xref: /openbmc/qemu/hw/intc/riscv_aclint.c (revision bf616ce4)
1 /*
2  * RISC-V ACLINT (Advanced Core Local Interruptor)
3  * URL: https://github.com/riscv/riscv-aclint
4  *
5  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6  * Copyright (c) 2017 SiFive, Inc.
7  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8  *
9  * This provides real-time clock, timer and interprocessor interrupts.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms and conditions of the GNU General Public License,
13  * version 2 or later, as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35 #include "migration/vmstate.h"
36 
37 typedef struct riscv_aclint_mtimer_callback {
38     RISCVAclintMTimerState *s;
39     int num;
40 } riscv_aclint_mtimer_callback;
41 
42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq)
43 {
44     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
45         timebase_freq, NANOSECONDS_PER_SECOND);
46 }
47 
48 static uint64_t cpu_riscv_read_rtc(void *opaque)
49 {
50     RISCVAclintMTimerState *mtimer = opaque;
51     return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta;
52 }
53 
54 /*
55  * Called when timecmp is written to update the QEMU timer or immediately
56  * trigger timer interrupt if mtimecmp <= current timer value.
57  */
58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
59                                               RISCVCPU *cpu,
60                                               int hartid,
61                                               uint64_t value)
62 {
63     uint32_t timebase_freq = mtimer->timebase_freq;
64     uint64_t next;
65     uint64_t diff;
66 
67     uint64_t rtc = cpu_riscv_read_rtc(mtimer);
68 
69     /* Compute the relative hartid w.r.t the socket */
70     hartid = hartid - mtimer->hartid_base;
71 
72     mtimer->timecmp[hartid] = value;
73     if (mtimer->timecmp[hartid] <= rtc) {
74         /*
75          * If we're setting an MTIMECMP value in the "past",
76          * immediately raise the timer interrupt
77          */
78         qemu_irq_raise(mtimer->timer_irqs[hartid]);
79         return;
80     }
81 
82     /* otherwise, set up the future timer interrupt */
83     qemu_irq_lower(mtimer->timer_irqs[hartid]);
84     diff = mtimer->timecmp[hartid] - rtc;
85     /* back to ns (note args switched in muldiv64) */
86     uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
87 
88     /*
89      * check if ns_diff overflowed and check if the addition would potentially
90      * overflow
91      */
92     if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
93         ns_diff > INT64_MAX) {
94         next = INT64_MAX;
95     } else {
96         /*
97          * as it is very unlikely qemu_clock_get_ns will return a value
98          * greater than INT64_MAX, no additional check is needed for an
99          * unsigned integer overflow.
100          */
101         next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
102         /*
103          * if ns_diff is INT64_MAX next may still be outside the range
104          * of a signed integer.
105          */
106         next = MIN(next, INT64_MAX);
107     }
108 
109     timer_mod(mtimer->timers[hartid], next);
110 }
111 
112 /*
113  * Callback used when the timer set using timer_mod expires.
114  * Should raise the timer interrupt line
115  */
116 static void riscv_aclint_mtimer_cb(void *opaque)
117 {
118     riscv_aclint_mtimer_callback *state = opaque;
119 
120     qemu_irq_raise(state->s->timer_irqs[state->num]);
121 }
122 
123 /* CPU read MTIMER register */
124 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
125     unsigned size)
126 {
127     RISCVAclintMTimerState *mtimer = opaque;
128 
129     if (addr >= mtimer->timecmp_base &&
130         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
131         size_t hartid = mtimer->hartid_base +
132                         ((addr - mtimer->timecmp_base) >> 3);
133         CPUState *cpu = cpu_by_arch_id(hartid);
134         CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
135         if (!env) {
136             qemu_log_mask(LOG_GUEST_ERROR,
137                           "aclint-mtimer: invalid hartid: %zu", hartid);
138         } else if ((addr & 0x7) == 0) {
139             /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
140             uint64_t timecmp = mtimer->timecmp[hartid];
141             return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
142         } else if ((addr & 0x7) == 4) {
143             /* timecmp_hi */
144             uint64_t timecmp = mtimer->timecmp[hartid];
145             return (timecmp >> 32) & 0xFFFFFFFF;
146         } else {
147             qemu_log_mask(LOG_UNIMP,
148                           "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
149             return 0;
150         }
151     } else if (addr == mtimer->time_base) {
152         /* time_lo for RV32/RV64 or timecmp for RV64 */
153         uint64_t rtc = cpu_riscv_read_rtc(mtimer);
154         return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
155     } else if (addr == mtimer->time_base + 4) {
156         /* time_hi */
157         return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF;
158     }
159 
160     qemu_log_mask(LOG_UNIMP,
161                   "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
162     return 0;
163 }
164 
165 /* CPU write MTIMER register */
166 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
167     uint64_t value, unsigned size)
168 {
169     RISCVAclintMTimerState *mtimer = opaque;
170     int i;
171 
172     if (addr >= mtimer->timecmp_base &&
173         addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
174         size_t hartid = mtimer->hartid_base +
175                         ((addr - mtimer->timecmp_base) >> 3);
176         CPUState *cpu = cpu_by_arch_id(hartid);
177         CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
178         if (!env) {
179             qemu_log_mask(LOG_GUEST_ERROR,
180                           "aclint-mtimer: invalid hartid: %zu", hartid);
181         } else if ((addr & 0x7) == 0) {
182             if (size == 4) {
183                 /* timecmp_lo for RV32/RV64 */
184                 uint64_t timecmp_hi = mtimer->timecmp[hartid] >> 32;
185                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
186                     timecmp_hi << 32 | (value & 0xFFFFFFFF));
187             } else {
188                 /* timecmp for RV64 */
189                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
190                                                   value);
191             }
192         } else if ((addr & 0x7) == 4) {
193             if (size == 4) {
194                 /* timecmp_hi for RV32/RV64 */
195                 uint64_t timecmp_lo = mtimer->timecmp[hartid];
196                 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
197                     value << 32 | (timecmp_lo & 0xFFFFFFFF));
198             } else {
199                 qemu_log_mask(LOG_GUEST_ERROR,
200                               "aclint-mtimer: invalid timecmp_hi write: %08x",
201                               (uint32_t)addr);
202             }
203         } else {
204             qemu_log_mask(LOG_UNIMP,
205                           "aclint-mtimer: invalid timecmp write: %08x",
206                           (uint32_t)addr);
207         }
208         return;
209     } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) {
210         uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq);
211         uint64_t rtc = cpu_riscv_read_rtc(mtimer);
212 
213         if (addr == mtimer->time_base) {
214             if (size == 4) {
215                 /* time_lo for RV32/RV64 */
216                 mtimer->time_delta = ((rtc & ~0xFFFFFFFFULL) | value) - rtc_r;
217             } else {
218                 /* time for RV64 */
219                 mtimer->time_delta = value - rtc_r;
220             }
221         } else {
222             if (size == 4) {
223                 /* time_hi for RV32/RV64 */
224                 mtimer->time_delta = (value << 32 | (rtc & 0xFFFFFFFF)) - rtc_r;
225             } else {
226                 qemu_log_mask(LOG_GUEST_ERROR,
227                               "aclint-mtimer: invalid time_hi write: %08x",
228                               (uint32_t)addr);
229                 return;
230             }
231         }
232 
233         /* Check if timer interrupt is triggered for each hart. */
234         for (i = 0; i < mtimer->num_harts; i++) {
235             CPUState *cpu = cpu_by_arch_id(mtimer->hartid_base + i);
236             CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
237             if (!env) {
238                 continue;
239             }
240             riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu),
241                                               mtimer->hartid_base + i,
242                                               mtimer->timecmp[i]);
243         }
244         return;
245     }
246 
247     qemu_log_mask(LOG_UNIMP,
248                   "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
249 }
250 
251 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
252     .read = riscv_aclint_mtimer_read,
253     .write = riscv_aclint_mtimer_write,
254     .endianness = DEVICE_LITTLE_ENDIAN,
255     .valid = {
256         .min_access_size = 4,
257         .max_access_size = 8
258     },
259     .impl = {
260         .min_access_size = 4,
261         .max_access_size = 8,
262     }
263 };
264 
265 static Property riscv_aclint_mtimer_properties[] = {
266     DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
267         hartid_base, 0),
268     DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
269     DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
270         timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
271     DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
272         time_base, RISCV_ACLINT_DEFAULT_MTIME),
273     DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
274         aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
275     DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
276         timebase_freq, 0),
277     DEFINE_PROP_END_OF_LIST(),
278 };
279 
280 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
281 {
282     RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
283     int i;
284 
285     memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
286                           s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
287     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
288 
289     s->timer_irqs = g_new(qemu_irq, s->num_harts);
290     qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
291 
292     s->timers = g_new0(QEMUTimer *, s->num_harts);
293     s->timecmp = g_new0(uint64_t, s->num_harts);
294     /* Claim timer interrupt bits */
295     for (i = 0; i < s->num_harts; i++) {
296         RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(s->hartid_base + i));
297         if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
298             error_report("MTIP already claimed");
299             exit(1);
300         }
301     }
302 }
303 
304 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type)
305 {
306     /*
307      * According to RISC-V ACLINT spec:
308      *   - On MTIMER device reset, the MTIME register is cleared to zero.
309      *   - On MTIMER device reset, the MTIMECMP registers are in unknown state.
310      */
311     RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj);
312 
313     /*
314      * Clear mtime register by writing to 0 it.
315      * Pending mtime interrupts will also be cleared at the same time.
316      */
317     riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8);
318 }
319 
320 static const VMStateDescription vmstate_riscv_mtimer = {
321     .name = "riscv_mtimer",
322     .version_id = 1,
323     .minimum_version_id = 1,
324     .fields = (const VMStateField[]) {
325             VMSTATE_VARRAY_UINT32(timecmp, RISCVAclintMTimerState,
326                                   num_harts, 0,
327                                   vmstate_info_uint64, uint64_t),
328             VMSTATE_END_OF_LIST()
329         }
330 };
331 
332 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
333 {
334     DeviceClass *dc = DEVICE_CLASS(klass);
335     dc->realize = riscv_aclint_mtimer_realize;
336     device_class_set_props(dc, riscv_aclint_mtimer_properties);
337     ResettableClass *rc = RESETTABLE_CLASS(klass);
338     rc->phases.enter = riscv_aclint_mtimer_reset_enter;
339     dc->vmsd = &vmstate_riscv_mtimer;
340 }
341 
342 static const TypeInfo riscv_aclint_mtimer_info = {
343     .name          = TYPE_RISCV_ACLINT_MTIMER,
344     .parent        = TYPE_SYS_BUS_DEVICE,
345     .instance_size = sizeof(RISCVAclintMTimerState),
346     .class_init    = riscv_aclint_mtimer_class_init,
347 };
348 
349 /*
350  * Create ACLINT MTIMER device.
351  */
352 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
353     uint32_t hartid_base, uint32_t num_harts,
354     uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
355     bool provide_rdtime)
356 {
357     int i;
358     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
359     RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
360 
361     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
362     assert(!(addr & 0x7));
363     assert(!(timecmp_base & 0x7));
364     assert(!(time_base & 0x7));
365 
366     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
367     qdev_prop_set_uint32(dev, "num-harts", num_harts);
368     qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
369     qdev_prop_set_uint32(dev, "time-base", time_base);
370     qdev_prop_set_uint32(dev, "aperture-size", size);
371     qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
372     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
373     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
374 
375     for (i = 0; i < num_harts; i++) {
376         CPUState *cpu = cpu_by_arch_id(hartid_base + i);
377         RISCVCPU *rvcpu = RISCV_CPU(cpu);
378         CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
379         riscv_aclint_mtimer_callback *cb =
380             g_new0(riscv_aclint_mtimer_callback, 1);
381 
382         if (!env) {
383             g_free(cb);
384             continue;
385         }
386         if (provide_rdtime) {
387             riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev);
388         }
389 
390         cb->s = s;
391         cb->num = i;
392         s->timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
393                                   &riscv_aclint_mtimer_cb, cb);
394         s->timecmp[i] = 0;
395 
396         qdev_connect_gpio_out(dev, i,
397                               qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
398     }
399 
400     return dev;
401 }
402 
403 /* CPU read [M|S]SWI register */
404 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
405     unsigned size)
406 {
407     RISCVAclintSwiState *swi = opaque;
408 
409     if (addr < (swi->num_harts << 2)) {
410         size_t hartid = swi->hartid_base + (addr >> 2);
411         CPUState *cpu = cpu_by_arch_id(hartid);
412         CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
413         if (!env) {
414             qemu_log_mask(LOG_GUEST_ERROR,
415                           "aclint-swi: invalid hartid: %zu", hartid);
416         } else if ((addr & 0x3) == 0) {
417             return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
418         }
419     }
420 
421     qemu_log_mask(LOG_UNIMP,
422                   "aclint-swi: invalid read: %08x", (uint32_t)addr);
423     return 0;
424 }
425 
426 /* CPU write [M|S]SWI register */
427 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
428         unsigned size)
429 {
430     RISCVAclintSwiState *swi = opaque;
431 
432     if (addr < (swi->num_harts << 2)) {
433         size_t hartid = swi->hartid_base + (addr >> 2);
434         CPUState *cpu = cpu_by_arch_id(hartid);
435         CPURISCVState *env = cpu ? cpu_env(cpu) : NULL;
436         if (!env) {
437             qemu_log_mask(LOG_GUEST_ERROR,
438                           "aclint-swi: invalid hartid: %zu", hartid);
439         } else if ((addr & 0x3) == 0) {
440             if (value & 0x1) {
441                 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
442             } else {
443                 if (!swi->sswi) {
444                     qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
445                 }
446             }
447             return;
448         }
449     }
450 
451     qemu_log_mask(LOG_UNIMP,
452                   "aclint-swi: invalid write: %08x", (uint32_t)addr);
453 }
454 
455 static const MemoryRegionOps riscv_aclint_swi_ops = {
456     .read = riscv_aclint_swi_read,
457     .write = riscv_aclint_swi_write,
458     .endianness = DEVICE_LITTLE_ENDIAN,
459     .valid = {
460         .min_access_size = 4,
461         .max_access_size = 4
462     }
463 };
464 
465 static Property riscv_aclint_swi_properties[] = {
466     DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
467     DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
468     DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
469     DEFINE_PROP_END_OF_LIST(),
470 };
471 
472 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
473 {
474     RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
475     int i;
476 
477     memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
478                           TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
479     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
480 
481     swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
482     qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
483 
484     /* Claim software interrupt bits */
485     for (i = 0; i < swi->num_harts; i++) {
486         RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
487         /* We don't claim mip.SSIP because it is writable by software */
488         if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
489             error_report("MSIP already claimed");
490             exit(1);
491         }
492     }
493 }
494 
495 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type)
496 {
497     /*
498      * According to RISC-V ACLINT spec:
499      *   - On MSWI device reset, each MSIP register is cleared to zero.
500      *
501      * p.s. SSWI device reset does nothing since SETSIP register always reads 0.
502      */
503     RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj);
504     int i;
505 
506     if (!swi->sswi) {
507         for (i = 0; i < swi->num_harts; i++) {
508             /* Clear MSIP registers by lowering software interrupts. */
509             qemu_irq_lower(swi->soft_irqs[i]);
510         }
511     }
512 }
513 
514 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
515 {
516     DeviceClass *dc = DEVICE_CLASS(klass);
517     dc->realize = riscv_aclint_swi_realize;
518     device_class_set_props(dc, riscv_aclint_swi_properties);
519     ResettableClass *rc = RESETTABLE_CLASS(klass);
520     rc->phases.enter = riscv_aclint_swi_reset_enter;
521 }
522 
523 static const TypeInfo riscv_aclint_swi_info = {
524     .name          = TYPE_RISCV_ACLINT_SWI,
525     .parent        = TYPE_SYS_BUS_DEVICE,
526     .instance_size = sizeof(RISCVAclintSwiState),
527     .class_init    = riscv_aclint_swi_class_init,
528 };
529 
530 /*
531  * Create ACLINT [M|S]SWI device.
532  */
533 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
534     uint32_t num_harts, bool sswi)
535 {
536     int i;
537     DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
538 
539     assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
540     assert(!(addr & 0x3));
541 
542     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
543     qdev_prop_set_uint32(dev, "num-harts", num_harts);
544     qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
545     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
546     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
547 
548     for (i = 0; i < num_harts; i++) {
549         CPUState *cpu = cpu_by_arch_id(hartid_base + i);
550         RISCVCPU *rvcpu = RISCV_CPU(cpu);
551 
552         qdev_connect_gpio_out(dev, i,
553                               qdev_get_gpio_in(DEVICE(rvcpu),
554                                   (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
555     }
556 
557     return dev;
558 }
559 
560 static void riscv_aclint_register_types(void)
561 {
562     type_register_static(&riscv_aclint_mtimer_info);
563     type_register_static(&riscv_aclint_swi_info);
564 }
565 
566 type_init(riscv_aclint_register_types)
567