1 /* 2 * RISC-V ACLINT (Advanced Core Local Interruptor) 3 * URL: https://github.com/riscv/riscv-aclint 4 * 5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 6 * Copyright (c) 2017 SiFive, Inc. 7 * Copyright (c) 2021 Western Digital Corporation or its affiliates. 8 * 9 * This provides real-time clock, timer and interprocessor interrupts. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms and conditions of the GNU General Public License, 13 * version 2 or later, as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * You should have received a copy of the GNU General Public License along with 21 * this program. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "hw/sysbus.h" 30 #include "target/riscv/cpu.h" 31 #include "hw/qdev-properties.h" 32 #include "hw/intc/riscv_aclint.h" 33 #include "qemu/timer.h" 34 #include "hw/irq.h" 35 #include "migration/vmstate.h" 36 37 typedef struct riscv_aclint_mtimer_callback { 38 RISCVAclintMTimerState *s; 39 int num; 40 } riscv_aclint_mtimer_callback; 41 42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq) 43 { 44 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 45 timebase_freq, NANOSECONDS_PER_SECOND); 46 } 47 48 static uint64_t cpu_riscv_read_rtc(void *opaque) 49 { 50 RISCVAclintMTimerState *mtimer = opaque; 51 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta; 52 } 53 54 /* 55 * Called when timecmp is written to update the QEMU timer or immediately 56 * trigger timer interrupt if mtimecmp <= current timer value. 57 */ 58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer, 59 RISCVCPU *cpu, 60 int hartid, 61 uint64_t value) 62 { 63 uint32_t timebase_freq = mtimer->timebase_freq; 64 uint64_t next; 65 uint64_t diff; 66 67 uint64_t rtc_r = cpu_riscv_read_rtc(mtimer); 68 69 /* Compute the relative hartid w.r.t the socket */ 70 hartid = hartid - mtimer->hartid_base; 71 72 mtimer->timecmp[hartid] = value; 73 if (mtimer->timecmp[hartid] <= rtc_r) { 74 /* 75 * If we're setting an MTIMECMP value in the "past", 76 * immediately raise the timer interrupt 77 */ 78 qemu_irq_raise(mtimer->timer_irqs[hartid]); 79 return; 80 } 81 82 /* otherwise, set up the future timer interrupt */ 83 qemu_irq_lower(mtimer->timer_irqs[hartid]); 84 diff = mtimer->timecmp[hartid] - rtc_r; 85 /* back to ns (note args switched in muldiv64) */ 86 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq); 87 88 /* 89 * check if ns_diff overflowed and check if the addition would potentially 90 * overflow 91 */ 92 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) || 93 ns_diff > INT64_MAX) { 94 next = INT64_MAX; 95 } else { 96 /* 97 * as it is very unlikely qemu_clock_get_ns will return a value 98 * greater than INT64_MAX, no additional check is needed for an 99 * unsigned integer overflow. 100 */ 101 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff; 102 /* 103 * if ns_diff is INT64_MAX next may still be outside the range 104 * of a signed integer. 105 */ 106 next = MIN(next, INT64_MAX); 107 } 108 109 timer_mod(mtimer->timers[hartid], next); 110 } 111 112 /* 113 * Callback used when the timer set using timer_mod expires. 114 * Should raise the timer interrupt line 115 */ 116 static void riscv_aclint_mtimer_cb(void *opaque) 117 { 118 riscv_aclint_mtimer_callback *state = opaque; 119 120 qemu_irq_raise(state->s->timer_irqs[state->num]); 121 } 122 123 /* CPU read MTIMER register */ 124 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr, 125 unsigned size) 126 { 127 RISCVAclintMTimerState *mtimer = opaque; 128 129 if (addr >= mtimer->timecmp_base && 130 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 131 size_t hartid = mtimer->hartid_base + 132 ((addr - mtimer->timecmp_base) >> 3); 133 CPUState *cpu = cpu_by_arch_id(hartid); 134 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 135 if (!env) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "aclint-mtimer: invalid hartid: %zu", hartid); 138 } else if ((addr & 0x7) == 0) { 139 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */ 140 uint64_t timecmp = mtimer->timecmp[hartid]; 141 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp; 142 } else if ((addr & 0x7) == 4) { 143 /* timecmp_hi */ 144 uint64_t timecmp = mtimer->timecmp[hartid]; 145 return (timecmp >> 32) & 0xFFFFFFFF; 146 } else { 147 qemu_log_mask(LOG_UNIMP, 148 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 149 return 0; 150 } 151 } else if (addr == mtimer->time_base) { 152 /* time_lo for RV32/RV64 or timecmp for RV64 */ 153 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 154 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc; 155 } else if (addr == mtimer->time_base + 4) { 156 /* time_hi */ 157 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF; 158 } 159 160 qemu_log_mask(LOG_UNIMP, 161 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 162 return 0; 163 } 164 165 /* CPU write MTIMER register */ 166 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr, 167 uint64_t value, unsigned size) 168 { 169 RISCVAclintMTimerState *mtimer = opaque; 170 int i; 171 172 if (addr >= mtimer->timecmp_base && 173 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 174 size_t hartid = mtimer->hartid_base + 175 ((addr - mtimer->timecmp_base) >> 3); 176 CPUState *cpu = cpu_by_arch_id(hartid); 177 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 178 if (!env) { 179 qemu_log_mask(LOG_GUEST_ERROR, 180 "aclint-mtimer: invalid hartid: %zu", hartid); 181 } else if ((addr & 0x7) == 0) { 182 if (size == 4) { 183 /* timecmp_lo for RV32/RV64 */ 184 uint64_t timecmp_hi = mtimer->timecmp[hartid] >> 32; 185 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 186 timecmp_hi << 32 | (value & 0xFFFFFFFF)); 187 } else { 188 /* timecmp for RV64 */ 189 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 190 value); 191 } 192 } else if ((addr & 0x7) == 4) { 193 if (size == 4) { 194 /* timecmp_hi for RV32/RV64 */ 195 uint64_t timecmp_lo = mtimer->timecmp[hartid]; 196 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 197 value << 32 | (timecmp_lo & 0xFFFFFFFF)); 198 } else { 199 qemu_log_mask(LOG_GUEST_ERROR, 200 "aclint-mtimer: invalid timecmp_hi write: %08x", 201 (uint32_t)addr); 202 } 203 } else { 204 qemu_log_mask(LOG_UNIMP, 205 "aclint-mtimer: invalid timecmp write: %08x", 206 (uint32_t)addr); 207 } 208 return; 209 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) { 210 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq); 211 212 if (addr == mtimer->time_base) { 213 if (size == 4) { 214 /* time_lo for RV32/RV64 */ 215 mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r; 216 } else { 217 /* time for RV64 */ 218 mtimer->time_delta = value - rtc_r; 219 } 220 } else { 221 if (size == 4) { 222 /* time_hi for RV32/RV64 */ 223 mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r; 224 } else { 225 qemu_log_mask(LOG_GUEST_ERROR, 226 "aclint-mtimer: invalid time_hi write: %08x", 227 (uint32_t)addr); 228 return; 229 } 230 } 231 232 /* Check if timer interrupt is triggered for each hart. */ 233 for (i = 0; i < mtimer->num_harts; i++) { 234 CPUState *cpu = cpu_by_arch_id(mtimer->hartid_base + i); 235 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 236 if (!env) { 237 continue; 238 } 239 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), 240 mtimer->hartid_base + i, 241 mtimer->timecmp[i]); 242 } 243 return; 244 } 245 246 qemu_log_mask(LOG_UNIMP, 247 "aclint-mtimer: invalid write: %08x", (uint32_t)addr); 248 } 249 250 static const MemoryRegionOps riscv_aclint_mtimer_ops = { 251 .read = riscv_aclint_mtimer_read, 252 .write = riscv_aclint_mtimer_write, 253 .endianness = DEVICE_LITTLE_ENDIAN, 254 .valid = { 255 .min_access_size = 4, 256 .max_access_size = 8 257 }, 258 .impl = { 259 .min_access_size = 4, 260 .max_access_size = 8, 261 } 262 }; 263 264 static Property riscv_aclint_mtimer_properties[] = { 265 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState, 266 hartid_base, 0), 267 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1), 268 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState, 269 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP), 270 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState, 271 time_base, RISCV_ACLINT_DEFAULT_MTIME), 272 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState, 273 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE), 274 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState, 275 timebase_freq, 0), 276 DEFINE_PROP_END_OF_LIST(), 277 }; 278 279 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp) 280 { 281 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 282 int i; 283 284 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops, 285 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size); 286 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); 287 288 s->timer_irqs = g_new(qemu_irq, s->num_harts); 289 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts); 290 291 s->timers = g_new0(QEMUTimer *, s->num_harts); 292 s->timecmp = g_new0(uint64_t, s->num_harts); 293 /* Claim timer interrupt bits */ 294 for (i = 0; i < s->num_harts; i++) { 295 RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(s->hartid_base + i)); 296 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) { 297 error_report("MTIP already claimed"); 298 exit(1); 299 } 300 } 301 } 302 303 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type) 304 { 305 /* 306 * According to RISC-V ACLINT spec: 307 * - On MTIMER device reset, the MTIME register is cleared to zero. 308 * - On MTIMER device reset, the MTIMECMP registers are in unknown state. 309 */ 310 RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj); 311 312 /* 313 * Clear mtime register by writing to 0 it. 314 * Pending mtime interrupts will also be cleared at the same time. 315 */ 316 riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8); 317 } 318 319 static const VMStateDescription vmstate_riscv_mtimer = { 320 .name = "riscv_mtimer", 321 .version_id = 1, 322 .minimum_version_id = 1, 323 .fields = (VMStateField[]) { 324 VMSTATE_VARRAY_UINT32(timecmp, RISCVAclintMTimerState, 325 num_harts, 0, 326 vmstate_info_uint64, uint64_t), 327 VMSTATE_END_OF_LIST() 328 } 329 }; 330 331 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data) 332 { 333 DeviceClass *dc = DEVICE_CLASS(klass); 334 dc->realize = riscv_aclint_mtimer_realize; 335 device_class_set_props(dc, riscv_aclint_mtimer_properties); 336 ResettableClass *rc = RESETTABLE_CLASS(klass); 337 rc->phases.enter = riscv_aclint_mtimer_reset_enter; 338 dc->vmsd = &vmstate_riscv_mtimer; 339 } 340 341 static const TypeInfo riscv_aclint_mtimer_info = { 342 .name = TYPE_RISCV_ACLINT_MTIMER, 343 .parent = TYPE_SYS_BUS_DEVICE, 344 .instance_size = sizeof(RISCVAclintMTimerState), 345 .class_init = riscv_aclint_mtimer_class_init, 346 }; 347 348 /* 349 * Create ACLINT MTIMER device. 350 */ 351 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size, 352 uint32_t hartid_base, uint32_t num_harts, 353 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq, 354 bool provide_rdtime) 355 { 356 int i; 357 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER); 358 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 359 360 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 361 assert(!(addr & 0x7)); 362 assert(!(timecmp_base & 0x7)); 363 assert(!(time_base & 0x7)); 364 365 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 366 qdev_prop_set_uint32(dev, "num-harts", num_harts); 367 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base); 368 qdev_prop_set_uint32(dev, "time-base", time_base); 369 qdev_prop_set_uint32(dev, "aperture-size", size); 370 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq); 371 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 372 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 373 374 for (i = 0; i < num_harts; i++) { 375 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 376 RISCVCPU *rvcpu = RISCV_CPU(cpu); 377 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 378 riscv_aclint_mtimer_callback *cb = 379 g_new0(riscv_aclint_mtimer_callback, 1); 380 381 if (!env) { 382 g_free(cb); 383 continue; 384 } 385 if (provide_rdtime) { 386 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev); 387 } 388 389 cb->s = s; 390 cb->num = i; 391 s->timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 392 &riscv_aclint_mtimer_cb, cb); 393 s->timecmp[i] = 0; 394 395 qdev_connect_gpio_out(dev, i, 396 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER)); 397 } 398 399 return dev; 400 } 401 402 /* CPU read [M|S]SWI register */ 403 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr, 404 unsigned size) 405 { 406 RISCVAclintSwiState *swi = opaque; 407 408 if (addr < (swi->num_harts << 2)) { 409 size_t hartid = swi->hartid_base + (addr >> 2); 410 CPUState *cpu = cpu_by_arch_id(hartid); 411 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 412 if (!env) { 413 qemu_log_mask(LOG_GUEST_ERROR, 414 "aclint-swi: invalid hartid: %zu", hartid); 415 } else if ((addr & 0x3) == 0) { 416 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0); 417 } 418 } 419 420 qemu_log_mask(LOG_UNIMP, 421 "aclint-swi: invalid read: %08x", (uint32_t)addr); 422 return 0; 423 } 424 425 /* CPU write [M|S]SWI register */ 426 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value, 427 unsigned size) 428 { 429 RISCVAclintSwiState *swi = opaque; 430 431 if (addr < (swi->num_harts << 2)) { 432 size_t hartid = swi->hartid_base + (addr >> 2); 433 CPUState *cpu = cpu_by_arch_id(hartid); 434 CPURISCVState *env = cpu ? cpu->env_ptr : NULL; 435 if (!env) { 436 qemu_log_mask(LOG_GUEST_ERROR, 437 "aclint-swi: invalid hartid: %zu", hartid); 438 } else if ((addr & 0x3) == 0) { 439 if (value & 0x1) { 440 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]); 441 } else { 442 if (!swi->sswi) { 443 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]); 444 } 445 } 446 return; 447 } 448 } 449 450 qemu_log_mask(LOG_UNIMP, 451 "aclint-swi: invalid write: %08x", (uint32_t)addr); 452 } 453 454 static const MemoryRegionOps riscv_aclint_swi_ops = { 455 .read = riscv_aclint_swi_read, 456 .write = riscv_aclint_swi_write, 457 .endianness = DEVICE_LITTLE_ENDIAN, 458 .valid = { 459 .min_access_size = 4, 460 .max_access_size = 4 461 } 462 }; 463 464 static Property riscv_aclint_swi_properties[] = { 465 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0), 466 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1), 467 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false), 468 DEFINE_PROP_END_OF_LIST(), 469 }; 470 471 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp) 472 { 473 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev); 474 int i; 475 476 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi, 477 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE); 478 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio); 479 480 swi->soft_irqs = g_new(qemu_irq, swi->num_harts); 481 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts); 482 483 /* Claim software interrupt bits */ 484 for (i = 0; i < swi->num_harts; i++) { 485 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i)); 486 /* We don't claim mip.SSIP because it is writable by software */ 487 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) { 488 error_report("MSIP already claimed"); 489 exit(1); 490 } 491 } 492 } 493 494 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type) 495 { 496 /* 497 * According to RISC-V ACLINT spec: 498 * - On MSWI device reset, each MSIP register is cleared to zero. 499 * 500 * p.s. SSWI device reset does nothing since SETSIP register always reads 0. 501 */ 502 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj); 503 int i; 504 505 if (!swi->sswi) { 506 for (i = 0; i < swi->num_harts; i++) { 507 /* Clear MSIP registers by lowering software interrupts. */ 508 qemu_irq_lower(swi->soft_irqs[i]); 509 } 510 } 511 } 512 513 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data) 514 { 515 DeviceClass *dc = DEVICE_CLASS(klass); 516 dc->realize = riscv_aclint_swi_realize; 517 device_class_set_props(dc, riscv_aclint_swi_properties); 518 ResettableClass *rc = RESETTABLE_CLASS(klass); 519 rc->phases.enter = riscv_aclint_swi_reset_enter; 520 } 521 522 static const TypeInfo riscv_aclint_swi_info = { 523 .name = TYPE_RISCV_ACLINT_SWI, 524 .parent = TYPE_SYS_BUS_DEVICE, 525 .instance_size = sizeof(RISCVAclintSwiState), 526 .class_init = riscv_aclint_swi_class_init, 527 }; 528 529 /* 530 * Create ACLINT [M|S]SWI device. 531 */ 532 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base, 533 uint32_t num_harts, bool sswi) 534 { 535 int i; 536 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI); 537 538 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 539 assert(!(addr & 0x3)); 540 541 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 542 qdev_prop_set_uint32(dev, "num-harts", num_harts); 543 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false); 544 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 545 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 546 547 for (i = 0; i < num_harts; i++) { 548 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 549 RISCVCPU *rvcpu = RISCV_CPU(cpu); 550 551 qdev_connect_gpio_out(dev, i, 552 qdev_get_gpio_in(DEVICE(rvcpu), 553 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT)); 554 } 555 556 return dev; 557 } 558 559 static void riscv_aclint_register_types(void) 560 { 561 type_register_static(&riscv_aclint_mtimer_info); 562 type_register_static(&riscv_aclint_swi_info); 563 } 564 565 type_init(riscv_aclint_register_types) 566