1 /* 2 * QEMU PowerPC XIVE2 interrupt controller model (POWER10) 3 * 4 * Copyright (c) 2019-2024, IBM Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qapi/error.h" 12 #include "target/ppc/cpu.h" 13 #include "system/cpus.h" 14 #include "system/dma.h" 15 #include "hw/ppc/fdt.h" 16 #include "hw/ppc/pnv.h" 17 #include "hw/ppc/pnv_chip.h" 18 #include "hw/ppc/pnv_core.h" 19 #include "hw/ppc/pnv_xscom.h" 20 #include "hw/ppc/xive2.h" 21 #include "hw/ppc/pnv_xive.h" 22 #include "hw/ppc/xive_regs.h" 23 #include "hw/ppc/xive2_regs.h" 24 #include "hw/ppc/ppc.h" 25 #include "hw/qdev-properties.h" 26 #include "system/reset.h" 27 #include "system/qtest.h" 28 29 #include <libfdt.h> 30 31 #include "pnv_xive2_regs.h" 32 33 #undef XIVE2_DEBUG 34 35 /* XIVE Sync or Flush Notification Block */ 36 typedef struct XiveSfnBlock { 37 uint8_t bytes[32]; 38 } XiveSfnBlock; 39 40 /* XIVE Thread Sync or Flush Notification Area */ 41 typedef struct XiveThreadNA { 42 XiveSfnBlock topo[16]; 43 } XiveThreadNA; 44 45 /* 46 * Virtual structures table (VST) 47 */ 48 #define SBE_PER_BYTE 4 49 50 typedef struct XiveVstInfo { 51 const char *name; 52 uint32_t size; 53 uint32_t max_blocks; 54 } XiveVstInfo; 55 56 static const XiveVstInfo vst_infos[] = { 57 58 [VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 }, 59 [VST_ESB] = { "ESB", 1, 16 }, 60 [VST_END] = { "ENDT", sizeof(Xive2End), 16 }, 61 62 [VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 }, 63 [VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 }, 64 [VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 }, 65 66 [VST_IC] = { "IC", 1, /* ? */ 16 }, /* Topology # */ 67 [VST_SYNC] = { "SYNC", sizeof(XiveThreadNA), 16 }, /* Topology # */ 68 69 /* 70 * This table contains the backing store pages for the interrupt 71 * fifos of the VC sub-engine in case of overflow. 72 * 73 * 0 - IPI, 74 * 1 - HWD, 75 * 2 - NxC, 76 * 3 - INT, 77 * 4 - OS-Queue, 78 * 5 - Pool-Queue, 79 * 6 - Hard-Queue 80 */ 81 [VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT }, 82 }; 83 84 #define xive2_error(xive, fmt, ...) \ 85 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ 86 (xive)->chip->chip_id, ## __VA_ARGS__); 87 88 /* 89 * TODO: Document block id override 90 */ 91 static uint32_t pnv_xive2_block_id(PnvXive2 *xive) 92 { 93 uint8_t blk = xive->chip->chip_id; 94 uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3]; 95 96 if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) { 97 blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val); 98 } 99 100 return blk; 101 } 102 103 /* 104 * Remote access to INT controllers. HW uses MMIOs(?). For now, a simple 105 * scan of all the chips INT controller is good enough. 106 */ 107 static PnvXive2 *pnv_xive2_get_remote(uint32_t vsd_type, hwaddr fwd_addr) 108 { 109 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 110 int i; 111 112 for (i = 0; i < pnv->num_chips; i++) { 113 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 114 PnvXive2 *xive = &chip10->xive; 115 116 /* 117 * Is this the XIVE matching the forwarded VSD address is for this 118 * VSD type 119 */ 120 if ((vsd_type == VST_ESB && fwd_addr == xive->esb_base) || 121 (vsd_type == VST_END && fwd_addr == xive->end_base) || 122 ((vsd_type == VST_NVP || 123 vsd_type == VST_NVG) && fwd_addr == xive->nvpg_base) || 124 (vsd_type == VST_NVC && fwd_addr == xive->nvc_base)) { 125 return xive; 126 } 127 } 128 129 qemu_log_mask(LOG_GUEST_ERROR, 130 "XIVE: >>>>> %s vsd_type %u fwd_addr 0x%"HWADDR_PRIx 131 " NOT FOUND\n", 132 __func__, vsd_type, fwd_addr); 133 return NULL; 134 } 135 136 /* 137 * VST accessors for ESB, EAT, ENDT, NVP 138 * 139 * Indirect VST tables are arrays of VSDs pointing to a page (of same 140 * size). Each page is a direct VST table. 141 */ 142 143 #define XIVE_VSD_SIZE 8 144 145 /* Indirect page size can be 4K, 64K, 2M, 16M. */ 146 static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift) 147 { 148 return page_shift == 12 || page_shift == 16 || 149 page_shift == 21 || page_shift == 24; 150 } 151 152 static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type, 153 uint64_t vsd, uint32_t idx) 154 { 155 const XiveVstInfo *info = &vst_infos[type]; 156 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 157 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); 158 uint32_t idx_max; 159 160 idx_max = vst_tsize / info->size - 1; 161 if (idx > idx_max) { 162 #ifdef XIVE2_DEBUG 163 xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", 164 info->name, idx, idx_max); 165 #endif 166 return 0; 167 } 168 169 return vst_addr + idx * info->size; 170 } 171 172 static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type, 173 uint64_t vsd, uint32_t idx) 174 { 175 const XiveVstInfo *info = &vst_infos[type]; 176 uint64_t vsd_addr; 177 uint32_t vsd_idx; 178 uint32_t page_shift; 179 uint32_t vst_per_page; 180 181 /* Get the page size of the indirect table. */ 182 vsd_addr = vsd & VSD_ADDRESS_MASK; 183 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); 184 185 if (!(vsd & VSD_ADDRESS_MASK)) { 186 #ifdef XIVE2_DEBUG 187 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 188 #endif 189 return 0; 190 } 191 192 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 193 194 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 195 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 196 page_shift); 197 return 0; 198 } 199 200 vst_per_page = (1ull << page_shift) / info->size; 201 vsd_idx = idx / vst_per_page; 202 203 /* Load the VSD we are looking for, if not already done */ 204 if (vsd_idx) { 205 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; 206 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, 207 MEMTXATTRS_UNSPECIFIED); 208 209 if (!(vsd & VSD_ADDRESS_MASK)) { 210 #ifdef XIVE2_DEBUG 211 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 212 #endif 213 return 0; 214 } 215 216 /* 217 * Check that the pages have a consistent size across the 218 * indirect table 219 */ 220 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { 221 xive2_error(xive, "VST: %s entry %x indirect page size differ !?", 222 info->name, idx); 223 return 0; 224 } 225 } 226 227 return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); 228 } 229 230 static uint8_t pnv_xive2_nvc_table_compress_shift(PnvXive2 *xive) 231 { 232 uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVC_TABLE_COMPRESS, 233 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 234 return shift > 8 ? 0 : shift; 235 } 236 237 static uint8_t pnv_xive2_nvg_table_compress_shift(PnvXive2 *xive) 238 { 239 uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVG_TABLE_COMPRESS, 240 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 241 return shift > 8 ? 0 : shift; 242 } 243 244 static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk, 245 uint32_t idx) 246 { 247 const XiveVstInfo *info = &vst_infos[type]; 248 uint64_t vsd; 249 250 if (blk >= info->max_blocks) { 251 xive2_error(xive, "VST: invalid block id %d for VST %s %d !?", 252 blk, info->name, idx); 253 return 0; 254 } 255 256 vsd = xive->vsds[type][blk]; 257 if (vsd == 0) { 258 xive2_error(xive, "VST: vsd == 0 block id %d for VST %s %d !?", 259 blk, info->name, idx); 260 return 0; 261 } 262 263 /* Remote VST access */ 264 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { 265 xive = pnv_xive2_get_remote(type, (vsd & VSD_ADDRESS_MASK)); 266 return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0; 267 } 268 269 if (type == VST_NVG) { 270 idx >>= pnv_xive2_nvg_table_compress_shift(xive); 271 } else if (type == VST_NVC) { 272 idx >>= pnv_xive2_nvc_table_compress_shift(xive); 273 } 274 275 if (VSD_INDIRECT & vsd) { 276 return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx); 277 } 278 279 return pnv_xive2_vst_addr_direct(xive, type, vsd, idx); 280 } 281 282 static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk, 283 uint32_t idx, void *data) 284 { 285 const XiveVstInfo *info = &vst_infos[type]; 286 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); 287 MemTxResult result; 288 289 if (!addr) { 290 return -1; 291 } 292 293 result = address_space_read(&address_space_memory, addr, 294 MEMTXATTRS_UNSPECIFIED, data, 295 info->size); 296 if (result != MEMTX_OK) { 297 xive2_error(xive, "VST: read failed at @0x%" HWADDR_PRIx 298 " for VST %s %x/%x\n", addr, info->name, blk, idx); 299 return -1; 300 } 301 return 0; 302 } 303 304 #define XIVE_VST_WORD_ALL -1 305 306 static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk, 307 uint32_t idx, void *data, uint32_t word_number) 308 { 309 const XiveVstInfo *info = &vst_infos[type]; 310 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); 311 MemTxResult result; 312 313 if (!addr) { 314 return -1; 315 } 316 317 if (word_number == XIVE_VST_WORD_ALL) { 318 result = address_space_write(&address_space_memory, addr, 319 MEMTXATTRS_UNSPECIFIED, data, 320 info->size); 321 } else { 322 result = address_space_write(&address_space_memory, 323 addr + word_number * 4, 324 MEMTXATTRS_UNSPECIFIED, 325 data + word_number * 4, 4); 326 } 327 328 if (result != MEMTX_OK) { 329 xive2_error(xive, "VST: write failed at @0x%" HWADDR_PRIx 330 "for VST %s %x/%x\n", addr, info->name, blk, idx); 331 return -1; 332 } 333 return 0; 334 } 335 336 static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 337 uint8_t *pq) 338 { 339 PnvXive2 *xive = PNV_XIVE2(xrtr); 340 341 if (pnv_xive2_block_id(xive) != blk) { 342 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 343 return -1; 344 } 345 346 *pq = xive_source_esb_get(&xive->ipi_source, idx); 347 return 0; 348 } 349 350 static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 351 uint8_t *pq) 352 { 353 PnvXive2 *xive = PNV_XIVE2(xrtr); 354 355 if (pnv_xive2_block_id(xive) != blk) { 356 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 357 return -1; 358 } 359 360 *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); 361 return 0; 362 } 363 364 static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 365 Xive2End *end) 366 { 367 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end); 368 } 369 370 static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 371 Xive2End *end, uint8_t word_number) 372 { 373 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end, 374 word_number); 375 } 376 377 static inline int pnv_xive2_get_current_pir(PnvXive2 *xive) 378 { 379 if (!qtest_enabled()) { 380 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 381 return ppc_cpu_pir(cpu); 382 } 383 return 0; 384 } 385 386 /* 387 * After SW injects a Queue Sync or Cache Flush operation, HW will notify 388 * SW of the completion of the operation by writing a byte of all 1's (0xff) 389 * to a specific memory location. The memory location is calculated by first 390 * looking up a base address in the SYNC VSD using the Topology ID of the 391 * originating thread as the "block" number. This points to a 392 * 64k block of memory that is further divided into 128 512 byte chunks of 393 * memory, which is indexed by the thread id of the requesting thread. 394 * Finally, this 512 byte chunk of memory is divided into 16 32 byte 395 * chunks which are indexed by the topology id of the targeted IC's chip. 396 * The values below are the offsets into that 32 byte chunk of memory for 397 * each type of cache flush or queue sync operation. 398 */ 399 #define PNV_XIVE2_QUEUE_IPI 0x00 400 #define PNV_XIVE2_QUEUE_HW 0x01 401 #define PNV_XIVE2_QUEUE_NXC 0x02 402 #define PNV_XIVE2_QUEUE_INT 0x03 403 #define PNV_XIVE2_QUEUE_OS 0x04 404 #define PNV_XIVE2_QUEUE_POOL 0x05 405 #define PNV_XIVE2_QUEUE_HARD 0x06 406 #define PNV_XIVE2_CACHE_ENDC 0x08 407 #define PNV_XIVE2_CACHE_ESBC 0x09 408 #define PNV_XIVE2_CACHE_EASC 0x0a 409 #define PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO 0x10 410 #define PNV_XIVE2_QUEUE_NXC_LD_LCL_CO 0x11 411 #define PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI 0x12 412 #define PNV_XIVE2_QUEUE_NXC_ST_LCL_CI 0x13 413 #define PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI 0x14 414 #define PNV_XIVE2_QUEUE_NXC_ST_RMT_CI 0x15 415 #define PNV_XIVE2_CACHE_NXC 0x18 416 417 static int pnv_xive2_inject_notify(PnvXive2 *xive, int type) 418 { 419 uint64_t addr; 420 int pir = pnv_xive2_get_current_pir(xive); 421 int thread_nr = PNV10_PIR2THREAD(pir); 422 int thread_topo_id = PNV10_PIR2CHIP(pir); 423 int ic_topo_id = xive->chip->chip_id; 424 uint64_t offset = ic_topo_id * sizeof(XiveSfnBlock); 425 uint8_t byte = 0xff; 426 MemTxResult result; 427 428 /* Retrieve the address of requesting thread's notification area */ 429 addr = pnv_xive2_vst_addr(xive, VST_SYNC, thread_topo_id, thread_nr); 430 431 if (!addr) { 432 xive2_error(xive, "VST: no SYNC entry %x/%x !?", 433 thread_topo_id, thread_nr); 434 return -1; 435 } 436 437 address_space_stb(&address_space_memory, addr + offset + type, byte, 438 MEMTXATTRS_UNSPECIFIED, &result); 439 assert(result == MEMTX_OK); 440 441 return 0; 442 } 443 444 static int pnv_xive2_end_update(PnvXive2 *xive, uint8_t watch_engine) 445 { 446 uint8_t blk; 447 uint32_t idx; 448 int i, spec_reg, data_reg; 449 uint64_t endc_watch[4]; 450 451 assert(watch_engine < ARRAY_SIZE(endc_watch)); 452 453 spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 454 data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 455 blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); 456 idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); 457 458 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { 459 endc_watch[i] = cpu_to_be64(xive->vc_regs[data_reg + i]); 460 } 461 462 return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch, 463 XIVE_VST_WORD_ALL); 464 } 465 466 static void pnv_xive2_end_cache_load(PnvXive2 *xive, uint8_t watch_engine) 467 { 468 uint8_t blk; 469 uint32_t idx; 470 uint64_t endc_watch[4] = { 0 }; 471 int i, spec_reg, data_reg; 472 473 assert(watch_engine < ARRAY_SIZE(endc_watch)); 474 475 spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 476 data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 477 blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); 478 idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); 479 480 if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) { 481 xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx); 482 } 483 484 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { 485 xive->vc_regs[data_reg + i] = be64_to_cpu(endc_watch[i]); 486 } 487 } 488 489 static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 490 Xive2Nvp *nvp) 491 { 492 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp); 493 } 494 495 static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 496 Xive2Nvp *nvp, uint8_t word_number) 497 { 498 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp, 499 word_number); 500 } 501 502 static int pnv_xive2_get_nvgc(Xive2Router *xrtr, bool crowd, 503 uint8_t blk, uint32_t idx, 504 Xive2Nvgc *nvgc) 505 { 506 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG, 507 blk, idx, nvgc); 508 } 509 510 static int pnv_xive2_write_nvgc(Xive2Router *xrtr, bool crowd, 511 uint8_t blk, uint32_t idx, 512 Xive2Nvgc *nvgc) 513 { 514 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG, 515 blk, idx, nvgc, 516 XIVE_VST_WORD_ALL); 517 } 518 519 static int pnv_xive2_nxc_to_table_type(uint8_t nxc_type, uint32_t *table_type) 520 { 521 switch (nxc_type) { 522 case PC_NXC_WATCH_NXC_NVP: 523 *table_type = VST_NVP; 524 break; 525 case PC_NXC_WATCH_NXC_NVG: 526 *table_type = VST_NVG; 527 break; 528 case PC_NXC_WATCH_NXC_NVC: 529 *table_type = VST_NVC; 530 break; 531 default: 532 qemu_log_mask(LOG_GUEST_ERROR, 533 "XIVE: invalid table type for nxc operation\n"); 534 return -1; 535 } 536 return 0; 537 } 538 539 static int pnv_xive2_nxc_update(PnvXive2 *xive, uint8_t watch_engine) 540 { 541 uint8_t blk, nxc_type; 542 uint32_t idx, table_type = -1; 543 int i, spec_reg, data_reg; 544 uint64_t nxc_watch[4]; 545 546 assert(watch_engine < ARRAY_SIZE(nxc_watch)); 547 548 spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 549 data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 550 nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); 551 blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); 552 idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); 553 554 assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); 555 556 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { 557 nxc_watch[i] = cpu_to_be64(xive->pc_regs[data_reg + i]); 558 } 559 560 return pnv_xive2_vst_write(xive, table_type, blk, idx, nxc_watch, 561 XIVE_VST_WORD_ALL); 562 } 563 564 static void pnv_xive2_nxc_cache_load(PnvXive2 *xive, uint8_t watch_engine) 565 { 566 uint8_t blk, nxc_type; 567 uint32_t idx, table_type = -1; 568 uint64_t nxc_watch[4] = { 0 }; 569 int i, spec_reg, data_reg; 570 571 assert(watch_engine < ARRAY_SIZE(nxc_watch)); 572 573 spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 574 data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 575 nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); 576 blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); 577 idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); 578 579 assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); 580 581 if (pnv_xive2_vst_read(xive, table_type, blk, idx, nxc_watch)) { 582 xive2_error(xive, "VST: no NXC entry %x/%x in %s table!?", 583 blk, idx, vst_infos[table_type].name); 584 } 585 586 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { 587 xive->pc_regs[data_reg + i] = be64_to_cpu(nxc_watch[i]); 588 } 589 } 590 591 static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 592 Xive2Eas *eas) 593 { 594 PnvXive2 *xive = PNV_XIVE2(xrtr); 595 596 if (pnv_xive2_block_id(xive) != blk) { 597 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 598 return -1; 599 } 600 601 return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas); 602 } 603 604 static uint32_t pnv_xive2_get_config(Xive2Router *xrtr) 605 { 606 PnvXive2 *xive = PNV_XIVE2(xrtr); 607 uint32_t cfg = 0; 608 609 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { 610 cfg |= XIVE2_GEN1_TIMA_OS; 611 } 612 613 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) { 614 cfg |= XIVE2_VP_SAVE_RESTORE; 615 } 616 617 if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 618 xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) { 619 cfg |= XIVE2_THREADID_8BITS; 620 } 621 622 return cfg; 623 } 624 625 static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu) 626 { 627 int pir = ppc_cpu_pir(cpu); 628 uint32_t fc = PNV10_PIR2FUSEDCORE(pir); 629 uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1; 630 uint32_t bit = pir & 0x3f; 631 632 return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit); 633 } 634 635 static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format, 636 uint8_t nvt_blk, uint32_t nvt_idx, 637 bool crowd, bool cam_ignore, uint8_t priority, 638 uint32_t logic_serv, XiveTCTXMatch *match) 639 { 640 PnvXive2 *xive = PNV_XIVE2(xptr); 641 PnvChip *chip = xive->chip; 642 int count = 0; 643 int i, j; 644 bool gen1_tima_os = 645 xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; 646 static int next_start_core; 647 static int next_start_thread; 648 int start_core = next_start_core; 649 int start_thread = next_start_thread; 650 651 for (i = 0; i < chip->nr_cores; i++) { 652 PnvCore *pc = chip->cores[(i + start_core) % chip->nr_cores]; 653 CPUCore *cc = CPU_CORE(pc); 654 655 for (j = 0; j < cc->nr_threads; j++) { 656 /* Start search for match with different thread each call */ 657 PowerPCCPU *cpu = pc->threads[(j + start_thread) % cc->nr_threads]; 658 XiveTCTX *tctx; 659 int ring; 660 661 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 662 continue; 663 } 664 665 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 666 667 if (gen1_tima_os) { 668 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, 669 nvt_idx, cam_ignore, 670 logic_serv); 671 } else { 672 ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk, 673 nvt_idx, crowd, cam_ignore, 674 logic_serv); 675 } 676 677 if (ring != -1) { 678 /* 679 * For VP-specific match, finding more than one is a 680 * problem. For group notification, it's possible. 681 */ 682 if (!cam_ignore && match->tctx) { 683 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " 684 "thread context NVT %x/%x\n", 685 nvt_blk, nvt_idx); 686 /* Should set a FIR if we ever model it */ 687 return -1; 688 } 689 /* 690 * For a group notification, we need to know if the 691 * match is precluded first by checking the current 692 * thread priority. If the interrupt can be delivered, 693 * we always notify the first match (for now). 694 */ 695 if (cam_ignore && 696 xive2_tm_irq_precluded(tctx, ring, priority)) { 697 match->precluded = true; 698 } else { 699 if (!match->tctx) { 700 match->ring = ring; 701 match->tctx = tctx; 702 703 next_start_thread = j + start_thread + 1; 704 if (next_start_thread >= cc->nr_threads) { 705 next_start_thread = 0; 706 next_start_core = i + start_core + 1; 707 if (next_start_core >= chip->nr_cores) { 708 next_start_core = 0; 709 } 710 } 711 } 712 count++; 713 } 714 } 715 } 716 } 717 718 return count; 719 } 720 721 static uint32_t pnv_xive2_presenter_get_config(XivePresenter *xptr) 722 { 723 PnvXive2 *xive = PNV_XIVE2(xptr); 724 uint32_t cfg = 0; 725 726 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { 727 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS; 728 } 729 return cfg; 730 } 731 732 static int pnv_xive2_broadcast(XivePresenter *xptr, 733 uint8_t nvt_blk, uint32_t nvt_idx, 734 bool crowd, bool ignore, uint8_t priority) 735 { 736 PnvXive2 *xive = PNV_XIVE2(xptr); 737 PnvChip *chip = xive->chip; 738 int i, j; 739 bool gen1_tima_os = 740 xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; 741 742 for (i = 0; i < chip->nr_cores; i++) { 743 PnvCore *pc = chip->cores[i]; 744 CPUCore *cc = CPU_CORE(pc); 745 746 for (j = 0; j < cc->nr_threads; j++) { 747 PowerPCCPU *cpu = pc->threads[j]; 748 XiveTCTX *tctx; 749 int ring; 750 751 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 752 continue; 753 } 754 755 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 756 757 if (gen1_tima_os) { 758 ring = xive_presenter_tctx_match(xptr, tctx, 0, nvt_blk, 759 nvt_idx, ignore, 0); 760 } else { 761 ring = xive2_presenter_tctx_match(xptr, tctx, 0, nvt_blk, 762 nvt_idx, crowd, ignore, 0); 763 } 764 765 if (ring != -1) { 766 xive2_tm_set_lsmfb(tctx, ring, priority); 767 } 768 } 769 } 770 return 0; 771 } 772 773 static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr) 774 { 775 return pnv_xive2_block_id(PNV_XIVE2(xrtr)); 776 } 777 778 /* 779 * The TIMA MMIO space is shared among the chips and to identify the 780 * chip from which the access is being done, we extract the chip id 781 * from the PIR. 782 */ 783 static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu) 784 { 785 int pir = ppc_cpu_pir(cpu); 786 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; 787 PnvXive2 *xive = PNV_XIVE2(xptr); 788 789 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 790 xive2_error(xive, "IC: CPU %x is not enabled", pir); 791 } 792 return xive; 793 } 794 795 /* 796 * The internal sources of the interrupt controller have no knowledge 797 * of the XIVE2 chip on which they reside. Encode the block id in the 798 * source interrupt number before forwarding the source event 799 * notification to the Router. This is required on a multichip system. 800 */ 801 static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) 802 { 803 PnvXive2 *xive = PNV_XIVE2(xn); 804 uint8_t blk = pnv_xive2_block_id(xive); 805 806 xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); 807 } 808 809 /* 810 * Set Translation Tables 811 * 812 * TODO add support for multiple sets 813 */ 814 static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val) 815 { 816 uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]); 817 uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT, 818 xive->cq_regs[CQ_TAR >> 3]); 819 820 switch (tsel) { 821 case CQ_TAR_NVPG: 822 case CQ_TAR_ESB: 823 case CQ_TAR_END: 824 case CQ_TAR_NVC: 825 xive->tables[tsel][entry] = val; 826 break; 827 default: 828 xive2_error(xive, "IC: unsupported table %d", tsel); 829 return -1; 830 } 831 832 if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) { 833 xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT, 834 xive->cq_regs[CQ_TAR >> 3], ++entry); 835 } 836 837 return 0; 838 } 839 /* 840 * Virtual Structure Tables (VST) configuration 841 */ 842 static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type, 843 uint8_t blk, uint64_t vsd) 844 { 845 Xive2EndSource *end_xsrc = &xive->end_source; 846 XiveSource *xsrc = &xive->ipi_source; 847 const XiveVstInfo *info = &vst_infos[type]; 848 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 849 uint64_t vst_tsize = 1ull << page_shift; 850 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 851 852 /* Basic checks */ 853 854 if (VSD_INDIRECT & vsd) { 855 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 856 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 857 page_shift); 858 return; 859 } 860 } 861 862 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { 863 xive2_error(xive, "VST: %s table address 0x%"PRIx64 864 " is not aligned with page shift %d", 865 info->name, vst_addr, page_shift); 866 return; 867 } 868 869 /* Record the table configuration (in SRAM on HW) */ 870 xive->vsds[type][blk] = vsd; 871 872 /* Now tune the models with the configuration provided by the FW */ 873 874 switch (type) { 875 case VST_ESB: 876 /* 877 * Backing store pages for the source PQ bits. The model does 878 * not use these PQ bits backed in RAM because the XiveSource 879 * model has its own. 880 * 881 * If the table is direct, we can compute the number of PQ 882 * entries provisioned by FW (such as skiboot) and resize the 883 * ESB window accordingly. 884 */ 885 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 886 memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); 887 } 888 if (!(VSD_INDIRECT & vsd)) { 889 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE 890 * (1ull << xsrc->esb_shift)); 891 } 892 893 memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio); 894 break; 895 896 case VST_EAS: /* Nothing to be done */ 897 break; 898 899 case VST_END: 900 /* 901 * Backing store pages for the END. 902 */ 903 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { 904 memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); 905 } 906 if (!(VSD_INDIRECT & vsd)) { 907 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) 908 * (1ull << end_xsrc->esb_shift)); 909 } 910 memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio); 911 break; 912 913 case VST_NVP: /* Not modeled */ 914 case VST_NVG: /* Not modeled */ 915 case VST_NVC: /* Not modeled */ 916 case VST_IC: /* Not modeled */ 917 case VST_SYNC: /* Not modeled */ 918 case VST_ERQ: /* Not modeled */ 919 break; 920 921 default: 922 g_assert_not_reached(); 923 } 924 } 925 926 /* 927 * Both PC and VC sub-engines are configured as each use the Virtual 928 * Structure Tables 929 */ 930 static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd, 931 uint8_t type, uint8_t blk) 932 { 933 uint8_t mode = GETFIELD(VSD_MODE, vsd); 934 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 935 936 if (type > VST_ERQ) { 937 xive2_error(xive, "VST: invalid table type %d", type); 938 return; 939 } 940 941 if (blk >= vst_infos[type].max_blocks) { 942 xive2_error(xive, "VST: invalid block id %d for" 943 " %s table", blk, vst_infos[type].name); 944 return; 945 } 946 947 if (!vst_addr) { 948 xive2_error(xive, "VST: invalid %s table address", 949 vst_infos[type].name); 950 return; 951 } 952 953 switch (mode) { 954 case VSD_MODE_FORWARD: 955 xive->vsds[type][blk] = vsd; 956 break; 957 958 case VSD_MODE_EXCLUSIVE: 959 pnv_xive2_vst_set_exclusive(xive, type, blk, vsd); 960 break; 961 962 default: 963 xive2_error(xive, "VST: unsupported table mode %d", mode); 964 return; 965 } 966 } 967 968 static void pnv_xive2_vc_vst_set_data(PnvXive2 *xive, uint64_t vsd) 969 { 970 uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT, 971 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); 972 uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS, 973 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); 974 975 pnv_xive2_vst_set_data(xive, vsd, type, blk); 976 } 977 978 /* 979 * MMIO handlers 980 */ 981 982 983 /* 984 * IC BAR layout 985 * 986 * Page 0: Internal CQ register accesses (reads & writes) 987 * Page 1: Internal PC register accesses (reads & writes) 988 * Page 2: Internal VC register accesses (reads & writes) 989 * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes) 990 * Page 4: Notify Port page (writes only, w/data), 991 * Page 5: Reserved 992 * Page 6: Sync Poll page (writes only, dataless) 993 * Page 7: Sync Inject page (writes only, dataless) 994 * Page 8: LSI Trigger page (writes only, dataless) 995 * Page 9: LSI SB Management page (reads & writes dataless) 996 * Pages 10-255: Reserved 997 * Pages 256-383: Direct mapped Thread Context Area (reads & writes) 998 * covering the 128 threads in P10. 999 * Pages 384-511: Reserved 1000 */ 1001 typedef struct PnvXive2Region { 1002 const char *name; 1003 uint32_t pgoff; 1004 uint32_t pgsize; 1005 const MemoryRegionOps *ops; 1006 } PnvXive2Region; 1007 1008 static const MemoryRegionOps pnv_xive2_ic_cq_ops; 1009 static const MemoryRegionOps pnv_xive2_ic_pc_ops; 1010 static const MemoryRegionOps pnv_xive2_ic_vc_ops; 1011 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops; 1012 static const MemoryRegionOps pnv_xive2_ic_notify_ops; 1013 static const MemoryRegionOps pnv_xive2_ic_sync_ops; 1014 static const MemoryRegionOps pnv_xive2_ic_lsi_ops; 1015 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops; 1016 1017 /* 512 pages. 4K: 2M range, 64K: 32M range */ 1018 static const PnvXive2Region pnv_xive2_ic_regions[] = { 1019 { "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops }, 1020 { "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops }, 1021 { "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops }, 1022 { "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops }, 1023 { "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops }, 1024 /* page 5 reserved */ 1025 { "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops }, 1026 { "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops }, 1027 /* pages 10-255 reserved */ 1028 { "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops }, 1029 /* pages 384-511 reserved */ 1030 }; 1031 1032 /* 1033 * CQ operations 1034 */ 1035 1036 static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset, 1037 unsigned size) 1038 { 1039 PnvXive2 *xive = PNV_XIVE2(opaque); 1040 uint32_t reg = offset >> 3; 1041 uint64_t val = 0; 1042 1043 switch (offset) { 1044 case CQ_XIVE_CAP: /* Set at reset */ 1045 case CQ_XIVE_CFG: 1046 val = xive->cq_regs[reg]; 1047 break; 1048 case CQ_MSGSND: /* TODO check the #cores of the machine */ 1049 val = 0xffffffff00000000; 1050 break; 1051 case CQ_CFG_PB_GEN: 1052 val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */ 1053 break; 1054 default: 1055 xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset); 1056 } 1057 1058 return val; 1059 } 1060 1061 static uint64_t pnv_xive2_bar_size(uint64_t val) 1062 { 1063 return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24); 1064 } 1065 1066 static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset, 1067 uint64_t val, unsigned size) 1068 { 1069 PnvXive2 *xive = PNV_XIVE2(opaque); 1070 MemoryRegion *sysmem = get_system_memory(); 1071 uint32_t reg = offset >> 3; 1072 int i; 1073 1074 switch (offset) { 1075 case CQ_XIVE_CFG: 1076 case CQ_RST_CTL: /* TODO: reset all BARs */ 1077 break; 1078 1079 case CQ_IC_BAR: 1080 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; 1081 if (!(val & CQ_IC_BAR_VALID)) { 1082 xive->ic_base = 0; 1083 if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) { 1084 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 1085 memory_region_del_subregion(&xive->ic_mmio, 1086 &xive->ic_mmios[i]); 1087 } 1088 memory_region_del_subregion(sysmem, &xive->ic_mmio); 1089 } 1090 } else { 1091 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); 1092 if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) { 1093 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 1094 memory_region_add_subregion(&xive->ic_mmio, 1095 pnv_xive2_ic_regions[i].pgoff << xive->ic_shift, 1096 &xive->ic_mmios[i]); 1097 } 1098 memory_region_add_subregion(sysmem, xive->ic_base, 1099 &xive->ic_mmio); 1100 } 1101 } 1102 break; 1103 1104 case CQ_TM_BAR: 1105 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; 1106 if (!(val & CQ_TM_BAR_VALID)) { 1107 xive->tm_base = 0; 1108 if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) { 1109 memory_region_del_subregion(sysmem, &xive->tm_mmio); 1110 } 1111 } else { 1112 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); 1113 if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) { 1114 memory_region_add_subregion(sysmem, xive->tm_base, 1115 &xive->tm_mmio); 1116 } 1117 } 1118 break; 1119 1120 case CQ_ESB_BAR: 1121 xive->esb_shift = val & CQ_BAR_64K ? 16 : 12; 1122 if (!(val & CQ_BAR_VALID)) { 1123 xive->esb_base = 0; 1124 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1125 memory_region_del_subregion(sysmem, &xive->esb_mmio); 1126 } 1127 } else { 1128 xive->esb_base = val & CQ_BAR_ADDR; 1129 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1130 memory_region_set_size(&xive->esb_mmio, 1131 pnv_xive2_bar_size(val)); 1132 memory_region_add_subregion(sysmem, xive->esb_base, 1133 &xive->esb_mmio); 1134 } 1135 } 1136 break; 1137 1138 case CQ_END_BAR: 1139 xive->end_shift = val & CQ_BAR_64K ? 16 : 12; 1140 if (!(val & CQ_BAR_VALID)) { 1141 xive->end_base = 0; 1142 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1143 memory_region_del_subregion(sysmem, &xive->end_mmio); 1144 } 1145 } else { 1146 xive->end_base = val & CQ_BAR_ADDR; 1147 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1148 memory_region_set_size(&xive->end_mmio, 1149 pnv_xive2_bar_size(val)); 1150 memory_region_add_subregion(sysmem, xive->end_base, 1151 &xive->end_mmio); 1152 } 1153 } 1154 break; 1155 1156 case CQ_NVC_BAR: 1157 xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12; 1158 if (!(val & CQ_BAR_VALID)) { 1159 xive->nvc_base = 0; 1160 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1161 memory_region_del_subregion(sysmem, &xive->nvc_mmio); 1162 } 1163 } else { 1164 xive->nvc_base = val & CQ_BAR_ADDR; 1165 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1166 memory_region_set_size(&xive->nvc_mmio, 1167 pnv_xive2_bar_size(val)); 1168 memory_region_add_subregion(sysmem, xive->nvc_base, 1169 &xive->nvc_mmio); 1170 } 1171 } 1172 break; 1173 1174 case CQ_NVPG_BAR: 1175 xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12; 1176 if (!(val & CQ_BAR_VALID)) { 1177 xive->nvpg_base = 0; 1178 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1179 memory_region_del_subregion(sysmem, &xive->nvpg_mmio); 1180 } 1181 } else { 1182 xive->nvpg_base = val & CQ_BAR_ADDR; 1183 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1184 memory_region_set_size(&xive->nvpg_mmio, 1185 pnv_xive2_bar_size(val)); 1186 memory_region_add_subregion(sysmem, xive->nvpg_base, 1187 &xive->nvpg_mmio); 1188 } 1189 } 1190 break; 1191 1192 case CQ_TAR: /* Set Translation Table Address */ 1193 break; 1194 case CQ_TDR: /* Set Translation Table Data */ 1195 pnv_xive2_stt_set_data(xive, val); 1196 break; 1197 case CQ_FIRMASK_OR: /* FIR error reporting */ 1198 break; 1199 default: 1200 xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset); 1201 return; 1202 } 1203 1204 xive->cq_regs[reg] = val; 1205 } 1206 1207 static const MemoryRegionOps pnv_xive2_ic_cq_ops = { 1208 .read = pnv_xive2_ic_cq_read, 1209 .write = pnv_xive2_ic_cq_write, 1210 .endianness = DEVICE_BIG_ENDIAN, 1211 .valid = { 1212 .min_access_size = 8, 1213 .max_access_size = 8, 1214 }, 1215 .impl = { 1216 .min_access_size = 8, 1217 .max_access_size = 8, 1218 }, 1219 }; 1220 1221 static uint8_t pnv_xive2_cache_watch_assign(uint64_t engine_mask, 1222 uint64_t *state) 1223 { 1224 uint8_t val = 0xFF; 1225 int i; 1226 1227 for (i = 3; i >= 0; i--) { 1228 if (BIT(i) & engine_mask) { 1229 if (!(BIT(i) & *state)) { 1230 *state |= BIT(i); 1231 val = 3 - i; 1232 break; 1233 } 1234 } 1235 } 1236 return val; 1237 } 1238 1239 static void pnv_xive2_cache_watch_release(uint64_t *state, uint8_t watch_engine) 1240 { 1241 uint8_t engine_bit = 3 - watch_engine; 1242 1243 if (*state & BIT(engine_bit)) { 1244 *state &= ~BIT(engine_bit); 1245 } 1246 } 1247 1248 static uint8_t pnv_xive2_endc_cache_watch_assign(PnvXive2 *xive) 1249 { 1250 uint64_t engine_mask = GETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 1251 xive->vc_regs[VC_ENDC_CFG >> 3]); 1252 uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; 1253 uint8_t val; 1254 1255 /* 1256 * We keep track of which engines are currently busy in the 1257 * VC_ENDC_WATCH_ASSIGN register directly. When the firmware reads 1258 * the register, we don't return its value but the ID of an engine 1259 * it can use. 1260 * There are 4 engines. 0xFF means no engine is available. 1261 */ 1262 val = pnv_xive2_cache_watch_assign(engine_mask, &state); 1263 if (val != 0xFF) { 1264 xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; 1265 } 1266 return val; 1267 } 1268 1269 static void pnv_xive2_endc_cache_watch_release(PnvXive2 *xive, 1270 uint8_t watch_engine) 1271 { 1272 uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; 1273 1274 pnv_xive2_cache_watch_release(&state, watch_engine); 1275 xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; 1276 } 1277 1278 static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset, 1279 unsigned size) 1280 { 1281 PnvXive2 *xive = PNV_XIVE2(opaque); 1282 uint64_t val = 0; 1283 uint32_t reg = offset >> 3; 1284 uint8_t watch_engine; 1285 1286 switch (offset) { 1287 /* 1288 * VSD table settings. 1289 */ 1290 case VC_VSD_TABLE_ADDR: 1291 case VC_VSD_TABLE_DATA: 1292 val = xive->vc_regs[reg]; 1293 break; 1294 1295 /* 1296 * ESB cache updates (not modeled) 1297 */ 1298 case VC_ESBC_FLUSH_CTRL: 1299 xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID; 1300 val = xive->vc_regs[reg]; 1301 break; 1302 1303 case VC_ESBC_CFG: 1304 val = xive->vc_regs[reg]; 1305 break; 1306 1307 /* 1308 * EAS cache updates (not modeled) 1309 */ 1310 case VC_EASC_FLUSH_CTRL: 1311 xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID; 1312 val = xive->vc_regs[reg]; 1313 break; 1314 1315 case VC_ENDC_WATCH_ASSIGN: 1316 val = pnv_xive2_endc_cache_watch_assign(xive); 1317 break; 1318 1319 case VC_ENDC_CFG: 1320 val = xive->vc_regs[reg]; 1321 break; 1322 1323 /* 1324 * END cache updates 1325 */ 1326 case VC_ENDC_WATCH0_SPEC: 1327 case VC_ENDC_WATCH1_SPEC: 1328 case VC_ENDC_WATCH2_SPEC: 1329 case VC_ENDC_WATCH3_SPEC: 1330 watch_engine = (offset - VC_ENDC_WATCH0_SPEC) >> 6; 1331 xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT); 1332 pnv_xive2_endc_cache_watch_release(xive, watch_engine); 1333 val = xive->vc_regs[reg]; 1334 break; 1335 1336 case VC_ENDC_WATCH0_DATA0: 1337 case VC_ENDC_WATCH1_DATA0: 1338 case VC_ENDC_WATCH2_DATA0: 1339 case VC_ENDC_WATCH3_DATA0: 1340 /* 1341 * Load DATA registers from cache with data requested by the 1342 * SPEC register. Clear gen_flipped bit in word 1. 1343 */ 1344 watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; 1345 pnv_xive2_end_cache_load(xive, watch_engine); 1346 xive->vc_regs[reg] &= ~(uint64_t)END2_W1_GEN_FLIPPED; 1347 val = xive->vc_regs[reg]; 1348 break; 1349 1350 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: 1351 case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: 1352 case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: 1353 case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: 1354 val = xive->vc_regs[reg]; 1355 break; 1356 1357 case VC_ENDC_FLUSH_CTRL: 1358 xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID; 1359 val = xive->vc_regs[reg]; 1360 break; 1361 1362 /* 1363 * Indirect invalidation 1364 */ 1365 case VC_AT_MACRO_KILL_MASK: 1366 val = xive->vc_regs[reg]; 1367 break; 1368 1369 case VC_AT_MACRO_KILL: 1370 xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID; 1371 val = xive->vc_regs[reg]; 1372 break; 1373 1374 /* 1375 * Interrupt fifo overflow in memory backing store (Not modeled) 1376 */ 1377 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: 1378 val = xive->vc_regs[reg]; 1379 break; 1380 1381 /* 1382 * Synchronisation 1383 */ 1384 case VC_ENDC_SYNC_DONE: 1385 val = VC_ENDC_SYNC_POLL_DONE; 1386 break; 1387 default: 1388 xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset); 1389 } 1390 1391 return val; 1392 } 1393 1394 static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset, 1395 uint64_t val, unsigned size) 1396 { 1397 PnvXive2 *xive = PNV_XIVE2(opaque); 1398 uint32_t reg = offset >> 3; 1399 uint8_t watch_engine; 1400 1401 switch (offset) { 1402 /* 1403 * VSD table settings. 1404 */ 1405 case VC_VSD_TABLE_ADDR: 1406 break; 1407 case VC_VSD_TABLE_DATA: 1408 pnv_xive2_vc_vst_set_data(xive, val); 1409 break; 1410 1411 /* 1412 * ESB cache updates (not modeled) 1413 */ 1414 /* case VC_ESBC_FLUSH_CTRL: */ 1415 case VC_ESBC_FLUSH_POLL: 1416 xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID; 1417 /* ESB update */ 1418 break; 1419 1420 case VC_ESBC_FLUSH_INJECT: 1421 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ESBC); 1422 break; 1423 1424 case VC_ESBC_CFG: 1425 break; 1426 1427 /* 1428 * EAS cache updates (not modeled) 1429 */ 1430 /* case VC_EASC_FLUSH_CTRL: */ 1431 case VC_EASC_FLUSH_POLL: 1432 xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID; 1433 /* EAS update */ 1434 break; 1435 1436 case VC_EASC_FLUSH_INJECT: 1437 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_EASC); 1438 break; 1439 1440 case VC_ENDC_CFG: 1441 break; 1442 1443 /* 1444 * END cache updates 1445 */ 1446 case VC_ENDC_WATCH0_SPEC: 1447 case VC_ENDC_WATCH1_SPEC: 1448 case VC_ENDC_WATCH2_SPEC: 1449 case VC_ENDC_WATCH3_SPEC: 1450 val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */ 1451 break; 1452 1453 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: 1454 case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: 1455 case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: 1456 case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: 1457 break; 1458 case VC_ENDC_WATCH0_DATA0: 1459 case VC_ENDC_WATCH1_DATA0: 1460 case VC_ENDC_WATCH2_DATA0: 1461 case VC_ENDC_WATCH3_DATA0: 1462 /* writing to DATA0 triggers the cache write */ 1463 watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; 1464 xive->vc_regs[reg] = val; 1465 pnv_xive2_end_update(xive, watch_engine); 1466 break; 1467 1468 1469 /* case VC_ENDC_FLUSH_CTRL: */ 1470 case VC_ENDC_FLUSH_POLL: 1471 xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID; 1472 break; 1473 1474 case VC_ENDC_FLUSH_INJECT: 1475 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ENDC); 1476 break; 1477 1478 /* 1479 * Indirect invalidation 1480 */ 1481 case VC_AT_MACRO_KILL: 1482 case VC_AT_MACRO_KILL_MASK: 1483 break; 1484 1485 /* 1486 * Interrupt fifo overflow in memory backing store (Not modeled) 1487 */ 1488 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: 1489 break; 1490 1491 /* 1492 * Synchronisation 1493 */ 1494 case VC_ENDC_SYNC_DONE: 1495 break; 1496 1497 default: 1498 xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset); 1499 return; 1500 } 1501 1502 xive->vc_regs[reg] = val; 1503 } 1504 1505 static const MemoryRegionOps pnv_xive2_ic_vc_ops = { 1506 .read = pnv_xive2_ic_vc_read, 1507 .write = pnv_xive2_ic_vc_write, 1508 .endianness = DEVICE_BIG_ENDIAN, 1509 .valid = { 1510 .min_access_size = 8, 1511 .max_access_size = 8, 1512 }, 1513 .impl = { 1514 .min_access_size = 8, 1515 .max_access_size = 8, 1516 }, 1517 }; 1518 1519 static uint8_t pnv_xive2_nxc_cache_watch_assign(PnvXive2 *xive) 1520 { 1521 uint64_t engine_mask = GETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 1522 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 1523 uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; 1524 uint8_t val; 1525 1526 /* 1527 * We keep track of which engines are currently busy in the 1528 * PC_NXC_WATCH_ASSIGN register directly. When the firmware reads 1529 * the register, we don't return its value but the ID of an engine 1530 * it can use. 1531 * There are 4 engines. 0xFF means no engine is available. 1532 */ 1533 val = pnv_xive2_cache_watch_assign(engine_mask, &state); 1534 if (val != 0xFF) { 1535 xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; 1536 } 1537 return val; 1538 } 1539 1540 static void pnv_xive2_nxc_cache_watch_release(PnvXive2 *xive, 1541 uint8_t watch_engine) 1542 { 1543 uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; 1544 1545 pnv_xive2_cache_watch_release(&state, watch_engine); 1546 xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; 1547 } 1548 1549 static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset, 1550 unsigned size) 1551 { 1552 PnvXive2 *xive = PNV_XIVE2(opaque); 1553 uint64_t val = -1; 1554 uint32_t reg = offset >> 3; 1555 uint8_t watch_engine; 1556 1557 switch (offset) { 1558 /* 1559 * VSD table settings. 1560 */ 1561 case PC_VSD_TABLE_ADDR: 1562 case PC_VSD_TABLE_DATA: 1563 val = xive->pc_regs[reg]; 1564 break; 1565 1566 case PC_NXC_WATCH_ASSIGN: 1567 val = pnv_xive2_nxc_cache_watch_assign(xive); 1568 break; 1569 1570 case PC_NXC_PROC_CONFIG: 1571 val = xive->pc_regs[reg]; 1572 break; 1573 1574 /* 1575 * cache updates 1576 */ 1577 case PC_NXC_WATCH0_SPEC: 1578 case PC_NXC_WATCH1_SPEC: 1579 case PC_NXC_WATCH2_SPEC: 1580 case PC_NXC_WATCH3_SPEC: 1581 watch_engine = (offset - PC_NXC_WATCH0_SPEC) >> 6; 1582 xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT); 1583 pnv_xive2_nxc_cache_watch_release(xive, watch_engine); 1584 val = xive->pc_regs[reg]; 1585 break; 1586 1587 case PC_NXC_WATCH0_DATA0: 1588 case PC_NXC_WATCH1_DATA0: 1589 case PC_NXC_WATCH2_DATA0: 1590 case PC_NXC_WATCH3_DATA0: 1591 /* 1592 * Load DATA registers from cache with data requested by the 1593 * SPEC register 1594 */ 1595 watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; 1596 pnv_xive2_nxc_cache_load(xive, watch_engine); 1597 val = xive->pc_regs[reg]; 1598 break; 1599 1600 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: 1601 case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: 1602 case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: 1603 case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: 1604 val = xive->pc_regs[reg]; 1605 break; 1606 1607 case PC_NXC_FLUSH_CTRL: 1608 xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID; 1609 val = xive->pc_regs[reg]; 1610 break; 1611 1612 /* 1613 * Indirect invalidation 1614 */ 1615 case PC_AT_KILL: 1616 xive->pc_regs[reg] &= ~PC_AT_KILL_VALID; 1617 val = xive->pc_regs[reg]; 1618 break; 1619 1620 default: 1621 xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset); 1622 } 1623 1624 return val; 1625 } 1626 1627 static void pnv_xive2_pc_vst_set_data(PnvXive2 *xive, uint64_t vsd) 1628 { 1629 uint8_t type = GETFIELD(PC_VSD_TABLE_SELECT, 1630 xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); 1631 uint8_t blk = GETFIELD(PC_VSD_TABLE_ADDRESS, 1632 xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); 1633 1634 pnv_xive2_vst_set_data(xive, vsd, type, blk); 1635 } 1636 1637 static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset, 1638 uint64_t val, unsigned size) 1639 { 1640 PnvXive2 *xive = PNV_XIVE2(opaque); 1641 uint32_t reg = offset >> 3; 1642 uint8_t watch_engine; 1643 1644 switch (offset) { 1645 1646 /* 1647 * VSD table settings. 1648 * The Xive2Router model combines both VC and PC sub-engines. We 1649 * allow to configure the tables through both, for the rare cases 1650 * where a table only really needs to be configured for one of 1651 * them (e.g. the NVG table for the presenter). It assumes that 1652 * firmware passes the same address to the VC and PC when tables 1653 * are defined for both, which seems acceptable. 1654 */ 1655 case PC_VSD_TABLE_ADDR: 1656 break; 1657 case PC_VSD_TABLE_DATA: 1658 pnv_xive2_pc_vst_set_data(xive, val); 1659 break; 1660 1661 case PC_NXC_PROC_CONFIG: 1662 break; 1663 1664 /* 1665 * cache updates 1666 */ 1667 case PC_NXC_WATCH0_SPEC: 1668 case PC_NXC_WATCH1_SPEC: 1669 case PC_NXC_WATCH2_SPEC: 1670 case PC_NXC_WATCH3_SPEC: 1671 val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */ 1672 break; 1673 1674 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: 1675 case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: 1676 case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: 1677 case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: 1678 break; 1679 case PC_NXC_WATCH0_DATA0: 1680 case PC_NXC_WATCH1_DATA0: 1681 case PC_NXC_WATCH2_DATA0: 1682 case PC_NXC_WATCH3_DATA0: 1683 /* writing to DATA0 triggers the cache write */ 1684 watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; 1685 xive->pc_regs[reg] = val; 1686 pnv_xive2_nxc_update(xive, watch_engine); 1687 break; 1688 1689 /* case PC_NXC_FLUSH_CTRL: */ 1690 case PC_NXC_FLUSH_POLL: 1691 xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID; 1692 break; 1693 1694 case PC_NXC_FLUSH_INJECT: 1695 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_NXC); 1696 break; 1697 1698 /* 1699 * Indirect invalidation 1700 */ 1701 case PC_AT_KILL: 1702 case PC_AT_KILL_MASK: 1703 break; 1704 1705 default: 1706 xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset); 1707 return; 1708 } 1709 1710 xive->pc_regs[reg] = val; 1711 } 1712 1713 static const MemoryRegionOps pnv_xive2_ic_pc_ops = { 1714 .read = pnv_xive2_ic_pc_read, 1715 .write = pnv_xive2_ic_pc_write, 1716 .endianness = DEVICE_BIG_ENDIAN, 1717 .valid = { 1718 .min_access_size = 8, 1719 .max_access_size = 8, 1720 }, 1721 .impl = { 1722 .min_access_size = 8, 1723 .max_access_size = 8, 1724 }, 1725 }; 1726 1727 1728 static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset, 1729 unsigned size) 1730 { 1731 PnvXive2 *xive = PNV_XIVE2(opaque); 1732 uint64_t val = -1; 1733 uint32_t reg = offset >> 3; 1734 1735 switch (offset) { 1736 /* 1737 * XIVE2 hardware thread enablement 1738 */ 1739 case TCTXT_EN0: 1740 case TCTXT_EN1: 1741 val = xive->tctxt_regs[reg]; 1742 break; 1743 1744 case TCTXT_EN0_SET: 1745 case TCTXT_EN0_RESET: 1746 val = xive->tctxt_regs[TCTXT_EN0 >> 3]; 1747 break; 1748 case TCTXT_EN1_SET: 1749 case TCTXT_EN1_RESET: 1750 val = xive->tctxt_regs[TCTXT_EN1 >> 3]; 1751 break; 1752 case TCTXT_CFG: 1753 val = xive->tctxt_regs[reg]; 1754 break; 1755 default: 1756 xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset); 1757 } 1758 1759 return val; 1760 } 1761 1762 static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset, 1763 uint64_t val, unsigned size) 1764 { 1765 PnvXive2 *xive = PNV_XIVE2(opaque); 1766 uint32_t reg = offset >> 3; 1767 1768 switch (offset) { 1769 /* 1770 * XIVE2 hardware thread enablement 1771 */ 1772 case TCTXT_EN0: /* Physical Thread Enable */ 1773 case TCTXT_EN1: /* Physical Thread Enable (fused core) */ 1774 xive->tctxt_regs[reg] = val; 1775 break; 1776 1777 case TCTXT_EN0_SET: 1778 xive->tctxt_regs[TCTXT_EN0 >> 3] |= val; 1779 break; 1780 case TCTXT_EN1_SET: 1781 xive->tctxt_regs[TCTXT_EN1 >> 3] |= val; 1782 break; 1783 case TCTXT_EN0_RESET: 1784 xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val; 1785 break; 1786 case TCTXT_EN1_RESET: 1787 xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val; 1788 break; 1789 case TCTXT_CFG: 1790 xive->tctxt_regs[reg] = val; 1791 break; 1792 default: 1793 xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset); 1794 return; 1795 } 1796 } 1797 1798 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = { 1799 .read = pnv_xive2_ic_tctxt_read, 1800 .write = pnv_xive2_ic_tctxt_write, 1801 .endianness = DEVICE_BIG_ENDIAN, 1802 .valid = { 1803 .min_access_size = 8, 1804 .max_access_size = 8, 1805 }, 1806 .impl = { 1807 .min_access_size = 8, 1808 .max_access_size = 8, 1809 }, 1810 }; 1811 1812 /* 1813 * Redirect XSCOM to MMIO handlers 1814 */ 1815 static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset, 1816 unsigned size) 1817 { 1818 PnvXive2 *xive = PNV_XIVE2(opaque); 1819 uint64_t val = -1; 1820 uint32_t xscom_reg = offset >> 3; 1821 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; 1822 1823 switch (xscom_reg) { 1824 case 0x000 ... 0x0FF: 1825 val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size); 1826 break; 1827 case 0x100 ... 0x1FF: 1828 val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size); 1829 break; 1830 case 0x200 ... 0x2FF: 1831 val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size); 1832 break; 1833 case 0x300 ... 0x3FF: 1834 val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size); 1835 break; 1836 default: 1837 xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset); 1838 } 1839 1840 return val; 1841 } 1842 1843 static void pnv_xive2_xscom_write(void *opaque, hwaddr offset, 1844 uint64_t val, unsigned size) 1845 { 1846 PnvXive2 *xive = PNV_XIVE2(opaque); 1847 uint32_t xscom_reg = offset >> 3; 1848 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; 1849 1850 switch (xscom_reg) { 1851 case 0x000 ... 0x0FF: 1852 pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size); 1853 break; 1854 case 0x100 ... 0x1FF: 1855 pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size); 1856 break; 1857 case 0x200 ... 0x2FF: 1858 pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size); 1859 break; 1860 case 0x300 ... 0x3FF: 1861 pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size); 1862 break; 1863 default: 1864 xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset); 1865 } 1866 } 1867 1868 static const MemoryRegionOps pnv_xive2_xscom_ops = { 1869 .read = pnv_xive2_xscom_read, 1870 .write = pnv_xive2_xscom_write, 1871 .endianness = DEVICE_BIG_ENDIAN, 1872 .valid = { 1873 .min_access_size = 8, 1874 .max_access_size = 8, 1875 }, 1876 .impl = { 1877 .min_access_size = 8, 1878 .max_access_size = 8, 1879 }, 1880 }; 1881 1882 /* 1883 * Notify port page. The layout is compatible between 4K and 64K pages : 1884 * 1885 * Page 1 Notify page (writes only) 1886 * 0x000 - 0x7FF IPI interrupt (NPU) 1887 * 0x800 - 0xFFF HW interrupt triggers (PSI, PHB) 1888 */ 1889 1890 static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr, 1891 uint64_t val) 1892 { 1893 uint8_t blk; 1894 uint32_t idx; 1895 1896 if (val & XIVE_TRIGGER_END) { 1897 xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64, 1898 addr, val); 1899 return; 1900 } 1901 1902 /* 1903 * Forward the source event notification directly to the Router. 1904 * The source interrupt number should already be correctly encoded 1905 * with the chip block id by the sending device (PHB, PSI). 1906 */ 1907 blk = XIVE_EAS_BLOCK(val); 1908 idx = XIVE_EAS_INDEX(val); 1909 1910 xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), 1911 !!(val & XIVE_TRIGGER_PQ)); 1912 } 1913 1914 static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset, 1915 uint64_t val, unsigned size) 1916 { 1917 PnvXive2 *xive = PNV_XIVE2(opaque); 1918 1919 /* VC: IPI triggers */ 1920 switch (offset) { 1921 case 0x000 ... 0x7FF: 1922 /* TODO: check IPI notify sub-page routing */ 1923 pnv_xive2_ic_hw_trigger(opaque, offset, val); 1924 break; 1925 1926 /* VC: HW triggers */ 1927 case 0x800 ... 0xFFF: 1928 pnv_xive2_ic_hw_trigger(opaque, offset, val); 1929 break; 1930 1931 default: 1932 xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset); 1933 } 1934 } 1935 1936 static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset, 1937 unsigned size) 1938 { 1939 PnvXive2 *xive = PNV_XIVE2(opaque); 1940 1941 /* loads are invalid */ 1942 xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset); 1943 return -1; 1944 } 1945 1946 static const MemoryRegionOps pnv_xive2_ic_notify_ops = { 1947 .read = pnv_xive2_ic_notify_read, 1948 .write = pnv_xive2_ic_notify_write, 1949 .endianness = DEVICE_BIG_ENDIAN, 1950 .valid = { 1951 .min_access_size = 8, 1952 .max_access_size = 8, 1953 }, 1954 .impl = { 1955 .min_access_size = 8, 1956 .max_access_size = 8, 1957 }, 1958 }; 1959 1960 static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset, 1961 unsigned size) 1962 { 1963 PnvXive2 *xive = PNV_XIVE2(opaque); 1964 1965 xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset); 1966 return -1; 1967 } 1968 1969 static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset, 1970 uint64_t val, unsigned size) 1971 { 1972 PnvXive2 *xive = PNV_XIVE2(opaque); 1973 1974 xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset); 1975 } 1976 1977 static const MemoryRegionOps pnv_xive2_ic_lsi_ops = { 1978 .read = pnv_xive2_ic_lsi_read, 1979 .write = pnv_xive2_ic_lsi_write, 1980 .endianness = DEVICE_BIG_ENDIAN, 1981 .valid = { 1982 .min_access_size = 8, 1983 .max_access_size = 8, 1984 }, 1985 .impl = { 1986 .min_access_size = 8, 1987 .max_access_size = 8, 1988 }, 1989 }; 1990 1991 /* 1992 * Sync MMIO page (write only) 1993 */ 1994 #define PNV_XIVE2_SYNC_IPI 0x000 1995 #define PNV_XIVE2_SYNC_HW 0x080 1996 #define PNV_XIVE2_SYNC_NxC 0x100 1997 #define PNV_XIVE2_SYNC_INT 0x180 1998 #define PNV_XIVE2_SYNC_OS_ESC 0x200 1999 #define PNV_XIVE2_SYNC_POOL_ESC 0x280 2000 #define PNV_XIVE2_SYNC_HARD_ESC 0x300 2001 #define PNV_XIVE2_SYNC_NXC_LD_LCL_NCO 0x800 2002 #define PNV_XIVE2_SYNC_NXC_LD_LCL_CO 0x880 2003 #define PNV_XIVE2_SYNC_NXC_ST_LCL_NCI 0x900 2004 #define PNV_XIVE2_SYNC_NXC_ST_LCL_CI 0x980 2005 #define PNV_XIVE2_SYNC_NXC_ST_RMT_NCI 0xA00 2006 #define PNV_XIVE2_SYNC_NXC_ST_RMT_CI 0xA80 2007 2008 static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset, 2009 unsigned size) 2010 { 2011 PnvXive2 *xive = PNV_XIVE2(opaque); 2012 2013 /* loads are invalid */ 2014 xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset); 2015 return -1; 2016 } 2017 2018 /* 2019 * The sync MMIO space spans two pages. The lower page is use for 2020 * queue sync "poll" requests while the upper page is used for queue 2021 * sync "inject" requests. Inject requests require the HW to write 2022 * a byte of all 1's to a predetermined location in memory in order 2023 * to signal completion of the request. Both pages have the same 2024 * layout, so it is easiest to handle both with a single function. 2025 */ 2026 static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset, 2027 uint64_t val, unsigned size) 2028 { 2029 PnvXive2 *xive = PNV_XIVE2(opaque); 2030 int inject_type; 2031 hwaddr pg_offset_mask = (1ull << xive->ic_shift) - 1; 2032 2033 /* adjust offset for inject page */ 2034 hwaddr adj_offset = offset & pg_offset_mask; 2035 2036 switch (adj_offset) { 2037 case PNV_XIVE2_SYNC_IPI: 2038 inject_type = PNV_XIVE2_QUEUE_IPI; 2039 break; 2040 case PNV_XIVE2_SYNC_HW: 2041 inject_type = PNV_XIVE2_QUEUE_HW; 2042 break; 2043 case PNV_XIVE2_SYNC_NxC: 2044 inject_type = PNV_XIVE2_QUEUE_NXC; 2045 break; 2046 case PNV_XIVE2_SYNC_INT: 2047 inject_type = PNV_XIVE2_QUEUE_INT; 2048 break; 2049 case PNV_XIVE2_SYNC_OS_ESC: 2050 inject_type = PNV_XIVE2_QUEUE_OS; 2051 break; 2052 case PNV_XIVE2_SYNC_POOL_ESC: 2053 inject_type = PNV_XIVE2_QUEUE_POOL; 2054 break; 2055 case PNV_XIVE2_SYNC_HARD_ESC: 2056 inject_type = PNV_XIVE2_QUEUE_HARD; 2057 break; 2058 case PNV_XIVE2_SYNC_NXC_LD_LCL_NCO: 2059 inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO; 2060 break; 2061 case PNV_XIVE2_SYNC_NXC_LD_LCL_CO: 2062 inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_CO; 2063 break; 2064 case PNV_XIVE2_SYNC_NXC_ST_LCL_NCI: 2065 inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI; 2066 break; 2067 case PNV_XIVE2_SYNC_NXC_ST_LCL_CI: 2068 inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_CI; 2069 break; 2070 case PNV_XIVE2_SYNC_NXC_ST_RMT_NCI: 2071 inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI; 2072 break; 2073 case PNV_XIVE2_SYNC_NXC_ST_RMT_CI: 2074 inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_CI; 2075 break; 2076 default: 2077 xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset); 2078 return; 2079 } 2080 2081 /* Write Queue Sync notification byte if writing to sync inject page */ 2082 if ((offset & ~pg_offset_mask) != 0) { 2083 pnv_xive2_inject_notify(xive, inject_type); 2084 } 2085 } 2086 2087 static const MemoryRegionOps pnv_xive2_ic_sync_ops = { 2088 .read = pnv_xive2_ic_sync_read, 2089 .write = pnv_xive2_ic_sync_write, 2090 .endianness = DEVICE_BIG_ENDIAN, 2091 .valid = { 2092 .min_access_size = 8, 2093 .max_access_size = 8, 2094 }, 2095 .impl = { 2096 .min_access_size = 8, 2097 .max_access_size = 8, 2098 }, 2099 }; 2100 2101 /* 2102 * When the TM direct pages of the IC controller are accessed, the 2103 * target HW thread is deduced from the page offset. 2104 */ 2105 static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset) 2106 { 2107 /* On P10, the node ID shift in the PIR register is 8 bits */ 2108 return xive->chip->chip_id << 8 | offset >> xive->ic_shift; 2109 } 2110 2111 static uint32_t pnv_xive2_ic_tm_get_hw_page_offset(PnvXive2 *xive, 2112 hwaddr offset) 2113 { 2114 /* 2115 * Indirect TIMA accesses are similar to direct accesses for 2116 * privilege ring 0. So remove any traces of the hw thread ID from 2117 * the offset in the IC BAR as it could be interpreted as the ring 2118 * privilege when calling the underlying direct access functions. 2119 */ 2120 return offset & ((1ull << xive->ic_shift) - 1); 2121 } 2122 2123 static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir) 2124 { 2125 PnvChip *chip = xive->chip; 2126 PowerPCCPU *cpu = NULL; 2127 2128 cpu = pnv_chip_find_cpu(chip, pir); 2129 if (!cpu) { 2130 xive2_error(xive, "IC: invalid PIR %x for indirect access", pir); 2131 return NULL; 2132 } 2133 2134 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 2135 xive2_error(xive, "IC: CPU %x is not enabled", pir); 2136 } 2137 2138 return XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2139 } 2140 2141 static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset, 2142 unsigned size) 2143 { 2144 PnvXive2 *xive = PNV_XIVE2(opaque); 2145 XivePresenter *xptr = XIVE_PRESENTER(xive); 2146 hwaddr hw_page_offset; 2147 uint32_t pir; 2148 XiveTCTX *tctx; 2149 uint64_t val = -1; 2150 2151 pir = pnv_xive2_ic_tm_get_pir(xive, offset); 2152 hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); 2153 tctx = pnv_xive2_get_indirect_tctx(xive, pir); 2154 if (tctx) { 2155 val = xive_tctx_tm_read(xptr, tctx, hw_page_offset, size); 2156 } 2157 2158 return val; 2159 } 2160 2161 static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset, 2162 uint64_t val, unsigned size) 2163 { 2164 PnvXive2 *xive = PNV_XIVE2(opaque); 2165 XivePresenter *xptr = XIVE_PRESENTER(xive); 2166 hwaddr hw_page_offset; 2167 uint32_t pir; 2168 XiveTCTX *tctx; 2169 2170 pir = pnv_xive2_ic_tm_get_pir(xive, offset); 2171 hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); 2172 tctx = pnv_xive2_get_indirect_tctx(xive, pir); 2173 if (tctx) { 2174 xive_tctx_tm_write(xptr, tctx, hw_page_offset, val, size); 2175 } 2176 } 2177 2178 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = { 2179 .read = pnv_xive2_ic_tm_indirect_read, 2180 .write = pnv_xive2_ic_tm_indirect_write, 2181 .endianness = DEVICE_BIG_ENDIAN, 2182 .valid = { 2183 .min_access_size = 1, 2184 .max_access_size = 8, 2185 }, 2186 .impl = { 2187 .min_access_size = 1, 2188 .max_access_size = 8, 2189 }, 2190 }; 2191 2192 /* 2193 * TIMA ops 2194 */ 2195 static void pnv_xive2_tm_write(void *opaque, hwaddr offset, 2196 uint64_t value, unsigned size) 2197 { 2198 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 2199 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); 2200 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2201 XivePresenter *xptr = XIVE_PRESENTER(xive); 2202 2203 xive_tctx_tm_write(xptr, tctx, offset, value, size); 2204 } 2205 2206 static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size) 2207 { 2208 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 2209 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); 2210 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2211 XivePresenter *xptr = XIVE_PRESENTER(xive); 2212 2213 return xive_tctx_tm_read(xptr, tctx, offset, size); 2214 } 2215 2216 static const MemoryRegionOps pnv_xive2_tm_ops = { 2217 .read = pnv_xive2_tm_read, 2218 .write = pnv_xive2_tm_write, 2219 .endianness = DEVICE_BIG_ENDIAN, 2220 .valid = { 2221 .min_access_size = 1, 2222 .max_access_size = 8, 2223 }, 2224 .impl = { 2225 .min_access_size = 1, 2226 .max_access_size = 8, 2227 }, 2228 }; 2229 2230 static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr addr, 2231 unsigned size) 2232 { 2233 PnvXive2 *xive = PNV_XIVE2(opaque); 2234 XivePresenter *xptr = XIVE_PRESENTER(xive); 2235 uint32_t page = addr >> xive->nvpg_shift; 2236 uint16_t op = addr & 0xFFF; 2237 uint8_t blk = pnv_xive2_block_id(xive); 2238 2239 if (size != 2) { 2240 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvc load size %d\n", 2241 size); 2242 return -1; 2243 } 2244 2245 return xive2_presenter_nvgc_backlog_op(xptr, true, blk, page, op, 1); 2246 } 2247 2248 static void pnv_xive2_nvc_write(void *opaque, hwaddr addr, 2249 uint64_t val, unsigned size) 2250 { 2251 PnvXive2 *xive = PNV_XIVE2(opaque); 2252 XivePresenter *xptr = XIVE_PRESENTER(xive); 2253 uint32_t page = addr >> xive->nvc_shift; 2254 uint16_t op = addr & 0xFFF; 2255 uint8_t blk = pnv_xive2_block_id(xive); 2256 2257 if (size != 1) { 2258 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvc write size %d\n", 2259 size); 2260 return; 2261 } 2262 2263 (void)xive2_presenter_nvgc_backlog_op(xptr, true, blk, page, op, val); 2264 } 2265 2266 static const MemoryRegionOps pnv_xive2_nvc_ops = { 2267 .read = pnv_xive2_nvc_read, 2268 .write = pnv_xive2_nvc_write, 2269 .endianness = DEVICE_BIG_ENDIAN, 2270 .valid = { 2271 .min_access_size = 1, 2272 .max_access_size = 8, 2273 }, 2274 .impl = { 2275 .min_access_size = 1, 2276 .max_access_size = 8, 2277 }, 2278 }; 2279 2280 static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr addr, 2281 unsigned size) 2282 { 2283 PnvXive2 *xive = PNV_XIVE2(opaque); 2284 XivePresenter *xptr = XIVE_PRESENTER(xive); 2285 uint32_t page = addr >> xive->nvpg_shift; 2286 uint16_t op = addr & 0xFFF; 2287 uint32_t index = page >> 1; 2288 uint8_t blk = pnv_xive2_block_id(xive); 2289 2290 if (size != 2) { 2291 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvpg load size %d\n", 2292 size); 2293 return -1; 2294 } 2295 2296 if (page % 2) { 2297 /* odd page - NVG */ 2298 return xive2_presenter_nvgc_backlog_op(xptr, false, blk, index, op, 1); 2299 } else { 2300 /* even page - NVP */ 2301 return xive2_presenter_nvp_backlog_op(xptr, blk, index, op); 2302 } 2303 } 2304 2305 static void pnv_xive2_nvpg_write(void *opaque, hwaddr addr, 2306 uint64_t val, unsigned size) 2307 { 2308 PnvXive2 *xive = PNV_XIVE2(opaque); 2309 XivePresenter *xptr = XIVE_PRESENTER(xive); 2310 uint32_t page = addr >> xive->nvpg_shift; 2311 uint16_t op = addr & 0xFFF; 2312 uint32_t index = page >> 1; 2313 uint8_t blk = pnv_xive2_block_id(xive); 2314 2315 if (size != 1) { 2316 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvpg write size %d\n", 2317 size); 2318 return; 2319 } 2320 2321 if (page % 2) { 2322 /* odd page - NVG */ 2323 (void)xive2_presenter_nvgc_backlog_op(xptr, false, blk, index, op, val); 2324 } else { 2325 /* even page - NVP */ 2326 (void)xive2_presenter_nvp_backlog_op(xptr, blk, index, op); 2327 } 2328 } 2329 2330 static const MemoryRegionOps pnv_xive2_nvpg_ops = { 2331 .read = pnv_xive2_nvpg_read, 2332 .write = pnv_xive2_nvpg_write, 2333 .endianness = DEVICE_BIG_ENDIAN, 2334 .valid = { 2335 .min_access_size = 1, 2336 .max_access_size = 8, 2337 }, 2338 .impl = { 2339 .min_access_size = 1, 2340 .max_access_size = 8, 2341 }, 2342 }; 2343 2344 /* 2345 * POWER10 default capabilities: 0x2000120076f000FC 2346 */ 2347 #define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC 2348 2349 /* 2350 * POWER10 default configuration: 0x0030000033000000 2351 * 2352 * 8bits thread id was dropped for P10 2353 */ 2354 #define PNV_XIVE2_CONFIGURATION 0x0030000033000000 2355 2356 static void pnv_xive2_reset(void *dev) 2357 { 2358 PnvXive2 *xive = PNV_XIVE2(dev); 2359 XiveSource *xsrc = &xive->ipi_source; 2360 Xive2EndSource *end_xsrc = &xive->end_source; 2361 2362 xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities; 2363 xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config; 2364 2365 /* HW hardwires the #Topology of the chip in the block field */ 2366 xive->cq_regs[CQ_XIVE_CFG >> 3] |= 2367 SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id); 2368 2369 /* VC and PC cache watch assign mechanism */ 2370 xive->vc_regs[VC_ENDC_CFG >> 3] = 2371 SETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 0ull, 0b0111); 2372 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3] = 2373 SETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 0ull, 0b0111); 2374 2375 /* Set default page size to 64k */ 2376 xive->ic_shift = xive->esb_shift = xive->end_shift = 16; 2377 xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16; 2378 2379 /* Clear source MMIOs */ 2380 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 2381 memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); 2382 } 2383 2384 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { 2385 memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); 2386 } 2387 } 2388 2389 /* 2390 * Maximum number of IRQs and ENDs supported by HW. Will be tuned by 2391 * software. 2392 */ 2393 #define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 2394 #define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 2395 2396 static void pnv_xive2_realize(DeviceState *dev, Error **errp) 2397 { 2398 PnvXive2 *xive = PNV_XIVE2(dev); 2399 PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev); 2400 XiveSource *xsrc = &xive->ipi_source; 2401 Xive2EndSource *end_xsrc = &xive->end_source; 2402 Error *local_err = NULL; 2403 int i; 2404 2405 pxc->parent_realize(dev, &local_err); 2406 if (local_err) { 2407 error_propagate(errp, local_err); 2408 return; 2409 } 2410 2411 assert(xive->chip); 2412 2413 /* 2414 * The XiveSource and Xive2EndSource objects are realized with the 2415 * maximum allowed HW configuration. The ESB MMIO regions will be 2416 * resized dynamically when the controller is configured by the FW 2417 * to limit accesses to resources not provisioned. 2418 */ 2419 object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI, 2420 &error_fatal); 2421 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS, 2422 &error_fatal); 2423 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), 2424 &error_fatal); 2425 qdev_realize(DEVICE(xsrc), NULL, &local_err); 2426 if (local_err) { 2427 error_propagate(errp, local_err); 2428 return; 2429 } 2430 2431 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS, 2432 &error_fatal); 2433 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), 2434 &error_abort); 2435 qdev_realize(DEVICE(end_xsrc), NULL, &local_err); 2436 if (local_err) { 2437 error_propagate(errp, local_err); 2438 return; 2439 } 2440 2441 /* XSCOM region, used for initial configuration of the BARs */ 2442 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), 2443 &pnv_xive2_xscom_ops, xive, "xscom-xive", 2444 PNV10_XSCOM_XIVE2_SIZE << 3); 2445 2446 /* Interrupt controller MMIO regions */ 2447 xive->ic_shift = 16; 2448 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", 2449 PNV10_XIVE2_IC_SIZE); 2450 2451 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 2452 memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev), 2453 pnv_xive2_ic_regions[i].ops, xive, 2454 pnv_xive2_ic_regions[i].name, 2455 pnv_xive2_ic_regions[i].pgsize << xive->ic_shift); 2456 } 2457 2458 /* 2459 * VC MMIO regions. 2460 */ 2461 xive->esb_shift = 16; 2462 xive->end_shift = 16; 2463 memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb", 2464 PNV10_XIVE2_ESB_SIZE); 2465 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end", 2466 PNV10_XIVE2_END_SIZE); 2467 2468 /* Presenter Controller MMIO region (not modeled) */ 2469 xive->nvc_shift = 16; 2470 xive->nvpg_shift = 16; 2471 memory_region_init_io(&xive->nvc_mmio, OBJECT(dev), 2472 &pnv_xive2_nvc_ops, xive, 2473 "xive-nvc", PNV10_XIVE2_NVC_SIZE); 2474 2475 memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev), 2476 &pnv_xive2_nvpg_ops, xive, 2477 "xive-nvpg", PNV10_XIVE2_NVPG_SIZE); 2478 2479 /* Thread Interrupt Management Area (Direct) */ 2480 xive->tm_shift = 16; 2481 memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops, 2482 xive, "xive-tima", PNV10_XIVE2_TM_SIZE); 2483 2484 qemu_register_reset(pnv_xive2_reset, dev); 2485 } 2486 2487 static const Property pnv_xive2_properties[] = { 2488 DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0), 2489 DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0), 2490 DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0), 2491 DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0), 2492 DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0), 2493 DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0), 2494 DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities, 2495 PNV_XIVE2_CAPABILITIES), 2496 DEFINE_PROP_UINT64("config", PnvXive2, config, 2497 PNV_XIVE2_CONFIGURATION), 2498 DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *), 2499 }; 2500 2501 static void pnv_xive2_instance_init(Object *obj) 2502 { 2503 PnvXive2 *xive = PNV_XIVE2(obj); 2504 2505 object_initialize_child(obj, "ipi_source", &xive->ipi_source, 2506 TYPE_XIVE_SOURCE); 2507 object_initialize_child(obj, "end_source", &xive->end_source, 2508 TYPE_XIVE2_END_SOURCE); 2509 } 2510 2511 static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt, 2512 int xscom_offset) 2513 { 2514 const char compat_p10[] = "ibm,power10-xive-x"; 2515 char *name; 2516 int offset; 2517 uint32_t reg[] = { 2518 cpu_to_be32(PNV10_XSCOM_XIVE2_BASE), 2519 cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE) 2520 }; 2521 2522 name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE); 2523 offset = fdt_add_subnode(fdt, xscom_offset, name); 2524 _FDT(offset); 2525 g_free(name); 2526 2527 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 2528 _FDT(fdt_setprop(fdt, offset, "compatible", compat_p10, 2529 sizeof(compat_p10))); 2530 return 0; 2531 } 2532 2533 static void pnv_xive2_class_init(ObjectClass *klass, const void *data) 2534 { 2535 DeviceClass *dc = DEVICE_CLASS(klass); 2536 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); 2537 Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass); 2538 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 2539 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); 2540 PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass); 2541 2542 xdc->dt_xscom = pnv_xive2_dt_xscom; 2543 2544 dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)"; 2545 device_class_set_parent_realize(dc, pnv_xive2_realize, 2546 &pxc->parent_realize); 2547 device_class_set_props(dc, pnv_xive2_properties); 2548 2549 xrc->get_eas = pnv_xive2_get_eas; 2550 xrc->get_pq = pnv_xive2_get_pq; 2551 xrc->set_pq = pnv_xive2_set_pq; 2552 xrc->get_end = pnv_xive2_get_end; 2553 xrc->write_end = pnv_xive2_write_end; 2554 xrc->get_nvp = pnv_xive2_get_nvp; 2555 xrc->write_nvp = pnv_xive2_write_nvp; 2556 xrc->get_nvgc = pnv_xive2_get_nvgc; 2557 xrc->write_nvgc = pnv_xive2_write_nvgc; 2558 xrc->get_config = pnv_xive2_get_config; 2559 xrc->get_block_id = pnv_xive2_get_block_id; 2560 2561 xnc->notify = pnv_xive2_notify; 2562 2563 xpc->match_nvt = pnv_xive2_match_nvt; 2564 xpc->get_config = pnv_xive2_presenter_get_config; 2565 xpc->broadcast = pnv_xive2_broadcast; 2566 }; 2567 2568 static const TypeInfo pnv_xive2_info = { 2569 .name = TYPE_PNV_XIVE2, 2570 .parent = TYPE_XIVE2_ROUTER, 2571 .instance_init = pnv_xive2_instance_init, 2572 .instance_size = sizeof(PnvXive2), 2573 .class_init = pnv_xive2_class_init, 2574 .class_size = sizeof(PnvXive2Class), 2575 .interfaces = (const InterfaceInfo[]) { 2576 { TYPE_PNV_XSCOM_INTERFACE }, 2577 { } 2578 } 2579 }; 2580 2581 static void pnv_xive2_register_types(void) 2582 { 2583 type_register_static(&pnv_xive2_info); 2584 } 2585 2586 type_init(pnv_xive2_register_types) 2587 2588 /* 2589 * If the table is direct, we can compute the number of PQ entries 2590 * provisioned by FW. 2591 */ 2592 static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive) 2593 { 2594 uint8_t blk = pnv_xive2_block_id(xive); 2595 uint64_t vsd = xive->vsds[VST_ESB][blk]; 2596 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); 2597 2598 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; 2599 } 2600 2601 /* 2602 * Compute the number of entries per indirect subpage. 2603 */ 2604 static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type) 2605 { 2606 uint8_t blk = pnv_xive2_block_id(xive); 2607 uint64_t vsd = xive->vsds[type][blk]; 2608 const XiveVstInfo *info = &vst_infos[type]; 2609 uint64_t vsd_addr; 2610 uint32_t page_shift; 2611 2612 /* For direct tables, fake a valid value */ 2613 if (!(VSD_INDIRECT & vsd)) { 2614 return 1; 2615 } 2616 2617 /* Get the page size of the indirect table. */ 2618 vsd_addr = vsd & VSD_ADDRESS_MASK; 2619 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); 2620 2621 if (!(vsd & VSD_ADDRESS_MASK)) { 2622 #ifdef XIVE2_DEBUG 2623 xive2_error(xive, "VST: invalid %s entry!?", info->name); 2624 #endif 2625 return 0; 2626 } 2627 2628 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 2629 2630 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 2631 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 2632 page_shift); 2633 return 0; 2634 } 2635 2636 return (1ull << page_shift) / info->size; 2637 } 2638 2639 void pnv_xive2_pic_print_info(PnvXive2 *xive, GString *buf) 2640 { 2641 Xive2Router *xrtr = XIVE2_ROUTER(xive); 2642 uint8_t blk = pnv_xive2_block_id(xive); 2643 uint8_t chip_id = xive->chip->chip_id; 2644 uint32_t srcno0 = XIVE_EAS(blk, 0); 2645 uint32_t nr_esbs = pnv_xive2_nr_esbs(xive); 2646 Xive2Eas eas; 2647 Xive2End end; 2648 Xive2Nvp nvp; 2649 Xive2Nvgc nvgc; 2650 int i; 2651 uint64_t entries_per_subpage; 2652 2653 g_string_append_printf(buf, "XIVE[%x] Source %08x .. %08x\n", 2654 blk, srcno0, srcno0 + nr_esbs - 1); 2655 xive_source_pic_print_info(&xive->ipi_source, srcno0, buf); 2656 2657 g_string_append_printf(buf, "XIVE[%x] EAT %08x .. %08x\n", 2658 blk, srcno0, srcno0 + nr_esbs - 1); 2659 for (i = 0; i < nr_esbs; i++) { 2660 if (xive2_router_get_eas(xrtr, blk, i, &eas)) { 2661 break; 2662 } 2663 if (!xive2_eas_is_masked(&eas)) { 2664 xive2_eas_pic_print_info(&eas, i, buf); 2665 } 2666 } 2667 2668 g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n", 2669 chip_id, blk); 2670 i = 0; 2671 while (!xive2_router_get_end(xrtr, blk, i, &end)) { 2672 xive2_end_eas_pic_print_info(&end, i++, buf); 2673 } 2674 2675 g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk); 2676 i = 0; 2677 while (!xive2_router_get_end(xrtr, blk, i, &end)) { 2678 xive2_end_pic_print_info(&end, i++, buf); 2679 } 2680 2681 g_string_append_printf(buf, "XIVE[%x] #%d NVPT %08x .. %08x\n", 2682 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2683 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP); 2684 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2685 while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) { 2686 xive2_nvp_pic_print_info(&nvp, i++, buf); 2687 } 2688 } 2689 2690 g_string_append_printf(buf, "XIVE[%x] #%d NVGT %08x .. %08x\n", 2691 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2692 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVG); 2693 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2694 while (!xive2_router_get_nvgc(xrtr, false, blk, i, &nvgc)) { 2695 xive2_nvgc_pic_print_info(&nvgc, i++, buf); 2696 } 2697 } 2698 2699 g_string_append_printf(buf, "XIVE[%x] #%d NVCT %08x .. %08x\n", 2700 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2701 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVC); 2702 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2703 while (!xive2_router_get_nvgc(xrtr, true, blk, i, &nvgc)) { 2704 xive2_nvgc_pic_print_info(&nvgc, i++, buf); 2705 } 2706 } 2707 } 2708