xref: /openbmc/qemu/hw/intc/riscv_aplic.c (revision eac57306)
1 /*
2  * RISC-V APLIC (Advanced Platform Level Interrupt Controller)
3  *
4  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "qemu/error-report.h"
24 #include "qemu/bswap.h"
25 #include "exec/address-spaces.h"
26 #include "hw/sysbus.h"
27 #include "hw/pci/msi.h"
28 #include "hw/boards.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/intc/riscv_aplic.h"
31 #include "hw/irq.h"
32 #include "target/riscv/cpu.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
35 #include "kvm/kvm_riscv.h"
36 #include "migration/vmstate.h"
37 
38 #define APLIC_MAX_IDC                  (1UL << 14)
39 #define APLIC_MAX_SOURCE               1024
40 #define APLIC_MIN_IPRIO_BITS           1
41 #define APLIC_MAX_IPRIO_BITS           8
42 #define APLIC_MAX_CHILDREN             1024
43 
44 #define APLIC_DOMAINCFG                0x0000
45 #define APLIC_DOMAINCFG_RDONLY         0x80000000
46 #define APLIC_DOMAINCFG_IE             (1 << 8)
47 #define APLIC_DOMAINCFG_DM             (1 << 2)
48 #define APLIC_DOMAINCFG_BE             (1 << 0)
49 
50 #define APLIC_SOURCECFG_BASE           0x0004
51 #define APLIC_SOURCECFG_D              (1 << 10)
52 #define APLIC_SOURCECFG_CHILDIDX_MASK  0x000003ff
53 #define APLIC_SOURCECFG_SM_MASK        0x00000007
54 #define APLIC_SOURCECFG_SM_INACTIVE    0x0
55 #define APLIC_SOURCECFG_SM_DETACH      0x1
56 #define APLIC_SOURCECFG_SM_EDGE_RISE   0x4
57 #define APLIC_SOURCECFG_SM_EDGE_FALL   0x5
58 #define APLIC_SOURCECFG_SM_LEVEL_HIGH  0x6
59 #define APLIC_SOURCECFG_SM_LEVEL_LOW   0x7
60 
61 #define APLIC_MMSICFGADDR              0x1bc0
62 #define APLIC_MMSICFGADDRH             0x1bc4
63 #define APLIC_SMSICFGADDR              0x1bc8
64 #define APLIC_SMSICFGADDRH             0x1bcc
65 
66 #define APLIC_xMSICFGADDRH_L           (1UL << 31)
67 #define APLIC_xMSICFGADDRH_HHXS_MASK   0x1f
68 #define APLIC_xMSICFGADDRH_HHXS_SHIFT  24
69 #define APLIC_xMSICFGADDRH_LHXS_MASK   0x7
70 #define APLIC_xMSICFGADDRH_LHXS_SHIFT  20
71 #define APLIC_xMSICFGADDRH_HHXW_MASK   0x7
72 #define APLIC_xMSICFGADDRH_HHXW_SHIFT  16
73 #define APLIC_xMSICFGADDRH_LHXW_MASK   0xf
74 #define APLIC_xMSICFGADDRH_LHXW_SHIFT  12
75 #define APLIC_xMSICFGADDRH_BAPPN_MASK  0xfff
76 
77 #define APLIC_xMSICFGADDR_PPN_SHIFT    12
78 
79 #define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \
80     ((1UL << (__lhxs)) - 1)
81 
82 #define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \
83     ((1UL << (__lhxw)) - 1)
84 #define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \
85     ((__lhxs))
86 #define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \
87     (APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \
88      APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs))
89 
90 #define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \
91     ((1UL << (__hhxw)) - 1)
92 #define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \
93     ((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT)
94 #define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \
95     (APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \
96      APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs))
97 
98 #define APLIC_xMSICFGADDRH_VALID_MASK   \
99     (APLIC_xMSICFGADDRH_L | \
100      (APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \
101      (APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \
102      (APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \
103      (APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \
104      APLIC_xMSICFGADDRH_BAPPN_MASK)
105 
106 #define APLIC_SETIP_BASE               0x1c00
107 #define APLIC_SETIPNUM                 0x1cdc
108 
109 #define APLIC_CLRIP_BASE               0x1d00
110 #define APLIC_CLRIPNUM                 0x1ddc
111 
112 #define APLIC_SETIE_BASE               0x1e00
113 #define APLIC_SETIENUM                 0x1edc
114 
115 #define APLIC_CLRIE_BASE               0x1f00
116 #define APLIC_CLRIENUM                 0x1fdc
117 
118 #define APLIC_SETIPNUM_LE              0x2000
119 #define APLIC_SETIPNUM_BE              0x2004
120 
121 #define APLIC_ISTATE_PENDING           (1U << 0)
122 #define APLIC_ISTATE_ENABLED           (1U << 1)
123 #define APLIC_ISTATE_ENPEND            (APLIC_ISTATE_ENABLED | \
124                                         APLIC_ISTATE_PENDING)
125 #define APLIC_ISTATE_INPUT             (1U << 8)
126 
127 #define APLIC_GENMSI                   0x3000
128 
129 #define APLIC_TARGET_BASE              0x3004
130 #define APLIC_TARGET_HART_IDX_SHIFT    18
131 #define APLIC_TARGET_HART_IDX_MASK     0x3fff
132 #define APLIC_TARGET_GUEST_IDX_SHIFT   12
133 #define APLIC_TARGET_GUEST_IDX_MASK    0x3f
134 #define APLIC_TARGET_IPRIO_MASK        0xff
135 #define APLIC_TARGET_EIID_MASK         0x7ff
136 
137 #define APLIC_IDC_BASE                 0x4000
138 #define APLIC_IDC_SIZE                 32
139 
140 #define APLIC_IDC_IDELIVERY            0x00
141 
142 #define APLIC_IDC_IFORCE               0x04
143 
144 #define APLIC_IDC_ITHRESHOLD           0x08
145 
146 #define APLIC_IDC_TOPI                 0x18
147 #define APLIC_IDC_TOPI_ID_SHIFT        16
148 #define APLIC_IDC_TOPI_ID_MASK         0x3ff
149 #define APLIC_IDC_TOPI_PRIO_MASK       0xff
150 
151 #define APLIC_IDC_CLAIMI               0x1c
152 
153 /*
154  * KVM AIA only supports APLIC MSI, fallback to QEMU emulation if we want to use
155  * APLIC Wired.
156  */
157 static bool is_kvm_aia(bool msimode)
158 {
159     return kvm_irqchip_in_kernel() && msimode;
160 }
161 
162 static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic,
163                                             uint32_t word)
164 {
165     uint32_t i, irq, sourcecfg, sm, raw_input, irq_inverted, ret = 0;
166 
167     for (i = 0; i < 32; i++) {
168         irq = word * 32 + i;
169         if (!irq || aplic->num_irqs <= irq) {
170             continue;
171         }
172 
173         sourcecfg = aplic->sourcecfg[irq];
174         if (sourcecfg & APLIC_SOURCECFG_D) {
175             continue;
176         }
177 
178         sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
179         if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
180             continue;
181         }
182 
183         raw_input = (aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0;
184         irq_inverted = (sm == APLIC_SOURCECFG_SM_LEVEL_LOW ||
185                         sm == APLIC_SOURCECFG_SM_EDGE_FALL) ? 1 : 0;
186         ret |= (raw_input ^ irq_inverted) << i;
187     }
188 
189     return ret;
190 }
191 
192 static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic,
193                                               uint32_t word)
194 {
195     uint32_t i, irq, ret = 0;
196 
197     for (i = 0; i < 32; i++) {
198         irq = word * 32 + i;
199         if (!irq || aplic->num_irqs <= irq) {
200             continue;
201         }
202 
203         ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i;
204     }
205 
206     return ret;
207 }
208 
209 static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic,
210                                         uint32_t irq, bool pending)
211 {
212     if (pending) {
213         aplic->state[irq] |= APLIC_ISTATE_PENDING;
214     } else {
215         aplic->state[irq] &= ~APLIC_ISTATE_PENDING;
216     }
217 }
218 
219 static void riscv_aplic_set_pending(RISCVAPLICState *aplic,
220                                     uint32_t irq, bool pending)
221 {
222     uint32_t sourcecfg, sm;
223 
224     if ((irq <= 0) || (aplic->num_irqs <= irq)) {
225         return;
226     }
227 
228     sourcecfg = aplic->sourcecfg[irq];
229     if (sourcecfg & APLIC_SOURCECFG_D) {
230         return;
231     }
232 
233     sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
234     if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
235         return;
236     }
237 
238     if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) ||
239         (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
240         if (!aplic->msimode || (aplic->msimode && !pending)) {
241             return;
242         }
243         if ((aplic->state[irq] & APLIC_ISTATE_INPUT) &&
244             (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
245             return;
246         }
247         if (!(aplic->state[irq] & APLIC_ISTATE_INPUT) &&
248             (sm == APLIC_SOURCECFG_SM_LEVEL_HIGH)) {
249             return;
250         }
251     }
252 
253     riscv_aplic_set_pending_raw(aplic, irq, pending);
254 }
255 
256 static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic,
257                                          uint32_t word, uint32_t value,
258                                          bool pending)
259 {
260     uint32_t i, irq;
261 
262     for (i = 0; i < 32; i++) {
263         irq = word * 32 + i;
264         if (!irq || aplic->num_irqs <= irq) {
265             continue;
266         }
267 
268         if (value & (1U << i)) {
269             riscv_aplic_set_pending(aplic, irq, pending);
270         }
271     }
272 }
273 
274 static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic,
275                                               int word)
276 {
277     uint32_t i, irq, ret = 0;
278 
279     for (i = 0; i < 32; i++) {
280         irq = word * 32 + i;
281         if (!irq || aplic->num_irqs <= irq) {
282             continue;
283         }
284 
285         ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i;
286     }
287 
288     return ret;
289 }
290 
291 static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic,
292                                         uint32_t irq, bool enabled)
293 {
294     if (enabled) {
295         aplic->state[irq] |= APLIC_ISTATE_ENABLED;
296     } else {
297         aplic->state[irq] &= ~APLIC_ISTATE_ENABLED;
298     }
299 }
300 
301 static void riscv_aplic_set_enabled(RISCVAPLICState *aplic,
302                                     uint32_t irq, bool enabled)
303 {
304     uint32_t sourcecfg, sm;
305 
306     if ((irq <= 0) || (aplic->num_irqs <= irq)) {
307         return;
308     }
309 
310     sourcecfg = aplic->sourcecfg[irq];
311     if (sourcecfg & APLIC_SOURCECFG_D) {
312         return;
313     }
314 
315     sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
316     if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
317         return;
318     }
319 
320     riscv_aplic_set_enabled_raw(aplic, irq, enabled);
321 }
322 
323 static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic,
324                                          uint32_t word, uint32_t value,
325                                          bool enabled)
326 {
327     uint32_t i, irq;
328 
329     for (i = 0; i < 32; i++) {
330         irq = word * 32 + i;
331         if (!irq || aplic->num_irqs <= irq) {
332             continue;
333         }
334 
335         if (value & (1U << i)) {
336             riscv_aplic_set_enabled(aplic, irq, enabled);
337         }
338     }
339 }
340 
341 static void riscv_aplic_msi_send(RISCVAPLICState *aplic,
342                                  uint32_t hart_idx, uint32_t guest_idx,
343                                  uint32_t eiid)
344 {
345     uint64_t addr;
346     MemTxResult result;
347     RISCVAPLICState *aplic_m;
348     uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH;
349 
350     aplic_m = aplic;
351     while (aplic_m && !aplic_m->mmode) {
352         aplic_m = aplic_m->parent;
353     }
354     if (!aplic_m) {
355         qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n",
356                       __func__);
357         return;
358     }
359 
360     if (aplic->mmode) {
361         msicfgaddr = aplic_m->mmsicfgaddr;
362         msicfgaddrH = aplic_m->mmsicfgaddrH;
363     } else {
364         msicfgaddr = aplic_m->smsicfgaddr;
365         msicfgaddrH = aplic_m->smsicfgaddrH;
366     }
367 
368     lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) &
369             APLIC_xMSICFGADDRH_LHXS_MASK;
370     lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) &
371             APLIC_xMSICFGADDRH_LHXW_MASK;
372     hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) &
373             APLIC_xMSICFGADDRH_HHXS_MASK;
374     hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) &
375             APLIC_xMSICFGADDRH_HHXW_MASK;
376 
377     group_idx = hart_idx >> lhxw;
378     hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw);
379 
380     addr = msicfgaddr;
381     addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32;
382     addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) <<
383              APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs);
384     addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) <<
385              APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs);
386     addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs));
387     addr <<= APLIC_xMSICFGADDR_PPN_SHIFT;
388 
389     address_space_stl_le(&address_space_memory, addr,
390                          eiid, MEMTXATTRS_UNSPECIFIED, &result);
391     if (result != MEMTX_OK) {
392         qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for "
393                       "hart_index=%d guest_index=%d eiid=%d\n",
394                       __func__, hart_idx, guest_idx, eiid);
395     }
396 }
397 
398 static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq)
399 {
400     uint32_t hart_idx, guest_idx, eiid;
401 
402     if (!aplic->msimode || (aplic->num_irqs <= irq) ||
403         !(aplic->domaincfg & APLIC_DOMAINCFG_IE)) {
404         return;
405     }
406 
407     if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) {
408         return;
409     }
410 
411     riscv_aplic_set_pending_raw(aplic, irq, false);
412 
413     hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
414     hart_idx &= APLIC_TARGET_HART_IDX_MASK;
415     if (aplic->mmode) {
416         /* M-level APLIC ignores guest_index */
417         guest_idx = 0;
418     } else {
419         guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT;
420         guest_idx &= APLIC_TARGET_GUEST_IDX_MASK;
421     }
422     eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK;
423     riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid);
424 }
425 
426 static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc)
427 {
428     uint32_t best_irq, best_iprio;
429     uint32_t irq, iprio, ihartidx, ithres;
430 
431     if (aplic->num_harts <= idc) {
432         return 0;
433     }
434 
435     ithres = aplic->ithreshold[idc];
436     best_irq = best_iprio = UINT32_MAX;
437     for (irq = 1; irq < aplic->num_irqs; irq++) {
438         if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) !=
439             APLIC_ISTATE_ENPEND) {
440             continue;
441         }
442 
443         ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
444         ihartidx &= APLIC_TARGET_HART_IDX_MASK;
445         if (ihartidx != idc) {
446             continue;
447         }
448 
449         iprio = aplic->target[irq] & aplic->iprio_mask;
450         if (ithres && iprio >= ithres) {
451             continue;
452         }
453 
454         if (iprio < best_iprio) {
455             best_irq = irq;
456             best_iprio = iprio;
457         }
458     }
459 
460     if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) {
461         return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio;
462     }
463 
464     return 0;
465 }
466 
467 static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc)
468 {
469     uint32_t topi;
470 
471     if (aplic->msimode || aplic->num_harts <= idc) {
472         return;
473     }
474 
475     topi = riscv_aplic_idc_topi(aplic, idc);
476     if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) &&
477         aplic->idelivery[idc] &&
478         (aplic->iforce[idc] || topi)) {
479         qemu_irq_raise(aplic->external_irqs[idc]);
480     } else {
481         qemu_irq_lower(aplic->external_irqs[idc]);
482     }
483 }
484 
485 static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc)
486 {
487     uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc);
488 
489     if (!topi) {
490         aplic->iforce[idc] = 0;
491         return 0;
492     }
493 
494     irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK;
495     sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK;
496     state = aplic->state[irq];
497     riscv_aplic_set_pending_raw(aplic, irq, false);
498     if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) &&
499         (state & APLIC_ISTATE_INPUT)) {
500         riscv_aplic_set_pending_raw(aplic, irq, true);
501     } else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) &&
502                !(state & APLIC_ISTATE_INPUT)) {
503         riscv_aplic_set_pending_raw(aplic, irq, true);
504     }
505     riscv_aplic_idc_update(aplic, idc);
506 
507     return topi;
508 }
509 
510 static void riscv_aplic_request(void *opaque, int irq, int level)
511 {
512     bool update = false;
513     RISCVAPLICState *aplic = opaque;
514     uint32_t sourcecfg, childidx, state, idc;
515 
516     assert((0 < irq) && (irq < aplic->num_irqs));
517 
518     sourcecfg = aplic->sourcecfg[irq];
519     if (sourcecfg & APLIC_SOURCECFG_D) {
520         childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK;
521         if (childidx < aplic->num_children) {
522             riscv_aplic_request(aplic->children[childidx], irq, level);
523         }
524         return;
525     }
526 
527     state = aplic->state[irq];
528     switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) {
529     case APLIC_SOURCECFG_SM_EDGE_RISE:
530         if ((level > 0) && !(state & APLIC_ISTATE_INPUT) &&
531             !(state & APLIC_ISTATE_PENDING)) {
532             riscv_aplic_set_pending_raw(aplic, irq, true);
533             update = true;
534         }
535         break;
536     case APLIC_SOURCECFG_SM_EDGE_FALL:
537         if ((level <= 0) && (state & APLIC_ISTATE_INPUT) &&
538             !(state & APLIC_ISTATE_PENDING)) {
539             riscv_aplic_set_pending_raw(aplic, irq, true);
540             update = true;
541         }
542         break;
543     case APLIC_SOURCECFG_SM_LEVEL_HIGH:
544         if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) {
545             riscv_aplic_set_pending_raw(aplic, irq, true);
546             update = true;
547         }
548         break;
549     case APLIC_SOURCECFG_SM_LEVEL_LOW:
550         if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) {
551             riscv_aplic_set_pending_raw(aplic, irq, true);
552             update = true;
553         }
554         break;
555     default:
556         break;
557     }
558 
559     if (level <= 0) {
560         aplic->state[irq] &= ~APLIC_ISTATE_INPUT;
561     } else {
562         aplic->state[irq] |= APLIC_ISTATE_INPUT;
563     }
564 
565     if (update) {
566         if (aplic->msimode) {
567             riscv_aplic_msi_irq_update(aplic, irq);
568         } else {
569             idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
570             idc &= APLIC_TARGET_HART_IDX_MASK;
571             riscv_aplic_idc_update(aplic, idc);
572         }
573     }
574 }
575 
576 static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size)
577 {
578     uint32_t irq, word, idc;
579     RISCVAPLICState *aplic = opaque;
580 
581     /* Reads must be 4 byte words */
582     if ((addr & 0x3) != 0) {
583         goto err;
584     }
585 
586     if (addr == APLIC_DOMAINCFG) {
587         return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg |
588                (aplic->msimode ? APLIC_DOMAINCFG_DM : 0);
589     } else if ((APLIC_SOURCECFG_BASE <= addr) &&
590             (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
591         irq  = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
592         return aplic->sourcecfg[irq];
593     } else if (aplic->mmode && aplic->msimode &&
594                (addr == APLIC_MMSICFGADDR)) {
595         return aplic->mmsicfgaddr;
596     } else if (aplic->mmode && aplic->msimode &&
597                (addr == APLIC_MMSICFGADDRH)) {
598         return aplic->mmsicfgaddrH;
599     } else if (aplic->mmode && aplic->msimode &&
600                (addr == APLIC_SMSICFGADDR)) {
601         /*
602          * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
603          * (a) the interrupt domain is at machine level
604          * (b) the domain's harts implement supervisor mode
605          * (c) the domain has one or more child supervisor-level domains
606          *     that support MSI delivery mode (domaincfg.DM is not read-
607          *     only zero in at least one of the supervisor-level child
608          * domains).
609          */
610         return (aplic->num_children) ? aplic->smsicfgaddr : 0;
611     } else if (aplic->mmode && aplic->msimode &&
612                (addr == APLIC_SMSICFGADDRH)) {
613         return (aplic->num_children) ? aplic->smsicfgaddrH : 0;
614     } else if ((APLIC_SETIP_BASE <= addr) &&
615             (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
616         word = (addr - APLIC_SETIP_BASE) >> 2;
617         return riscv_aplic_read_pending_word(aplic, word);
618     } else if (addr == APLIC_SETIPNUM) {
619         return 0;
620     } else if ((APLIC_CLRIP_BASE <= addr) &&
621             (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
622         word = (addr - APLIC_CLRIP_BASE) >> 2;
623         return riscv_aplic_read_input_word(aplic, word);
624     } else if (addr == APLIC_CLRIPNUM) {
625         return 0;
626     } else if ((APLIC_SETIE_BASE <= addr) &&
627             (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
628         word = (addr - APLIC_SETIE_BASE) >> 2;
629         return riscv_aplic_read_enabled_word(aplic, word);
630     } else if (addr == APLIC_SETIENUM) {
631         return 0;
632     } else if ((APLIC_CLRIE_BASE <= addr) &&
633             (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
634         return 0;
635     } else if (addr == APLIC_CLRIENUM) {
636         return 0;
637     } else if (addr == APLIC_SETIPNUM_LE) {
638         return 0;
639     } else if (addr == APLIC_SETIPNUM_BE) {
640         return 0;
641     } else if (addr == APLIC_GENMSI) {
642         return (aplic->msimode) ? aplic->genmsi : 0;
643     } else if ((APLIC_TARGET_BASE <= addr) &&
644             (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
645         irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
646         return aplic->target[irq];
647     } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
648             (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
649         idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
650         switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
651         case APLIC_IDC_IDELIVERY:
652             return aplic->idelivery[idc];
653         case APLIC_IDC_IFORCE:
654             return aplic->iforce[idc];
655         case APLIC_IDC_ITHRESHOLD:
656             return aplic->ithreshold[idc];
657         case APLIC_IDC_TOPI:
658             return riscv_aplic_idc_topi(aplic, idc);
659         case APLIC_IDC_CLAIMI:
660             return riscv_aplic_idc_claimi(aplic, idc);
661         default:
662             goto err;
663         };
664     }
665 
666 err:
667     qemu_log_mask(LOG_GUEST_ERROR,
668                   "%s: Invalid register read 0x%" HWADDR_PRIx "\n",
669                   __func__, addr);
670     return 0;
671 }
672 
673 static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value,
674         unsigned size)
675 {
676     RISCVAPLICState *aplic = opaque;
677     uint32_t irq, word, idc = UINT32_MAX;
678 
679     /* Writes must be 4 byte words */
680     if ((addr & 0x3) != 0) {
681         goto err;
682     }
683 
684     if (addr == APLIC_DOMAINCFG) {
685         /* Only IE bit writable at the moment */
686         value &= APLIC_DOMAINCFG_IE;
687         aplic->domaincfg = value;
688     } else if ((APLIC_SOURCECFG_BASE <= addr) &&
689             (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
690         irq  = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
691         if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) {
692             value = 0;
693         }
694         if (value & APLIC_SOURCECFG_D) {
695             value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK);
696         } else {
697             value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK);
698         }
699         aplic->sourcecfg[irq] = value;
700         if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) ||
701             (aplic->sourcecfg[irq] == 0)) {
702             riscv_aplic_set_pending_raw(aplic, irq, false);
703             riscv_aplic_set_enabled_raw(aplic, irq, false);
704         }
705     } else if (aplic->mmode && aplic->msimode &&
706                (addr == APLIC_MMSICFGADDR)) {
707         if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
708             aplic->mmsicfgaddr = value;
709         }
710     } else if (aplic->mmode && aplic->msimode &&
711                (addr == APLIC_MMSICFGADDRH)) {
712         if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
713             aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
714         }
715     } else if (aplic->mmode && aplic->msimode &&
716                (addr == APLIC_SMSICFGADDR)) {
717         /*
718          * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
719          * (a) the interrupt domain is at machine level
720          * (b) the domain's harts implement supervisor mode
721          * (c) the domain has one or more child supervisor-level domains
722          *     that support MSI delivery mode (domaincfg.DM is not read-
723          *     only zero in at least one of the supervisor-level child
724          * domains).
725          */
726         if (aplic->num_children &&
727             !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
728             aplic->smsicfgaddr = value;
729         }
730     } else if (aplic->mmode && aplic->msimode &&
731                (addr == APLIC_SMSICFGADDRH)) {
732         if (aplic->num_children &&
733             !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
734             aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
735         }
736     } else if ((APLIC_SETIP_BASE <= addr) &&
737             (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
738         word = (addr - APLIC_SETIP_BASE) >> 2;
739         riscv_aplic_set_pending_word(aplic, word, value, true);
740     } else if (addr == APLIC_SETIPNUM) {
741         riscv_aplic_set_pending(aplic, value, true);
742     } else if ((APLIC_CLRIP_BASE <= addr) &&
743             (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
744         word = (addr - APLIC_CLRIP_BASE) >> 2;
745         riscv_aplic_set_pending_word(aplic, word, value, false);
746     } else if (addr == APLIC_CLRIPNUM) {
747         riscv_aplic_set_pending(aplic, value, false);
748     } else if ((APLIC_SETIE_BASE <= addr) &&
749             (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
750         word = (addr - APLIC_SETIE_BASE) >> 2;
751         riscv_aplic_set_enabled_word(aplic, word, value, true);
752     } else if (addr == APLIC_SETIENUM) {
753         riscv_aplic_set_enabled(aplic, value, true);
754     } else if ((APLIC_CLRIE_BASE <= addr) &&
755             (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
756         word = (addr - APLIC_CLRIE_BASE) >> 2;
757         riscv_aplic_set_enabled_word(aplic, word, value, false);
758     } else if (addr == APLIC_CLRIENUM) {
759         riscv_aplic_set_enabled(aplic, value, false);
760     } else if (addr == APLIC_SETIPNUM_LE) {
761         riscv_aplic_set_pending(aplic, value, true);
762     } else if (addr == APLIC_SETIPNUM_BE) {
763         riscv_aplic_set_pending(aplic, bswap32(value), true);
764     } else if (addr == APLIC_GENMSI) {
765         if (aplic->msimode) {
766             aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK <<
767                                       APLIC_TARGET_GUEST_IDX_SHIFT);
768             riscv_aplic_msi_send(aplic,
769                                  value >> APLIC_TARGET_HART_IDX_SHIFT,
770                                  0,
771                                  value & APLIC_TARGET_EIID_MASK);
772         }
773     } else if ((APLIC_TARGET_BASE <= addr) &&
774             (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
775         irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
776         if (aplic->msimode) {
777             aplic->target[irq] = value;
778         } else {
779             aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) |
780                                  ((value & aplic->iprio_mask) ?
781                                   (value & aplic->iprio_mask) : 1);
782         }
783     } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
784             (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
785         idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
786         switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
787         case APLIC_IDC_IDELIVERY:
788             aplic->idelivery[idc] = value & 0x1;
789             break;
790         case APLIC_IDC_IFORCE:
791             aplic->iforce[idc] = value & 0x1;
792             break;
793         case APLIC_IDC_ITHRESHOLD:
794             aplic->ithreshold[idc] = value & aplic->iprio_mask;
795             break;
796         default:
797             goto err;
798         };
799     } else {
800         goto err;
801     }
802 
803     if (aplic->msimode) {
804         for (irq = 1; irq < aplic->num_irqs; irq++) {
805             riscv_aplic_msi_irq_update(aplic, irq);
806         }
807     } else {
808         if (idc == UINT32_MAX) {
809             for (idc = 0; idc < aplic->num_harts; idc++) {
810                 riscv_aplic_idc_update(aplic, idc);
811             }
812         } else {
813             riscv_aplic_idc_update(aplic, idc);
814         }
815     }
816 
817     return;
818 
819 err:
820     qemu_log_mask(LOG_GUEST_ERROR,
821                   "%s: Invalid register write 0x%" HWADDR_PRIx "\n",
822                   __func__, addr);
823 }
824 
825 static const MemoryRegionOps riscv_aplic_ops = {
826     .read = riscv_aplic_read,
827     .write = riscv_aplic_write,
828     .endianness = DEVICE_LITTLE_ENDIAN,
829     .valid = {
830         .min_access_size = 4,
831         .max_access_size = 4
832     }
833 };
834 
835 static void riscv_aplic_realize(DeviceState *dev, Error **errp)
836 {
837     uint32_t i;
838     RISCVAPLICState *aplic = RISCV_APLIC(dev);
839 
840     if (!is_kvm_aia(aplic->msimode)) {
841         aplic->bitfield_words = (aplic->num_irqs + 31) >> 5;
842         aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs);
843         aplic->state = g_new0(uint32_t, aplic->num_irqs);
844         aplic->target = g_new0(uint32_t, aplic->num_irqs);
845         if (!aplic->msimode) {
846             for (i = 0; i < aplic->num_irqs; i++) {
847                 aplic->target[i] = 1;
848             }
849         }
850         aplic->idelivery = g_new0(uint32_t, aplic->num_harts);
851         aplic->iforce = g_new0(uint32_t, aplic->num_harts);
852         aplic->ithreshold = g_new0(uint32_t, aplic->num_harts);
853 
854         memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops,
855                               aplic, TYPE_RISCV_APLIC, aplic->aperture_size);
856         sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio);
857     }
858 
859     /*
860      * Only root APLICs have hardware IRQ lines. All non-root APLICs
861      * have IRQ lines delegated by their parent APLIC.
862      */
863     if (!aplic->parent) {
864         if (kvm_enabled() && is_kvm_aia(aplic->msimode)) {
865             qdev_init_gpio_in(dev, riscv_kvm_aplic_request, aplic->num_irqs);
866         } else {
867             qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs);
868         }
869     }
870 
871     /* Create output IRQ lines for non-MSI mode */
872     if (!aplic->msimode) {
873         aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts);
874         qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts);
875 
876         /* Claim the CPU interrupt to be triggered by this APLIC */
877         for (i = 0; i < aplic->num_harts; i++) {
878             RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(aplic->hartid_base + i));
879             if (riscv_cpu_claim_interrupts(cpu,
880                 (aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) {
881                 error_report("%s already claimed",
882                              (aplic->mmode) ? "MEIP" : "SEIP");
883                 exit(1);
884             }
885         }
886     }
887 
888     msi_nonbroken = true;
889 }
890 
891 static Property riscv_aplic_properties[] = {
892     DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0),
893     DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0),
894     DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0),
895     DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0),
896     DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0),
897     DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0),
898     DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0),
899     DEFINE_PROP_END_OF_LIST(),
900 };
901 
902 static const VMStateDescription vmstate_riscv_aplic = {
903     .name = "riscv_aplic",
904     .version_id = 1,
905     .minimum_version_id = 1,
906     .fields = (const VMStateField[]) {
907             VMSTATE_UINT32(domaincfg, RISCVAPLICState),
908             VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState),
909             VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState),
910             VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState),
911             VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState),
912             VMSTATE_UINT32(genmsi, RISCVAPLICState),
913             VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState,
914                                   num_irqs, 0,
915                                   vmstate_info_uint32, uint32_t),
916             VMSTATE_VARRAY_UINT32(state, RISCVAPLICState,
917                                   num_irqs, 0,
918                                   vmstate_info_uint32, uint32_t),
919             VMSTATE_VARRAY_UINT32(target, RISCVAPLICState,
920                                   num_irqs, 0,
921                                   vmstate_info_uint32, uint32_t),
922             VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState,
923                                   num_harts, 0,
924                                   vmstate_info_uint32, uint32_t),
925             VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState,
926                                   num_harts, 0,
927                                   vmstate_info_uint32, uint32_t),
928             VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState,
929                                   num_harts, 0,
930                                   vmstate_info_uint32, uint32_t),
931             VMSTATE_END_OF_LIST()
932         }
933 };
934 
935 static void riscv_aplic_class_init(ObjectClass *klass, void *data)
936 {
937     DeviceClass *dc = DEVICE_CLASS(klass);
938 
939     device_class_set_props(dc, riscv_aplic_properties);
940     dc->realize = riscv_aplic_realize;
941     dc->vmsd = &vmstate_riscv_aplic;
942 }
943 
944 static const TypeInfo riscv_aplic_info = {
945     .name          = TYPE_RISCV_APLIC,
946     .parent        = TYPE_SYS_BUS_DEVICE,
947     .instance_size = sizeof(RISCVAPLICState),
948     .class_init    = riscv_aplic_class_init,
949 };
950 
951 static void riscv_aplic_register_types(void)
952 {
953     type_register_static(&riscv_aplic_info);
954 }
955 
956 type_init(riscv_aplic_register_types)
957 
958 /*
959  * Add a APLIC device to another APLIC device as child for
960  * interrupt delegation.
961  */
962 void riscv_aplic_add_child(DeviceState *parent, DeviceState *child)
963 {
964     RISCVAPLICState *caplic, *paplic;
965 
966     assert(parent && child);
967     caplic = RISCV_APLIC(child);
968     paplic = RISCV_APLIC(parent);
969 
970     assert(paplic->num_irqs == caplic->num_irqs);
971     assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN);
972 
973     caplic->parent = paplic;
974     paplic->children[paplic->num_children] = caplic;
975     paplic->num_children++;
976 }
977 
978 /*
979  * Create APLIC device.
980  */
981 DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
982     uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
983     uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent)
984 {
985     DeviceState *dev = qdev_new(TYPE_RISCV_APLIC);
986     uint32_t i;
987 
988     assert(num_harts < APLIC_MAX_IDC);
989     assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size);
990     assert(num_sources < APLIC_MAX_SOURCE);
991     assert(APLIC_MIN_IPRIO_BITS <= iprio_bits);
992     assert(iprio_bits <= APLIC_MAX_IPRIO_BITS);
993 
994     qdev_prop_set_uint32(dev, "aperture-size", size);
995     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
996     qdev_prop_set_uint32(dev, "num-harts", num_harts);
997     qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1));
998     qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1);
999     qdev_prop_set_bit(dev, "msimode", msimode);
1000     qdev_prop_set_bit(dev, "mmode", mmode);
1001 
1002     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1003 
1004     if (!is_kvm_aia(msimode)) {
1005         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
1006     }
1007 
1008     if (parent) {
1009         riscv_aplic_add_child(parent, dev);
1010     }
1011 
1012     if (!msimode) {
1013         for (i = 0; i < num_harts; i++) {
1014             CPUState *cpu = cpu_by_arch_id(hartid_base + i);
1015 
1016             qdev_connect_gpio_out_named(dev, NULL, i,
1017                                         qdev_get_gpio_in(DEVICE(cpu),
1018                                             (mmode) ? IRQ_M_EXT : IRQ_S_EXT));
1019         }
1020     }
1021 
1022     return dev;
1023 }
1024