xref: /openbmc/qemu/hw/intc/riscv_aclint.c (revision e2f01f3c)
1 /*
2  * RISC-V ACLINT (Advanced Core Local Interruptor)
3  * URL: https://github.com/riscv/riscv-aclint
4  *
5  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6  * Copyright (c) 2017 SiFive, Inc.
7  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8  *
9  * This provides real-time clock, timer and interprocessor interrupts.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms and conditions of the GNU General Public License,
13  * version 2 or later, as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35 
36 typedef struct riscv_aclint_mtimer_callback {
37     RISCVAclintMTimerState *s;
38     int num;
39 } riscv_aclint_mtimer_callback;
40 
41 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq)
42 {
43     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44         timebase_freq, NANOSECONDS_PER_SECOND);
45 }
46 
47 static uint64_t cpu_riscv_read_rtc(void *opaque)
48 {
49     RISCVAclintMTimerState *mtimer = opaque;
50     return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta;
51 }
52 
53 /*
54  * Called when timecmp is written to update the QEMU timer or immediately
55  * trigger timer interrupt if mtimecmp <= current timer value.
56  */
57 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
58                                               RISCVCPU *cpu,
59                                               int hartid,
60                                               uint64_t value)
61 {
62     uint32_t timebase_freq = mtimer->timebase_freq;
63     uint64_t next;
64     uint64_t diff;
65 
66     uint64_t rtc_r = cpu_riscv_read_rtc(mtimer);
67 
68     cpu->env.timecmp = value;
69     if (cpu->env.timecmp <= rtc_r) {
70         /*
71          * If we're setting an MTIMECMP value in the "past",
72          * immediately raise the timer interrupt
73          */
74         qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
75         return;
76     }
77 
78     /* otherwise, set up the future timer interrupt */
79     qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
80     diff = cpu->env.timecmp - rtc_r;
81     /* back to ns (note args switched in muldiv64) */
82     uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
83 
84     /*
85      * check if ns_diff overflowed and check if the addition would potentially
86      * overflow
87      */
88     if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
89         ns_diff > INT64_MAX) {
90         next = INT64_MAX;
91     } else {
92         /*
93          * as it is very unlikely qemu_clock_get_ns will return a value
94          * greater than INT64_MAX, no additional check is needed for an
95          * unsigned integer overflow.
96          */
97         next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
98         /*
99          * if ns_diff is INT64_MAX next may still be outside the range
100          * of a signed integer.
101          */
102         next = MIN(next, INT64_MAX);
103     }
104 
105     timer_mod(cpu->env.timer, next);
106 }
107 
108 /*
109  * Callback used when the timer set using timer_mod expires.
110  * Should raise the timer interrupt line
111  */
112 static void riscv_aclint_mtimer_cb(void *opaque)
113 {
114     riscv_aclint_mtimer_callback *state = opaque;
115 
116     qemu_irq_raise(state->s->timer_irqs[state->num]);
117 }
118 
119 /* CPU read MTIMER register */
120 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
121     unsigned size)
122 {
123     RISCVAclintMTimerState *mtimer = opaque;
124 
125     if (addr >= mtimer->timecmp_base &&
126         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
127         size_t hartid = mtimer->hartid_base +
128                         ((addr - mtimer->timecmp_base) >> 3);
129         CPUState *cpu = qemu_get_cpu(hartid);
130         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
131         if (!env) {
132             qemu_log_mask(LOG_GUEST_ERROR,
133                           "aclint-mtimer: invalid hartid: %zu", hartid);
134         } else if ((addr & 0x7) == 0) {
135             /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
136             uint64_t timecmp = env->timecmp;
137             return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
138         } else if ((addr & 0x7) == 4) {
139             /* timecmp_hi */
140             uint64_t timecmp = env->timecmp;
141             return (timecmp >> 32) & 0xFFFFFFFF;
142         } else {
143             qemu_log_mask(LOG_UNIMP,
144                           "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
145             return 0;
146         }
147     } else if (addr == mtimer->time_base) {
148         /* time_lo for RV32/RV64 or timecmp for RV64 */
149         uint64_t rtc = cpu_riscv_read_rtc(mtimer);
150         return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
151     } else if (addr == mtimer->time_base + 4) {
152         /* time_hi */
153         return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF;
154     }
155 
156     qemu_log_mask(LOG_UNIMP,
157                   "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
158     return 0;
159 }
160 
161 /* CPU write MTIMER register */
162 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
163     uint64_t value, unsigned size)
164 {
165     RISCVAclintMTimerState *mtimer = opaque;
166     int i;
167 
168     if (addr >= mtimer->timecmp_base &&
169         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
170         size_t hartid = mtimer->hartid_base +
171                         ((addr - mtimer->timecmp_base) >> 3);
172         CPUState *cpu = qemu_get_cpu(hartid);
173         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
174         if (!env) {
175             qemu_log_mask(LOG_GUEST_ERROR,
176                           "aclint-mtimer: invalid hartid: %zu", hartid);
177         } else if ((addr & 0x7) == 0) {
178             if (size == 4) {
179                 /* timecmp_lo for RV32/RV64 */
180                 uint64_t timecmp_hi = env->timecmp >> 32;
181                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
182                     timecmp_hi << 32 | (value & 0xFFFFFFFF));
183             } else {
184                 /* timecmp for RV64 */
185                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
186                                                   value);
187             }
188         } else if ((addr & 0x7) == 4) {
189             if (size == 4) {
190                 /* timecmp_hi for RV32/RV64 */
191                 uint64_t timecmp_lo = env->timecmp;
192                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
193                     value << 32 | (timecmp_lo & 0xFFFFFFFF));
194             } else {
195                 qemu_log_mask(LOG_GUEST_ERROR,
196                               "aclint-mtimer: invalid timecmp_hi write: %08x",
197                               (uint32_t)addr);
198             }
199         } else {
200             qemu_log_mask(LOG_UNIMP,
201                           "aclint-mtimer: invalid timecmp write: %08x",
202                           (uint32_t)addr);
203         }
204         return;
205     } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) {
206         uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq);
207 
208         if (addr == mtimer->time_base) {
209             if (size == 4) {
210                 /* time_lo for RV32/RV64 */
211                 mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r;
212             } else {
213                 /* time for RV64 */
214                 mtimer->time_delta = value - rtc_r;
215             }
216         } else {
217             if (size == 4) {
218                 /* time_hi for RV32/RV64 */
219                 mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r;
220             } else {
221                 qemu_log_mask(LOG_GUEST_ERROR,
222                               "aclint-mtimer: invalid time_hi write: %08x",
223                               (uint32_t)addr);
224                 return;
225             }
226         }
227 
228         /* Check if timer interrupt is triggered for each hart. */
229         for (i = 0; i < mtimer->num_harts; i++) {
230             CPUState *cpu = qemu_get_cpu(mtimer->hartid_base + i);
231             CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
232             if (!env) {
233                 continue;
234             }
235             riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu),
236                                               i, env->timecmp);
237         }
238         return;
239     }
240 
241     qemu_log_mask(LOG_UNIMP,
242                   "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
243 }
244 
245 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
246     .read = riscv_aclint_mtimer_read,
247     .write = riscv_aclint_mtimer_write,
248     .endianness = DEVICE_LITTLE_ENDIAN,
249     .valid = {
250         .min_access_size = 4,
251         .max_access_size = 8
252     },
253     .impl = {
254         .min_access_size = 4,
255         .max_access_size = 8,
256     }
257 };
258 
259 static Property riscv_aclint_mtimer_properties[] = {
260     DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
261         hartid_base, 0),
262     DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
263     DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
264         timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
265     DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
266         time_base, RISCV_ACLINT_DEFAULT_MTIME),
267     DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
268         aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
269     DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
270         timebase_freq, 0),
271     DEFINE_PROP_END_OF_LIST(),
272 };
273 
274 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
275 {
276     RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
277     int i;
278 
279     memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
280                           s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
281     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
282 
283     s->timer_irqs = g_new(qemu_irq, s->num_harts);
284     qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
285 
286     /* Claim timer interrupt bits */
287     for (i = 0; i < s->num_harts; i++) {
288         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
289         if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
290             error_report("MTIP already claimed");
291             exit(1);
292         }
293     }
294 }
295 
296 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
297 {
298     DeviceClass *dc = DEVICE_CLASS(klass);
299     dc->realize = riscv_aclint_mtimer_realize;
300     device_class_set_props(dc, riscv_aclint_mtimer_properties);
301 }
302 
303 static const TypeInfo riscv_aclint_mtimer_info = {
304     .name          = TYPE_RISCV_ACLINT_MTIMER,
305     .parent        = TYPE_SYS_BUS_DEVICE,
306     .instance_size = sizeof(RISCVAclintMTimerState),
307     .class_init    = riscv_aclint_mtimer_class_init,
308 };
309 
310 /*
311  * Create ACLINT MTIMER device.
312  */
313 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
314     uint32_t hartid_base, uint32_t num_harts,
315     uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
316     bool provide_rdtime)
317 {
318     int i;
319     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
320 
321     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
322     assert(!(addr & 0x7));
323     assert(!(timecmp_base & 0x7));
324     assert(!(time_base & 0x7));
325 
326     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
327     qdev_prop_set_uint32(dev, "num-harts", num_harts);
328     qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
329     qdev_prop_set_uint32(dev, "time-base", time_base);
330     qdev_prop_set_uint32(dev, "aperture-size", size);
331     qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
332     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
333     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
334 
335     for (i = 0; i < num_harts; i++) {
336         CPUState *cpu = qemu_get_cpu(hartid_base + i);
337         RISCVCPU *rvcpu = RISCV_CPU(cpu);
338         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
339         riscv_aclint_mtimer_callback *cb =
340             g_new0(riscv_aclint_mtimer_callback, 1);
341 
342         if (!env) {
343             g_free(cb);
344             continue;
345         }
346         if (provide_rdtime) {
347             riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev);
348         }
349 
350         cb->s = RISCV_ACLINT_MTIMER(dev);
351         cb->num = i;
352         env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
353                                   &riscv_aclint_mtimer_cb, cb);
354         env->timecmp = 0;
355 
356         qdev_connect_gpio_out(dev, i,
357                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
358     }
359 
360     return dev;
361 }
362 
363 /* CPU read [M|S]SWI register */
364 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
365     unsigned size)
366 {
367     RISCVAclintSwiState *swi = opaque;
368 
369     if (addr < (swi->num_harts << 2)) {
370         size_t hartid = swi->hartid_base + (addr >> 2);
371         CPUState *cpu = qemu_get_cpu(hartid);
372         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
373         if (!env) {
374             qemu_log_mask(LOG_GUEST_ERROR,
375                           "aclint-swi: invalid hartid: %zu", hartid);
376         } else if ((addr & 0x3) == 0) {
377             return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
378         }
379     }
380 
381     qemu_log_mask(LOG_UNIMP,
382                   "aclint-swi: invalid read: %08x", (uint32_t)addr);
383     return 0;
384 }
385 
386 /* CPU write [M|S]SWI register */
387 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
388         unsigned size)
389 {
390     RISCVAclintSwiState *swi = opaque;
391 
392     if (addr < (swi->num_harts << 2)) {
393         size_t hartid = swi->hartid_base + (addr >> 2);
394         CPUState *cpu = qemu_get_cpu(hartid);
395         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
396         if (!env) {
397             qemu_log_mask(LOG_GUEST_ERROR,
398                           "aclint-swi: invalid hartid: %zu", hartid);
399         } else if ((addr & 0x3) == 0) {
400             if (value & 0x1) {
401                 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
402             } else {
403                 if (!swi->sswi) {
404                     qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
405                 }
406             }
407             return;
408         }
409     }
410 
411     qemu_log_mask(LOG_UNIMP,
412                   "aclint-swi: invalid write: %08x", (uint32_t)addr);
413 }
414 
415 static const MemoryRegionOps riscv_aclint_swi_ops = {
416     .read = riscv_aclint_swi_read,
417     .write = riscv_aclint_swi_write,
418     .endianness = DEVICE_LITTLE_ENDIAN,
419     .valid = {
420         .min_access_size = 4,
421         .max_access_size = 4
422     }
423 };
424 
425 static Property riscv_aclint_swi_properties[] = {
426     DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
427     DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
428     DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
429     DEFINE_PROP_END_OF_LIST(),
430 };
431 
432 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
433 {
434     RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
435     int i;
436 
437     memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
438                           TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
439     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
440 
441     swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
442     qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
443 
444     /* Claim software interrupt bits */
445     for (i = 0; i < swi->num_harts; i++) {
446         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
447         /* We don't claim mip.SSIP because it is writeable by software */
448         if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
449             error_report("MSIP already claimed");
450             exit(1);
451         }
452     }
453 }
454 
455 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
456 {
457     DeviceClass *dc = DEVICE_CLASS(klass);
458     dc->realize = riscv_aclint_swi_realize;
459     device_class_set_props(dc, riscv_aclint_swi_properties);
460 }
461 
462 static const TypeInfo riscv_aclint_swi_info = {
463     .name          = TYPE_RISCV_ACLINT_SWI,
464     .parent        = TYPE_SYS_BUS_DEVICE,
465     .instance_size = sizeof(RISCVAclintSwiState),
466     .class_init    = riscv_aclint_swi_class_init,
467 };
468 
469 /*
470  * Create ACLINT [M|S]SWI device.
471  */
472 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
473     uint32_t num_harts, bool sswi)
474 {
475     int i;
476     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
477 
478     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
479     assert(!(addr & 0x3));
480 
481     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
482     qdev_prop_set_uint32(dev, "num-harts", num_harts);
483     qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
484     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
485     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
486 
487     for (i = 0; i < num_harts; i++) {
488         CPUState *cpu = qemu_get_cpu(hartid_base + i);
489         RISCVCPU *rvcpu = RISCV_CPU(cpu);
490 
491         qdev_connect_gpio_out(dev, i,
492                               qdev_get_gpio_in(DEVICE(rvcpu),
493                                   (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
494     }
495 
496     return dev;
497 }
498 
499 static void riscv_aclint_register_types(void)
500 {
501     type_register_static(&riscv_aclint_mtimer_info);
502     type_register_static(&riscv_aclint_swi_info);
503 }
504 
505 type_init(riscv_aclint_register_types)
506