 sysbus_init_mmio(sbd, &s->iomem); 433 434 for (i = 0; i < MAX_CPUS; i++) { 435 snprintf(slave_name, sizeof(slave_name), 436 "slave-interrupt-controller-%i", i); 437 for (j = 0; j < MAX_PILS; j++) { 438 sysbus_init_irq(sbd, &s->cpu_irqs[i][j]); 439 } 440 memory_region_init_io(&s->slaves[i].iomem, OBJECT(s), 441 &slavio_intctl_mem_ops, 442 &s->slaves[i], slave_name, INTCTL_SIZE); 443 sysbus_init_mmio(sbd, &s->slaves[i].iomem); 444 s->slaves[i].cpu = i; 445 s->slaves[i].master = s; 446 } 447 448 return 0; 449 } 450 451 static void slavio_intctl_class_init(ObjectClass *klass, void *data) 452 { 453 DeviceClass *dc = DEVICE_CLASS(klass); 454 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 455 456 k->init = slavio_intctl_init1; 457 dc->reset = slavio_intctl_reset; 458 dc->vmsd = &vmstate_intctl; 459 } 460 461 static const TypeInfo slavio_intctl_info = { 462 .name = TYPE_SLAVIO_INTCTL, 463 .parent = TYPE_SYS_BUS_DEVICE, 464 .instance_size = sizeof(SLAVIO_INTCTLState), 465 .class_init = slavio_intctl_class_init, 466 }; 467 468 static void slavio_intctl_register_types(void) 469 { 470 type_register_static(&slavio_intctl_info); 471 } 472 473 type_init(slavio_intctl_register_types) 474