xref: /openbmc/qemu/hw/intc/riscv_aclint.c (revision cc63a18282d8e8cd96d8bf26c29cad2e879ff9f6)
1 /*
2  * SiFive CLINT (Core Local Interruptor)
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017 SiFive, Inc.
6  *
7  * This provides real-time clock, timer and interprocessor interrupts.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/module.h"
26 #include "hw/sysbus.h"
27 #include "target/riscv/cpu.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/intc/riscv_aclint.h"
30 #include "qemu/timer.h"
31 #include "hw/irq.h"
32 
33 typedef struct sifive_clint_callback {
34     SiFiveCLINTState *s;
35     int num;
36 } sifive_clint_callback;
37 
38 static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
39 {
40     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
41         timebase_freq, NANOSECONDS_PER_SECOND);
42 }
43 
44 /*
45  * Called when timecmp is written to update the QEMU timer or immediately
46  * trigger timer interrupt if mtimecmp <= current timer value.
47  */
48 static void sifive_clint_write_timecmp(SiFiveCLINTState *s, RISCVCPU *cpu,
49                                        int hartid,
50                                        uint64_t value,
51                                        uint32_t timebase_freq)
52 {
53     uint64_t next;
54     uint64_t diff;
55 
56     uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
57 
58     cpu->env.timecmp = value;
59     if (cpu->env.timecmp <= rtc_r) {
60         /* if we're setting an MTIMECMP value in the "past",
61            immediately raise the timer interrupt */
62         qemu_irq_raise(s->timer_irqs[hartid - s->hartid_base]);
63         return;
64     }
65 
66     /* otherwise, set up the future timer interrupt */
67     qemu_irq_lower(s->timer_irqs[hartid - s->hartid_base]);
68     diff = cpu->env.timecmp - rtc_r;
69     /* back to ns (note args switched in muldiv64) */
70     uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
71 
72     /*
73      * check if ns_diff overflowed and check if the addition would potentially
74      * overflow
75      */
76     if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
77         ns_diff > INT64_MAX) {
78         next = INT64_MAX;
79     } else {
80         /*
81          * as it is very unlikely qemu_clock_get_ns will return a value
82          * greater than INT64_MAX, no additional check is needed for an
83          * unsigned integer overflow.
84          */
85         next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
86         /*
87          * if ns_diff is INT64_MAX next may still be outside the range
88          * of a signed integer.
89          */
90         next = MIN(next, INT64_MAX);
91     }
92 
93     timer_mod(cpu->env.timer, next);
94 }
95 
96 /*
97  * Callback used when the timer set using timer_mod expires.
98  * Should raise the timer interrupt line
99  */
100 static void sifive_clint_timer_cb(void *opaque)
101 {
102     sifive_clint_callback *state = opaque;
103 
104     qemu_irq_raise(state->s->timer_irqs[state->num]);
105 }
106 
107 /* CPU wants to read rtc or timecmp register */
108 static uint64_t sifive_clint_read(void *opaque, hwaddr addr, unsigned size)
109 {
110     SiFiveCLINTState *clint = opaque;
111     if (addr >= clint->sip_base &&
112         addr < clint->sip_base + (clint->num_harts << 2)) {
113         size_t hartid = clint->hartid_base + ((addr - clint->sip_base) >> 2);
114         CPUState *cpu = qemu_get_cpu(hartid);
115         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
116         if (!env) {
117             error_report("clint: invalid timecmp hartid: %zu", hartid);
118         } else if ((addr & 0x3) == 0) {
119             return (env->mip & MIP_MSIP) > 0;
120         } else {
121             error_report("clint: invalid read: %08x", (uint32_t)addr);
122             return 0;
123         }
124     } else if (addr >= clint->timecmp_base &&
125         addr < clint->timecmp_base + (clint->num_harts << 3)) {
126         size_t hartid = clint->hartid_base +
127             ((addr - clint->timecmp_base) >> 3);
128         CPUState *cpu = qemu_get_cpu(hartid);
129         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
130         if (!env) {
131             error_report("clint: invalid timecmp hartid: %zu", hartid);
132         } else if ((addr & 0x7) == 0) {
133             /* timecmp_lo */
134             uint64_t timecmp = env->timecmp;
135             return timecmp & 0xFFFFFFFF;
136         } else if ((addr & 0x7) == 4) {
137             /* timecmp_hi */
138             uint64_t timecmp = env->timecmp;
139             return (timecmp >> 32) & 0xFFFFFFFF;
140         } else {
141             error_report("clint: invalid read: %08x", (uint32_t)addr);
142             return 0;
143         }
144     } else if (addr == clint->time_base) {
145         /* time_lo */
146         return cpu_riscv_read_rtc(clint->timebase_freq) & 0xFFFFFFFF;
147     } else if (addr == clint->time_base + 4) {
148         /* time_hi */
149         return (cpu_riscv_read_rtc(clint->timebase_freq) >> 32) & 0xFFFFFFFF;
150     }
151 
152     error_report("clint: invalid read: %08x", (uint32_t)addr);
153     return 0;
154 }
155 
156 /* CPU wrote to rtc or timecmp register */
157 static void sifive_clint_write(void *opaque, hwaddr addr, uint64_t value,
158         unsigned size)
159 {
160     SiFiveCLINTState *clint = opaque;
161 
162     if (addr >= clint->sip_base &&
163         addr < clint->sip_base + (clint->num_harts << 2)) {
164         size_t hartid = clint->hartid_base + ((addr - clint->sip_base) >> 2);
165         CPUState *cpu = qemu_get_cpu(hartid);
166         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
167         if (!env) {
168             error_report("clint: invalid timecmp hartid: %zu", hartid);
169         } else if ((addr & 0x3) == 0) {
170             qemu_set_irq(clint->soft_irqs[hartid - clint->hartid_base], value);
171         } else {
172             error_report("clint: invalid sip write: %08x", (uint32_t)addr);
173         }
174         return;
175     } else if (addr >= clint->timecmp_base &&
176         addr < clint->timecmp_base + (clint->num_harts << 3)) {
177         size_t hartid = clint->hartid_base +
178             ((addr - clint->timecmp_base) >> 3);
179         CPUState *cpu = qemu_get_cpu(hartid);
180         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
181         if (!env) {
182             error_report("clint: invalid timecmp hartid: %zu", hartid);
183         } else if ((addr & 0x7) == 0) {
184             /* timecmp_lo */
185             uint64_t timecmp_hi = env->timecmp >> 32;
186             sifive_clint_write_timecmp(clint, RISCV_CPU(cpu), hartid,
187                 timecmp_hi << 32 | (value & 0xFFFFFFFF), clint->timebase_freq);
188             return;
189         } else if ((addr & 0x7) == 4) {
190             /* timecmp_hi */
191             uint64_t timecmp_lo = env->timecmp;
192             sifive_clint_write_timecmp(clint, RISCV_CPU(cpu), hartid,
193                 value << 32 | (timecmp_lo & 0xFFFFFFFF), clint->timebase_freq);
194         } else {
195             error_report("clint: invalid timecmp write: %08x", (uint32_t)addr);
196         }
197         return;
198     } else if (addr == clint->time_base) {
199         /* time_lo */
200         error_report("clint: time_lo write not implemented");
201         return;
202     } else if (addr == clint->time_base + 4) {
203         /* time_hi */
204         error_report("clint: time_hi write not implemented");
205         return;
206     }
207 
208     error_report("clint: invalid write: %08x", (uint32_t)addr);
209 }
210 
211 static const MemoryRegionOps sifive_clint_ops = {
212     .read = sifive_clint_read,
213     .write = sifive_clint_write,
214     .endianness = DEVICE_LITTLE_ENDIAN,
215     .valid = {
216         .min_access_size = 4,
217         .max_access_size = 8
218     }
219 };
220 
221 static Property sifive_clint_properties[] = {
222     DEFINE_PROP_UINT32("hartid-base", SiFiveCLINTState, hartid_base, 0),
223     DEFINE_PROP_UINT32("num-harts", SiFiveCLINTState, num_harts, 0),
224     DEFINE_PROP_UINT32("sip-base", SiFiveCLINTState, sip_base, 0),
225     DEFINE_PROP_UINT32("timecmp-base", SiFiveCLINTState, timecmp_base, 0),
226     DEFINE_PROP_UINT32("time-base", SiFiveCLINTState, time_base, 0),
227     DEFINE_PROP_UINT32("aperture-size", SiFiveCLINTState, aperture_size, 0),
228     DEFINE_PROP_UINT32("timebase-freq", SiFiveCLINTState, timebase_freq, 0),
229     DEFINE_PROP_END_OF_LIST(),
230 };
231 
232 static void sifive_clint_realize(DeviceState *dev, Error **errp)
233 {
234     SiFiveCLINTState *s = SIFIVE_CLINT(dev);
235     memory_region_init_io(&s->mmio, OBJECT(dev), &sifive_clint_ops, s,
236                           TYPE_SIFIVE_CLINT, s->aperture_size);
237     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
238 
239     s->timer_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
240     qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
241 
242     s->soft_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
243     qdev_init_gpio_out(dev, s->soft_irqs, s->num_harts);
244 }
245 
246 static void sifive_clint_class_init(ObjectClass *klass, void *data)
247 {
248     DeviceClass *dc = DEVICE_CLASS(klass);
249     dc->realize = sifive_clint_realize;
250     device_class_set_props(dc, sifive_clint_properties);
251 }
252 
253 static const TypeInfo sifive_clint_info = {
254     .name          = TYPE_SIFIVE_CLINT,
255     .parent        = TYPE_SYS_BUS_DEVICE,
256     .instance_size = sizeof(SiFiveCLINTState),
257     .class_init    = sifive_clint_class_init,
258 };
259 
260 static void sifive_clint_register_types(void)
261 {
262     type_register_static(&sifive_clint_info);
263 }
264 
265 type_init(sifive_clint_register_types)
266 
267 /*
268  * Create CLINT device.
269  */
270 DeviceState *sifive_clint_create(hwaddr addr, hwaddr size,
271     uint32_t hartid_base, uint32_t num_harts, uint32_t sip_base,
272     uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
273     bool provide_rdtime)
274 {
275     int i;
276 
277     DeviceState *dev = qdev_new(TYPE_SIFIVE_CLINT);
278     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
279     qdev_prop_set_uint32(dev, "num-harts", num_harts);
280     qdev_prop_set_uint32(dev, "sip-base", sip_base);
281     qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
282     qdev_prop_set_uint32(dev, "time-base", time_base);
283     qdev_prop_set_uint32(dev, "aperture-size", size);
284     qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
285     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
286     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
287 
288     for (i = 0; i < num_harts; i++) {
289         CPUState *cpu = qemu_get_cpu(hartid_base + i);
290         RISCVCPU *rvcpu = RISCV_CPU(cpu);
291         CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
292         sifive_clint_callback *cb = g_malloc0(sizeof(sifive_clint_callback));
293 
294         if (!env) {
295             g_free(cb);
296             continue;
297         }
298         if (provide_rdtime) {
299             riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
300         }
301 
302         cb->s = SIFIVE_CLINT(dev);
303         cb->num = i;
304         env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
305                                   &sifive_clint_timer_cb, cb);
306         env->timecmp = 0;
307 
308         qdev_connect_gpio_out(dev, i,
309                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
310         qdev_connect_gpio_out(dev, num_harts + i,
311                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_SOFT));
312     }
313 
314     return dev;
315 }
316