1 /* 2 * QEMU Sparc SLAVIO interrupt controller emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "migration/vmstate.h" 27 #include "monitor/monitor.h" 28 #include "qemu/module.h" 29 #include "hw/sysbus.h" 30 #include "hw/intc/intc.h" 31 #include "hw/irq.h" 32 #include "trace.h" 33 34 //#define DEBUG_IRQ_COUNT 35 36 /* 37 * Registers of interrupt controller in sun4m. 38 * 39 * This is the interrupt controller part of chip STP2001 (Slave I/O), also 40 * produced as NCR89C105. See 41 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 42 * 43 * There is a system master controller and one for each cpu. 44 * 45 */ 46 47 #define MAX_CPUS 16 48 #define MAX_PILS 16 49 50 struct SLAVIO_INTCTLState; 51 52 typedef struct SLAVIO_CPUINTCTLState { 53 MemoryRegion iomem; 54 struct SLAVIO_INTCTLState *master; 55 uint32_t intreg_pending; 56 uint32_t cpu; 57 uint32_t irl_out; 58 } SLAVIO_CPUINTCTLState; 59 60 #define TYPE_SLAVIO_INTCTL "slavio_intctl" 61 #define SLAVIO_INTCTL(obj) \ 62 OBJECT_CHECK(SLAVIO_INTCTLState, (obj), TYPE_SLAVIO_INTCTL) 63 64 typedef struct SLAVIO_INTCTLState { 65 SysBusDevice parent_obj; 66 67 MemoryRegion iomem; 68 #ifdef DEBUG_IRQ_COUNT 69 uint64_t irq_count[32]; 70 #endif 71 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS]; 72 SLAVIO_CPUINTCTLState slaves[MAX_CPUS]; 73 uint32_t intregm_pending; 74 uint32_t intregm_disabled; 75 uint32_t target_cpu; 76 } SLAVIO_INTCTLState; 77 78 #define INTCTL_MAXADDR 0xf 79 #define INTCTL_SIZE (INTCTL_MAXADDR + 1) 80 #define INTCTLM_SIZE 0x14 81 #define MASTER_IRQ_MASK ~0x0fa2007f 82 #define MASTER_DISABLE 0x80000000 83 #define CPU_SOFTIRQ_MASK 0xfffe0000 84 #define CPU_IRQ_INT15_IN (1 << 15) 85 #define CPU_IRQ_TIMER_IN (1 << 14) 86 87 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs); 88 89 // per-cpu interrupt controller 90 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr, 91 unsigned size) 92 { 93 SLAVIO_CPUINTCTLState *s = opaque; 94 uint32_t saddr, ret; 95 96 saddr = addr >> 2; 97 switch (saddr) { 98 case 0: 99 ret = s->intreg_pending; 100 break; 101 default: 102 ret = 0; 103 break; 104 } 105 trace_slavio_intctl_mem_readl(s->cpu, addr, ret); 106 107 return ret; 108 } 109 110 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr, 111 uint64_t val, unsigned size) 112 { 113 SLAVIO_CPUINTCTLState *s = opaque; 114 uint32_t saddr; 115 116 saddr = addr >> 2; 117 trace_slavio_intctl_mem_writel(s->cpu, addr, val); 118 switch (saddr) { 119 case 1: // clear pending softints 120 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN; 121 s->intreg_pending &= ~val; 122 slavio_check_interrupts(s->master, 1); 123 trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending); 124 break; 125 case 2: // set softint 126 val &= CPU_SOFTIRQ_MASK; 127 s->intreg_pending |= val; 128 slavio_check_interrupts(s->master, 1); 129 trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending); 130 break; 131 default: 132 break; 133 } 134 } 135 136 static const MemoryRegionOps slavio_intctl_mem_ops = { 137 .read = slavio_intctl_mem_readl, 138 .write = slavio_intctl_mem_writel, 139 .endianness = DEVICE_NATIVE_ENDIAN, 140 .valid = { 141 .min_access_size = 4, 142 .max_access_size = 4, 143 }, 144 }; 145 146 // master system interrupt controller 147 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr, 148 unsigned size) 149 { 150 SLAVIO_INTCTLState *s = opaque; 151 uint32_t saddr, ret; 152 153 saddr = addr >> 2; 154 switch (saddr) { 155 case 0: 156 ret = s->intregm_pending & ~MASTER_DISABLE; 157 break; 158 case 1: 159 ret = s->intregm_disabled & MASTER_IRQ_MASK; 160 break; 161 case 4: 162 ret = s->target_cpu; 163 break; 164 default: 165 ret = 0; 166 break; 167 } 168 trace_slavio_intctlm_mem_readl(addr, ret); 169 170 return ret; 171 } 172 173 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr, 174 uint64_t val, unsigned size) 175 { 176 SLAVIO_INTCTLState *s = opaque; 177 uint32_t saddr; 178 179 saddr = addr >> 2; 180 trace_slavio_intctlm_mem_writel(addr, val); 181 switch (saddr) { 182 case 2: // clear (enable) 183 // Force clear unused bits 184 val &= MASTER_IRQ_MASK; 185 s->intregm_disabled &= ~val; 186 trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled); 187 slavio_check_interrupts(s, 1); 188 break; 189 case 3: // set (disable; doesn't affect pending) 190 // Force clear unused bits 191 val &= MASTER_IRQ_MASK; 192 s->intregm_disabled |= val; 193 slavio_check_interrupts(s, 1); 194 trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled); 195 break; 196 case 4: 197 s->target_cpu = val & (MAX_CPUS - 1); 198 slavio_check_interrupts(s, 1); 199 trace_slavio_intctlm_mem_writel_target(s->target_cpu); 200 break; 201 default: 202 break; 203 } 204 } 205 206 static const MemoryRegionOps slavio_intctlm_mem_ops = { 207 .read = slavio_intctlm_mem_readl, 208 .write = slavio_intctlm_mem_writel, 209 .endianness = DEVICE_NATIVE_ENDIAN, 210 .valid = { 211 .min_access_size = 4, 212 .max_access_size = 4, 213 }, 214 }; 215 216 static const uint32_t intbit_to_level[] = { 217 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12, 218 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0, 219 }; 220 221 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs) 222 { 223 uint32_t pending = s->intregm_pending, pil_pending; 224 unsigned int i, j; 225 226 pending &= ~s->intregm_disabled; 227 228 trace_slavio_check_interrupts(pending, s->intregm_disabled); 229 for (i = 0; i < MAX_CPUS; i++) { 230 pil_pending = 0; 231 232 /* If we are the current interrupt target, get hard interrupts */ 233 if (pending && !(s->intregm_disabled & MASTER_DISABLE) && 234 (i == s->target_cpu)) { 235 for (j = 0; j < 32; j++) { 236 if ((pending & (1 << j)) && intbit_to_level[j]) { 237 pil_pending |= 1 << intbit_to_level[j]; 238 } 239 } 240 } 241 242 /* Calculate current pending hard interrupts for display */ 243 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN | 244 CPU_IRQ_TIMER_IN; 245 if (i == s->target_cpu) { 246 for (j = 0; j < 32; j++) { 247 if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) { 248 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j]; 249 } 250 } 251 } 252 253 /* Level 15 and CPU timer interrupts are only masked when 254 the MASTER_DISABLE bit is set */ 255 if (!(s->intregm_disabled & MASTER_DISABLE)) { 256 pil_pending |= s->slaves[i].intreg_pending & 257 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN); 258 } 259 260 /* Add soft interrupts */ 261 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16; 262 263 if (set_irqs) { 264 /* Since there is not really an interrupt 0 (and pil_pending 265 * and irl_out bit zero are thus always zero) there is no need 266 * to do anything with cpu_irqs[i][0] and it is OK not to do 267 * the j=0 iteration of this loop. 268 */ 269 for (j = MAX_PILS-1; j > 0; j--) { 270 if (pil_pending & (1 << j)) { 271 if (!(s->slaves[i].irl_out & (1 << j))) { 272 qemu_irq_raise(s->cpu_irqs[i][j]); 273 } 274 } else { 275 if (s->slaves[i].irl_out & (1 << j)) { 276 qemu_irq_lower(s->cpu_irqs[i][j]); 277 } 278 } 279 } 280 } 281 s->slaves[i].irl_out = pil_pending; 282 } 283 } 284 285 /* 286 * "irq" here is the bit number in the system interrupt register to 287 * separate serial and keyboard interrupts sharing a level. 288 */ 289 static void slavio_set_irq(void *opaque, int irq, int level) 290 { 291 SLAVIO_INTCTLState *s = opaque; 292 uint32_t mask = 1 << irq; 293 uint32_t pil = intbit_to_level[irq]; 294 unsigned int i; 295 296 trace_slavio_set_irq(s->target_cpu, irq, pil, level); 297 if (pil > 0) { 298 if (level) { 299 #ifdef DEBUG_IRQ_COUNT 300 s->irq_count[pil]++; 301 #endif 302 s->intregm_pending |= mask; 303 if (pil == 15) { 304 for (i = 0; i < MAX_CPUS; i++) { 305 s->slaves[i].intreg_pending |= 1 << pil; 306 } 307 } 308 } else { 309 s->intregm_pending &= ~mask; 310 if (pil == 15) { 311 for (i = 0; i < MAX_CPUS; i++) { 312 s->slaves[i].intreg_pending &= ~(1 << pil); 313 } 314 } 315 } 316 slavio_check_interrupts(s, 1); 317 } 318 } 319 320 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) 321 { 322 SLAVIO_INTCTLState *s = opaque; 323 324 trace_slavio_set_timer_irq_cpu(cpu, level); 325 326 if (level) { 327 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN; 328 } else { 329 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN; 330 } 331 332 slavio_check_interrupts(s, 1); 333 } 334 335 static void slavio_set_irq_all(void *opaque, int irq, int level) 336 { 337 if (irq < 32) { 338 slavio_set_irq(opaque, irq, level); 339 } else { 340 slavio_set_timer_irq_cpu(opaque, irq - 32, level); 341 } 342 } 343 344 static int vmstate_intctl_post_load(void *opaque, int version_id) 345 { 346 SLAVIO_INTCTLState *s = opaque; 347 348 slavio_check_interrupts(s, 0); 349 return 0; 350 } 351 352 static const VMStateDescription vmstate_intctl_cpu = { 353 .name ="slavio_intctl_cpu", 354 .version_id = 1, 355 .minimum_version_id = 1, 356 .fields = (VMStateField[]) { 357 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState), 358 VMSTATE_END_OF_LIST() 359 } 360 }; 361 362 static const VMStateDescription vmstate_intctl = { 363 .name ="slavio_intctl", 364 .version_id = 1, 365 .minimum_version_id = 1, 366 .post_load = vmstate_intctl_post_load, 367 .fields = (VMStateField[]) { 368 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1, 369 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState), 370 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState), 371 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState), 372 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState), 373 VMSTATE_END_OF_LIST() 374 } 375 }; 376 377 static void slavio_intctl_reset(DeviceState *d) 378 { 379 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d); 380 int i; 381 382 for (i = 0; i < MAX_CPUS; i++) { 383 s->slaves[i].intreg_pending = 0; 384 s->slaves[i].irl_out = 0; 385 } 386 s->intregm_disabled = ~MASTER_IRQ_MASK; 387 s->intregm_pending = 0; 388 s->target_cpu = 0; 389 slavio_check_interrupts(s, 0); 390 } 391 392 #ifdef DEBUG_IRQ_COUNT 393 static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj, 394 uint64_t **irq_counts, 395 unsigned int *nb_irqs) 396 { 397 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 398 *irq_counts = s->irq_count; 399 *nb_irqs = ARRAY_SIZE(s->irq_count); 400 return true; 401 } 402 #endif 403 404 static void slavio_intctl_print_info(InterruptStatsProvider *obj, Monitor *mon) 405 { 406 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 407 int i; 408 409 for (i = 0; i < MAX_CPUS; i++) { 410 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i, 411 s->slaves[i].intreg_pending); 412 } 413 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n", 414 s->intregm_pending, s->intregm_disabled); 415 } 416 417 static void slavio_intctl_init(Object *obj) 418 { 419 DeviceState *dev = DEVICE(obj); 420 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj); 421 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 422 unsigned int i, j; 423 char slave_name[45]; 424 425 qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS); 426 memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s, 427 "master-interrupt-controller", INTCTLM_SIZE); 428 sysbus_init_mmio(sbd, &s->iomem); 429 430 for (i = 0; i < MAX_CPUS; i++) { 431 snprintf(slave_name, sizeof(slave_name), 432 "slave-interrupt-controller-%i", i); 433 for (j = 0; j < MAX_PILS; j++) { 434 sysbus_init_irq(sbd, &s->cpu_irqs[i][j]); 435 } 436 memory_region_init_io(&s->slaves[i].iomem, OBJECT(s), 437 &slavio_intctl_mem_ops, 438 &s->slaves[i], slave_name, INTCTL_SIZE); 439 sysbus_init_mmio(sbd, &s->slaves[i].iomem); 440 s->slaves[i].cpu = i; 441 s->slaves[i].master = s; 442 } 443 } 444 445 static void slavio_intctl_class_init(ObjectClass *klass, void *data) 446 { 447 DeviceClass *dc = DEVICE_CLASS(klass); 448 InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass); 449 450 dc->reset = slavio_intctl_reset; 451 dc->vmsd = &vmstate_intctl; 452 #ifdef DEBUG_IRQ_COUNT 453 ic->get_statistics = slavio_intctl_get_statistics; 454 #endif 455 ic->print_info = slavio_intctl_print_info; 456 } 457 458 static const TypeInfo slavio_intctl_info = { 459 .name = TYPE_SLAVIO_INTCTL, 460 .parent = TYPE_SYS_BUS_DEVICE, 461 .instance_size = sizeof(SLAVIO_INTCTLState), 462 .instance_init = slavio_intctl_init, 463 .class_init = slavio_intctl_class_init, 464 .interfaces = (InterfaceInfo[]) { 465 { TYPE_INTERRUPT_STATS_PROVIDER }, 466 { } 467 }, 468 }; 469 470 static void slavio_intctl_register_types(void) 471 { 472 type_register_static(&slavio_intctl_info); 473 } 474 475 type_init(slavio_intctl_register_types) 476