1 /* 2 * RISC-V ACLINT (Advanced Core Local Interruptor) 3 * URL: https://github.com/riscv/riscv-aclint 4 * 5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 6 * Copyright (c) 2017 SiFive, Inc. 7 * Copyright (c) 2021 Western Digital Corporation or its affiliates. 8 * 9 * This provides real-time clock, timer and interprocessor interrupts. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms and conditions of the GNU General Public License, 13 * version 2 or later, as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * You should have received a copy of the GNU General Public License along with 21 * this program. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "hw/sysbus.h" 30 #include "target/riscv/cpu.h" 31 #include "target/riscv/time_helper.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/intc/riscv_aclint.h" 34 #include "qemu/timer.h" 35 #include "hw/irq.h" 36 #include "migration/vmstate.h" 37 38 typedef struct riscv_aclint_mtimer_callback { 39 RISCVAclintMTimerState *s; 40 int num; 41 } riscv_aclint_mtimer_callback; 42 43 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq) 44 { 45 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 46 timebase_freq, NANOSECONDS_PER_SECOND); 47 } 48 49 static uint64_t cpu_riscv_read_rtc(void *opaque) 50 { 51 RISCVAclintMTimerState *mtimer = opaque; 52 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta; 53 } 54 55 /* 56 * Called when timecmp is written to update the QEMU timer or immediately 57 * trigger timer interrupt if mtimecmp <= current timer value. 58 */ 59 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer, 60 RISCVCPU *cpu, 61 int hartid, 62 uint64_t value) 63 { 64 uint32_t timebase_freq = mtimer->timebase_freq; 65 uint64_t next; 66 uint64_t diff; 67 68 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 69 70 /* Compute the relative hartid w.r.t the socket */ 71 hartid = hartid - mtimer->hartid_base; 72 73 mtimer->timecmp[hartid] = value; 74 if (mtimer->timecmp[hartid] <= rtc) { 75 /* 76 * If we're setting an MTIMECMP value in the "past", 77 * immediately raise the timer interrupt 78 */ 79 qemu_irq_raise(mtimer->timer_irqs[hartid]); 80 return; 81 } 82 83 /* otherwise, set up the future timer interrupt */ 84 qemu_irq_lower(mtimer->timer_irqs[hartid]); 85 diff = mtimer->timecmp[hartid] - rtc; 86 /* back to ns (note args switched in muldiv64) */ 87 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq); 88 89 /* 90 * check if ns_diff overflowed and check if the addition would potentially 91 * overflow 92 */ 93 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) || 94 ns_diff > INT64_MAX) { 95 next = INT64_MAX; 96 } else { 97 /* 98 * as it is very unlikely qemu_clock_get_ns will return a value 99 * greater than INT64_MAX, no additional check is needed for an 100 * unsigned integer overflow. 101 */ 102 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff; 103 /* 104 * if ns_diff is INT64_MAX next may still be outside the range 105 * of a signed integer. 106 */ 107 next = MIN(next, INT64_MAX); 108 } 109 110 timer_mod(mtimer->timers[hartid], next); 111 } 112 113 /* 114 * Callback used when the timer set using timer_mod expires. 115 * Should raise the timer interrupt line 116 */ 117 static void riscv_aclint_mtimer_cb(void *opaque) 118 { 119 riscv_aclint_mtimer_callback *state = opaque; 120 121 qemu_irq_raise(state->s->timer_irqs[state->num]); 122 } 123 124 /* CPU read MTIMER register */ 125 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr, 126 unsigned size) 127 { 128 RISCVAclintMTimerState *mtimer = opaque; 129 130 if (addr >= mtimer->timecmp_base && 131 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 132 size_t hartid = mtimer->hartid_base + 133 ((addr - mtimer->timecmp_base) >> 3); 134 CPUState *cpu = cpu_by_arch_id(hartid); 135 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 136 if (!env) { 137 qemu_log_mask(LOG_GUEST_ERROR, 138 "aclint-mtimer: invalid hartid: %zu", hartid); 139 } else if ((addr & 0x7) == 0) { 140 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */ 141 uint64_t timecmp = mtimer->timecmp[hartid]; 142 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp; 143 } else if ((addr & 0x7) == 4) { 144 /* timecmp_hi */ 145 uint64_t timecmp = mtimer->timecmp[hartid]; 146 return (timecmp >> 32) & 0xFFFFFFFF; 147 } else { 148 qemu_log_mask(LOG_UNIMP, 149 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 150 return 0; 151 } 152 } else if (addr == mtimer->time_base) { 153 /* time_lo for RV32/RV64 or timecmp for RV64 */ 154 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 155 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc; 156 } else if (addr == mtimer->time_base + 4) { 157 /* time_hi */ 158 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF; 159 } 160 161 qemu_log_mask(LOG_UNIMP, 162 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 163 return 0; 164 } 165 166 /* CPU write MTIMER register */ 167 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr, 168 uint64_t value, unsigned size) 169 { 170 RISCVAclintMTimerState *mtimer = opaque; 171 int i; 172 173 if (addr >= mtimer->timecmp_base && 174 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 175 size_t hartid = mtimer->hartid_base + 176 ((addr - mtimer->timecmp_base) >> 3); 177 CPUState *cpu = cpu_by_arch_id(hartid); 178 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 179 if (!env) { 180 qemu_log_mask(LOG_GUEST_ERROR, 181 "aclint-mtimer: invalid hartid: %zu", hartid); 182 } else if ((addr & 0x7) == 0) { 183 if (size == 4) { 184 /* timecmp_lo for RV32/RV64 */ 185 uint64_t timecmp_hi = mtimer->timecmp[hartid] >> 32; 186 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 187 timecmp_hi << 32 | (value & 0xFFFFFFFF)); 188 } else { 189 /* timecmp for RV64 */ 190 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 191 value); 192 } 193 } else if ((addr & 0x7) == 4) { 194 if (size == 4) { 195 /* timecmp_hi for RV32/RV64 */ 196 uint64_t timecmp_lo = mtimer->timecmp[hartid]; 197 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 198 value << 32 | (timecmp_lo & 0xFFFFFFFF)); 199 } else { 200 qemu_log_mask(LOG_GUEST_ERROR, 201 "aclint-mtimer: invalid timecmp_hi write: %08x", 202 (uint32_t)addr); 203 } 204 } else { 205 qemu_log_mask(LOG_UNIMP, 206 "aclint-mtimer: invalid timecmp write: %08x", 207 (uint32_t)addr); 208 } 209 return; 210 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) { 211 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq); 212 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 213 214 if (addr == mtimer->time_base) { 215 if (size == 4) { 216 /* time_lo for RV32/RV64 */ 217 mtimer->time_delta = ((rtc & ~0xFFFFFFFFULL) | value) - rtc_r; 218 } else { 219 /* time for RV64 */ 220 mtimer->time_delta = value - rtc_r; 221 } 222 } else { 223 if (size == 4) { 224 /* time_hi for RV32/RV64 */ 225 mtimer->time_delta = (value << 32 | (rtc & 0xFFFFFFFF)) - rtc_r; 226 } else { 227 qemu_log_mask(LOG_GUEST_ERROR, 228 "aclint-mtimer: invalid time_hi write: %08x", 229 (uint32_t)addr); 230 return; 231 } 232 } 233 234 /* Check if timer interrupt is triggered for each hart. */ 235 for (i = 0; i < mtimer->num_harts; i++) { 236 CPUState *cpu = cpu_by_arch_id(mtimer->hartid_base + i); 237 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 238 if (!env) { 239 continue; 240 } 241 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), 242 mtimer->hartid_base + i, 243 mtimer->timecmp[i]); 244 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 245 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 246 env->htimedelta, MIP_VSTIP); 247 248 } 249 return; 250 } 251 252 qemu_log_mask(LOG_UNIMP, 253 "aclint-mtimer: invalid write: %08x", (uint32_t)addr); 254 } 255 256 static const MemoryRegionOps riscv_aclint_mtimer_ops = { 257 .read = riscv_aclint_mtimer_read, 258 .write = riscv_aclint_mtimer_write, 259 .endianness = DEVICE_LITTLE_ENDIAN, 260 .valid = { 261 .min_access_size = 4, 262 .max_access_size = 8 263 }, 264 .impl = { 265 .min_access_size = 4, 266 .max_access_size = 8, 267 } 268 }; 269 270 static const Property riscv_aclint_mtimer_properties[] = { 271 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState, 272 hartid_base, 0), 273 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1), 274 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState, 275 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP), 276 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState, 277 time_base, RISCV_ACLINT_DEFAULT_MTIME), 278 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState, 279 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE), 280 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState, 281 timebase_freq, 0), 282 }; 283 284 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp) 285 { 286 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 287 int i; 288 289 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops, 290 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size); 291 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); 292 293 s->timer_irqs = g_new(qemu_irq, s->num_harts); 294 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts); 295 296 s->timers = g_new0(QEMUTimer *, s->num_harts); 297 s->timecmp = g_new0(uint64_t, s->num_harts); 298 /* Claim timer interrupt bits */ 299 for (i = 0; i < s->num_harts; i++) { 300 RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(s->hartid_base + i)); 301 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) { 302 error_report("MTIP already claimed"); 303 exit(1); 304 } 305 } 306 } 307 308 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type) 309 { 310 /* 311 * According to RISC-V ACLINT spec: 312 * - On MTIMER device reset, the MTIME register is cleared to zero. 313 * - On MTIMER device reset, the MTIMECMP registers are in unknown state. 314 */ 315 RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj); 316 317 /* 318 * Clear mtime register by writing to 0 it. 319 * Pending mtime interrupts will also be cleared at the same time. 320 */ 321 riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8); 322 } 323 324 static const VMStateDescription vmstate_riscv_mtimer = { 325 .name = "riscv_mtimer", 326 .version_id = 1, 327 .minimum_version_id = 1, 328 .fields = (const VMStateField[]) { 329 VMSTATE_VARRAY_UINT32(timecmp, RISCVAclintMTimerState, 330 num_harts, 0, 331 vmstate_info_uint64, uint64_t), 332 VMSTATE_END_OF_LIST() 333 } 334 }; 335 336 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, const void *data) 337 { 338 DeviceClass *dc = DEVICE_CLASS(klass); 339 dc->realize = riscv_aclint_mtimer_realize; 340 device_class_set_props(dc, riscv_aclint_mtimer_properties); 341 ResettableClass *rc = RESETTABLE_CLASS(klass); 342 rc->phases.enter = riscv_aclint_mtimer_reset_enter; 343 dc->vmsd = &vmstate_riscv_mtimer; 344 } 345 346 static const TypeInfo riscv_aclint_mtimer_info = { 347 .name = TYPE_RISCV_ACLINT_MTIMER, 348 .parent = TYPE_SYS_BUS_DEVICE, 349 .instance_size = sizeof(RISCVAclintMTimerState), 350 .class_init = riscv_aclint_mtimer_class_init, 351 }; 352 353 /* 354 * Create ACLINT MTIMER device. 355 */ 356 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size, 357 uint32_t hartid_base, uint32_t num_harts, 358 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq, 359 bool provide_rdtime) 360 { 361 int i; 362 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER); 363 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 364 365 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 366 assert(!(addr & 0x7)); 367 assert(!(timecmp_base & 0x7)); 368 assert(!(time_base & 0x7)); 369 370 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 371 qdev_prop_set_uint32(dev, "num-harts", num_harts); 372 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base); 373 qdev_prop_set_uint32(dev, "time-base", time_base); 374 qdev_prop_set_uint32(dev, "aperture-size", size); 375 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq); 376 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 377 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 378 379 for (i = 0; i < num_harts; i++) { 380 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 381 RISCVCPU *rvcpu = RISCV_CPU(cpu); 382 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 383 riscv_aclint_mtimer_callback *cb = 384 g_new0(riscv_aclint_mtimer_callback, 1); 385 386 if (!env) { 387 g_free(cb); 388 continue; 389 } 390 if (provide_rdtime) { 391 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev); 392 } 393 394 cb->s = s; 395 cb->num = i; 396 s->timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 397 &riscv_aclint_mtimer_cb, cb); 398 s->timecmp[i] = 0; 399 400 qdev_connect_gpio_out(dev, i, 401 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER)); 402 } 403 404 return dev; 405 } 406 407 /* CPU read [M|S]SWI register */ 408 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr, 409 unsigned size) 410 { 411 RISCVAclintSwiState *swi = opaque; 412 413 if (addr < (swi->num_harts << 2)) { 414 size_t hartid = swi->hartid_base + (addr >> 2); 415 CPUState *cpu = cpu_by_arch_id(hartid); 416 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 417 if (!env) { 418 qemu_log_mask(LOG_GUEST_ERROR, 419 "aclint-swi: invalid hartid: %zu", hartid); 420 } else if ((addr & 0x3) == 0) { 421 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0); 422 } 423 } 424 425 qemu_log_mask(LOG_UNIMP, 426 "aclint-swi: invalid read: %08x", (uint32_t)addr); 427 return 0; 428 } 429 430 /* CPU write [M|S]SWI register */ 431 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value, 432 unsigned size) 433 { 434 RISCVAclintSwiState *swi = opaque; 435 436 if (addr < (swi->num_harts << 2)) { 437 size_t hartid = swi->hartid_base + (addr >> 2); 438 CPUState *cpu = cpu_by_arch_id(hartid); 439 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 440 if (!env) { 441 qemu_log_mask(LOG_GUEST_ERROR, 442 "aclint-swi: invalid hartid: %zu", hartid); 443 } else if ((addr & 0x3) == 0) { 444 if (value & 0x1) { 445 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]); 446 } else { 447 if (!swi->sswi) { 448 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]); 449 } 450 } 451 return; 452 } 453 } 454 455 qemu_log_mask(LOG_UNIMP, 456 "aclint-swi: invalid write: %08x", (uint32_t)addr); 457 } 458 459 static const MemoryRegionOps riscv_aclint_swi_ops = { 460 .read = riscv_aclint_swi_read, 461 .write = riscv_aclint_swi_write, 462 .endianness = DEVICE_LITTLE_ENDIAN, 463 .valid = { 464 .min_access_size = 4, 465 .max_access_size = 4 466 } 467 }; 468 469 static const Property riscv_aclint_swi_properties[] = { 470 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0), 471 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1), 472 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false), 473 }; 474 475 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp) 476 { 477 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev); 478 int i; 479 480 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi, 481 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE); 482 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio); 483 484 swi->soft_irqs = g_new(qemu_irq, swi->num_harts); 485 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts); 486 487 /* Claim software interrupt bits */ 488 for (i = 0; i < swi->num_harts; i++) { 489 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i)); 490 /* We don't claim mip.SSIP because it is writable by software */ 491 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) { 492 error_report("MSIP already claimed"); 493 exit(1); 494 } 495 } 496 } 497 498 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type) 499 { 500 /* 501 * According to RISC-V ACLINT spec: 502 * - On MSWI device reset, each MSIP register is cleared to zero. 503 * 504 * p.s. SSWI device reset does nothing since SETSIP register always reads 0. 505 */ 506 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj); 507 int i; 508 509 if (!swi->sswi) { 510 for (i = 0; i < swi->num_harts; i++) { 511 /* Clear MSIP registers by lowering software interrupts. */ 512 qemu_irq_lower(swi->soft_irqs[i]); 513 } 514 } 515 } 516 517 static void riscv_aclint_swi_class_init(ObjectClass *klass, const void *data) 518 { 519 DeviceClass *dc = DEVICE_CLASS(klass); 520 dc->realize = riscv_aclint_swi_realize; 521 device_class_set_props(dc, riscv_aclint_swi_properties); 522 ResettableClass *rc = RESETTABLE_CLASS(klass); 523 rc->phases.enter = riscv_aclint_swi_reset_enter; 524 } 525 526 static const TypeInfo riscv_aclint_swi_info = { 527 .name = TYPE_RISCV_ACLINT_SWI, 528 .parent = TYPE_SYS_BUS_DEVICE, 529 .instance_size = sizeof(RISCVAclintSwiState), 530 .class_init = riscv_aclint_swi_class_init, 531 }; 532 533 /* 534 * Create ACLINT [M|S]SWI device. 535 */ 536 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base, 537 uint32_t num_harts, bool sswi) 538 { 539 int i; 540 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI); 541 542 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 543 assert(!(addr & 0x3)); 544 545 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 546 qdev_prop_set_uint32(dev, "num-harts", num_harts); 547 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false); 548 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 550 551 for (i = 0; i < num_harts; i++) { 552 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 553 RISCVCPU *rvcpu = RISCV_CPU(cpu); 554 555 qdev_connect_gpio_out(dev, i, 556 qdev_get_gpio_in(DEVICE(rvcpu), 557 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT)); 558 } 559 560 return dev; 561 } 562 563 static void riscv_aclint_register_types(void) 564 { 565 type_register_static(&riscv_aclint_mtimer_info); 566 type_register_static(&riscv_aclint_swi_info); 567 } 568 569 type_init(riscv_aclint_register_types) 570