1 /* 2 * RISC-V ACLINT (Advanced Core Local Interruptor) 3 * URL: https://github.com/riscv/riscv-aclint 4 * 5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 6 * Copyright (c) 2017 SiFive, Inc. 7 * Copyright (c) 2021 Western Digital Corporation or its affiliates. 8 * 9 * This provides real-time clock, timer and interprocessor interrupts. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms and conditions of the GNU General Public License, 13 * version 2 or later, as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * You should have received a copy of the GNU General Public License along with 21 * this program. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "hw/sysbus.h" 30 #include "target/riscv/cpu.h" 31 #include "hw/qdev-properties.h" 32 #include "hw/intc/riscv_aclint.h" 33 #include "qemu/timer.h" 34 #include "hw/irq.h" 35 #include "migration/vmstate.h" 36 37 typedef struct riscv_aclint_mtimer_callback { 38 RISCVAclintMTimerState *s; 39 int num; 40 } riscv_aclint_mtimer_callback; 41 42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq) 43 { 44 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 45 timebase_freq, NANOSECONDS_PER_SECOND); 46 } 47 48 static uint64_t cpu_riscv_read_rtc(void *opaque) 49 { 50 RISCVAclintMTimerState *mtimer = opaque; 51 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta; 52 } 53 54 /* 55 * Called when timecmp is written to update the QEMU timer or immediately 56 * trigger timer interrupt if mtimecmp <= current timer value. 57 */ 58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer, 59 RISCVCPU *cpu, 60 int hartid, 61 uint64_t value) 62 { 63 uint32_t timebase_freq = mtimer->timebase_freq; 64 uint64_t next; 65 uint64_t diff; 66 67 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 68 69 /* Compute the relative hartid w.r.t the socket */ 70 hartid = hartid - mtimer->hartid_base; 71 72 mtimer->timecmp[hartid] = value; 73 if (mtimer->timecmp[hartid] <= rtc) { 74 /* 75 * If we're setting an MTIMECMP value in the "past", 76 * immediately raise the timer interrupt 77 */ 78 qemu_irq_raise(mtimer->timer_irqs[hartid]); 79 return; 80 } 81 82 /* otherwise, set up the future timer interrupt */ 83 qemu_irq_lower(mtimer->timer_irqs[hartid]); 84 diff = mtimer->timecmp[hartid] - rtc; 85 /* back to ns (note args switched in muldiv64) */ 86 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq); 87 88 /* 89 * check if ns_diff overflowed and check if the addition would potentially 90 * overflow 91 */ 92 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) || 93 ns_diff > INT64_MAX) { 94 next = INT64_MAX; 95 } else { 96 /* 97 * as it is very unlikely qemu_clock_get_ns will return a value 98 * greater than INT64_MAX, no additional check is needed for an 99 * unsigned integer overflow. 100 */ 101 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff; 102 /* 103 * if ns_diff is INT64_MAX next may still be outside the range 104 * of a signed integer. 105 */ 106 next = MIN(next, INT64_MAX); 107 } 108 109 timer_mod(mtimer->timers[hartid], next); 110 } 111 112 /* 113 * Callback used when the timer set using timer_mod expires. 114 * Should raise the timer interrupt line 115 */ 116 static void riscv_aclint_mtimer_cb(void *opaque) 117 { 118 riscv_aclint_mtimer_callback *state = opaque; 119 120 qemu_irq_raise(state->s->timer_irqs[state->num]); 121 } 122 123 /* CPU read MTIMER register */ 124 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr, 125 unsigned size) 126 { 127 RISCVAclintMTimerState *mtimer = opaque; 128 129 if (addr >= mtimer->timecmp_base && 130 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 131 size_t hartid = mtimer->hartid_base + 132 ((addr - mtimer->timecmp_base) >> 3); 133 CPUState *cpu = cpu_by_arch_id(hartid); 134 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 135 if (!env) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "aclint-mtimer: invalid hartid: %zu", hartid); 138 } else if ((addr & 0x7) == 0) { 139 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */ 140 uint64_t timecmp = mtimer->timecmp[hartid]; 141 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp; 142 } else if ((addr & 0x7) == 4) { 143 /* timecmp_hi */ 144 uint64_t timecmp = mtimer->timecmp[hartid]; 145 return (timecmp >> 32) & 0xFFFFFFFF; 146 } else { 147 qemu_log_mask(LOG_UNIMP, 148 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 149 return 0; 150 } 151 } else if (addr == mtimer->time_base) { 152 /* time_lo for RV32/RV64 or timecmp for RV64 */ 153 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 154 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc; 155 } else if (addr == mtimer->time_base + 4) { 156 /* time_hi */ 157 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF; 158 } 159 160 qemu_log_mask(LOG_UNIMP, 161 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 162 return 0; 163 } 164 165 /* CPU write MTIMER register */ 166 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr, 167 uint64_t value, unsigned size) 168 { 169 RISCVAclintMTimerState *mtimer = opaque; 170 int i; 171 172 if (addr >= mtimer->timecmp_base && 173 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 174 size_t hartid = mtimer->hartid_base + 175 ((addr - mtimer->timecmp_base) >> 3); 176 CPUState *cpu = cpu_by_arch_id(hartid); 177 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 178 if (!env) { 179 qemu_log_mask(LOG_GUEST_ERROR, 180 "aclint-mtimer: invalid hartid: %zu", hartid); 181 } else if ((addr & 0x7) == 0) { 182 if (size == 4) { 183 /* timecmp_lo for RV32/RV64 */ 184 uint64_t timecmp_hi = mtimer->timecmp[hartid] >> 32; 185 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 186 timecmp_hi << 32 | (value & 0xFFFFFFFF)); 187 } else { 188 /* timecmp for RV64 */ 189 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 190 value); 191 } 192 } else if ((addr & 0x7) == 4) { 193 if (size == 4) { 194 /* timecmp_hi for RV32/RV64 */ 195 uint64_t timecmp_lo = mtimer->timecmp[hartid]; 196 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 197 value << 32 | (timecmp_lo & 0xFFFFFFFF)); 198 } else { 199 qemu_log_mask(LOG_GUEST_ERROR, 200 "aclint-mtimer: invalid timecmp_hi write: %08x", 201 (uint32_t)addr); 202 } 203 } else { 204 qemu_log_mask(LOG_UNIMP, 205 "aclint-mtimer: invalid timecmp write: %08x", 206 (uint32_t)addr); 207 } 208 return; 209 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) { 210 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq); 211 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 212 213 if (addr == mtimer->time_base) { 214 if (size == 4) { 215 /* time_lo for RV32/RV64 */ 216 mtimer->time_delta = ((rtc & ~0xFFFFFFFFULL) | value) - rtc_r; 217 } else { 218 /* time for RV64 */ 219 mtimer->time_delta = value - rtc_r; 220 } 221 } else { 222 if (size == 4) { 223 /* time_hi for RV32/RV64 */ 224 mtimer->time_delta = (value << 32 | (rtc & 0xFFFFFFFF)) - rtc_r; 225 } else { 226 qemu_log_mask(LOG_GUEST_ERROR, 227 "aclint-mtimer: invalid time_hi write: %08x", 228 (uint32_t)addr); 229 return; 230 } 231 } 232 233 /* Check if timer interrupt is triggered for each hart. */ 234 for (i = 0; i < mtimer->num_harts; i++) { 235 CPUState *cpu = cpu_by_arch_id(mtimer->hartid_base + i); 236 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 237 if (!env) { 238 continue; 239 } 240 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), 241 mtimer->hartid_base + i, 242 mtimer->timecmp[i]); 243 } 244 return; 245 } 246 247 qemu_log_mask(LOG_UNIMP, 248 "aclint-mtimer: invalid write: %08x", (uint32_t)addr); 249 } 250 251 static const MemoryRegionOps riscv_aclint_mtimer_ops = { 252 .read = riscv_aclint_mtimer_read, 253 .write = riscv_aclint_mtimer_write, 254 .endianness = DEVICE_LITTLE_ENDIAN, 255 .valid = { 256 .min_access_size = 4, 257 .max_access_size = 8 258 }, 259 .impl = { 260 .min_access_size = 4, 261 .max_access_size = 8, 262 } 263 }; 264 265 static Property riscv_aclint_mtimer_properties[] = { 266 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState, 267 hartid_base, 0), 268 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1), 269 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState, 270 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP), 271 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState, 272 time_base, RISCV_ACLINT_DEFAULT_MTIME), 273 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState, 274 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE), 275 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState, 276 timebase_freq, 0), 277 DEFINE_PROP_END_OF_LIST(), 278 }; 279 280 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp) 281 { 282 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 283 int i; 284 285 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops, 286 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size); 287 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); 288 289 s->timer_irqs = g_new(qemu_irq, s->num_harts); 290 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts); 291 292 s->timers = g_new0(QEMUTimer *, s->num_harts); 293 s->timecmp = g_new0(uint64_t, s->num_harts); 294 /* Claim timer interrupt bits */ 295 for (i = 0; i < s->num_harts; i++) { 296 RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(s->hartid_base + i)); 297 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) { 298 error_report("MTIP already claimed"); 299 exit(1); 300 } 301 } 302 } 303 304 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type) 305 { 306 /* 307 * According to RISC-V ACLINT spec: 308 * - On MTIMER device reset, the MTIME register is cleared to zero. 309 * - On MTIMER device reset, the MTIMECMP registers are in unknown state. 310 */ 311 RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj); 312 313 /* 314 * Clear mtime register by writing to 0 it. 315 * Pending mtime interrupts will also be cleared at the same time. 316 */ 317 riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8); 318 } 319 320 static const VMStateDescription vmstate_riscv_mtimer = { 321 .name = "riscv_mtimer", 322 .version_id = 1, 323 .minimum_version_id = 1, 324 .fields = (VMStateField[]) { 325 VMSTATE_VARRAY_UINT32(timecmp, RISCVAclintMTimerState, 326 num_harts, 0, 327 vmstate_info_uint64, uint64_t), 328 VMSTATE_END_OF_LIST() 329 } 330 }; 331 332 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data) 333 { 334 DeviceClass *dc = DEVICE_CLASS(klass); 335 dc->realize = riscv_aclint_mtimer_realize; 336 device_class_set_props(dc, riscv_aclint_mtimer_properties); 337 ResettableClass *rc = RESETTABLE_CLASS(klass); 338 rc->phases.enter = riscv_aclint_mtimer_reset_enter; 339 dc->vmsd = &vmstate_riscv_mtimer; 340 } 341 342 static const TypeInfo riscv_aclint_mtimer_info = { 343 .name = TYPE_RISCV_ACLINT_MTIMER, 344 .parent = TYPE_SYS_BUS_DEVICE, 345 .instance_size = sizeof(RISCVAclintMTimerState), 346 .class_init = riscv_aclint_mtimer_class_init, 347 }; 348 349 /* 350 * Create ACLINT MTIMER device. 351 */ 352 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size, 353 uint32_t hartid_base, uint32_t num_harts, 354 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq, 355 bool provide_rdtime) 356 { 357 int i; 358 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER); 359 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 360 361 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 362 assert(!(addr & 0x7)); 363 assert(!(timecmp_base & 0x7)); 364 assert(!(time_base & 0x7)); 365 366 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 367 qdev_prop_set_uint32(dev, "num-harts", num_harts); 368 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base); 369 qdev_prop_set_uint32(dev, "time-base", time_base); 370 qdev_prop_set_uint32(dev, "aperture-size", size); 371 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq); 372 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 373 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 374 375 for (i = 0; i < num_harts; i++) { 376 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 377 RISCVCPU *rvcpu = RISCV_CPU(cpu); 378 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 379 riscv_aclint_mtimer_callback *cb = 380 g_new0(riscv_aclint_mtimer_callback, 1); 381 382 if (!env) { 383 g_free(cb); 384 continue; 385 } 386 if (provide_rdtime) { 387 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev); 388 } 389 390 cb->s = s; 391 cb->num = i; 392 s->timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 393 &riscv_aclint_mtimer_cb, cb); 394 s->timecmp[i] = 0; 395 396 qdev_connect_gpio_out(dev, i, 397 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER)); 398 } 399 400 return dev; 401 } 402 403 /* CPU read [M|S]SWI register */ 404 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr, 405 unsigned size) 406 { 407 RISCVAclintSwiState *swi = opaque; 408 409 if (addr < (swi->num_harts << 2)) { 410 size_t hartid = swi->hartid_base + (addr >> 2); 411 CPUState *cpu = cpu_by_arch_id(hartid); 412 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 413 if (!env) { 414 qemu_log_mask(LOG_GUEST_ERROR, 415 "aclint-swi: invalid hartid: %zu", hartid); 416 } else if ((addr & 0x3) == 0) { 417 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0); 418 } 419 } 420 421 qemu_log_mask(LOG_UNIMP, 422 "aclint-swi: invalid read: %08x", (uint32_t)addr); 423 return 0; 424 } 425 426 /* CPU write [M|S]SWI register */ 427 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value, 428 unsigned size) 429 { 430 RISCVAclintSwiState *swi = opaque; 431 432 if (addr < (swi->num_harts << 2)) { 433 size_t hartid = swi->hartid_base + (addr >> 2); 434 CPUState *cpu = cpu_by_arch_id(hartid); 435 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 436 if (!env) { 437 qemu_log_mask(LOG_GUEST_ERROR, 438 "aclint-swi: invalid hartid: %zu", hartid); 439 } else if ((addr & 0x3) == 0) { 440 if (value & 0x1) { 441 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]); 442 } else { 443 if (!swi->sswi) { 444 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]); 445 } 446 } 447 return; 448 } 449 } 450 451 qemu_log_mask(LOG_UNIMP, 452 "aclint-swi: invalid write: %08x", (uint32_t)addr); 453 } 454 455 static const MemoryRegionOps riscv_aclint_swi_ops = { 456 .read = riscv_aclint_swi_read, 457 .write = riscv_aclint_swi_write, 458 .endianness = DEVICE_LITTLE_ENDIAN, 459 .valid = { 460 .min_access_size = 4, 461 .max_access_size = 4 462 } 463 }; 464 465 static Property riscv_aclint_swi_properties[] = { 466 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0), 467 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1), 468 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false), 469 DEFINE_PROP_END_OF_LIST(), 470 }; 471 472 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp) 473 { 474 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev); 475 int i; 476 477 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi, 478 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE); 479 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio); 480 481 swi->soft_irqs = g_new(qemu_irq, swi->num_harts); 482 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts); 483 484 /* Claim software interrupt bits */ 485 for (i = 0; i < swi->num_harts; i++) { 486 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i)); 487 /* We don't claim mip.SSIP because it is writable by software */ 488 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) { 489 error_report("MSIP already claimed"); 490 exit(1); 491 } 492 } 493 } 494 495 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type) 496 { 497 /* 498 * According to RISC-V ACLINT spec: 499 * - On MSWI device reset, each MSIP register is cleared to zero. 500 * 501 * p.s. SSWI device reset does nothing since SETSIP register always reads 0. 502 */ 503 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj); 504 int i; 505 506 if (!swi->sswi) { 507 for (i = 0; i < swi->num_harts; i++) { 508 /* Clear MSIP registers by lowering software interrupts. */ 509 qemu_irq_lower(swi->soft_irqs[i]); 510 } 511 } 512 } 513 514 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data) 515 { 516 DeviceClass *dc = DEVICE_CLASS(klass); 517 dc->realize = riscv_aclint_swi_realize; 518 device_class_set_props(dc, riscv_aclint_swi_properties); 519 ResettableClass *rc = RESETTABLE_CLASS(klass); 520 rc->phases.enter = riscv_aclint_swi_reset_enter; 521 } 522 523 static const TypeInfo riscv_aclint_swi_info = { 524 .name = TYPE_RISCV_ACLINT_SWI, 525 .parent = TYPE_SYS_BUS_DEVICE, 526 .instance_size = sizeof(RISCVAclintSwiState), 527 .class_init = riscv_aclint_swi_class_init, 528 }; 529 530 /* 531 * Create ACLINT [M|S]SWI device. 532 */ 533 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base, 534 uint32_t num_harts, bool sswi) 535 { 536 int i; 537 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI); 538 539 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 540 assert(!(addr & 0x3)); 541 542 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 543 qdev_prop_set_uint32(dev, "num-harts", num_harts); 544 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false); 545 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 546 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 547 548 for (i = 0; i < num_harts; i++) { 549 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 550 RISCVCPU *rvcpu = RISCV_CPU(cpu); 551 552 qdev_connect_gpio_out(dev, i, 553 qdev_get_gpio_in(DEVICE(rvcpu), 554 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT)); 555 } 556 557 return dev; 558 } 559 560 static void riscv_aclint_register_types(void) 561 { 562 type_register_static(&riscv_aclint_mtimer_info); 563 type_register_static(&riscv_aclint_swi_info); 564 } 565 566 type_init(riscv_aclint_register_types) 567