1 /* 2 * QEMU PowerPC XIVE2 interrupt controller model (POWER10) 3 * 4 * Copyright (c) 2019-2024, IBM Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qapi/error.h" 12 #include "target/ppc/cpu.h" 13 #include "system/cpus.h" 14 #include "system/dma.h" 15 #include "hw/ppc/fdt.h" 16 #include "hw/ppc/pnv.h" 17 #include "hw/ppc/pnv_chip.h" 18 #include "hw/ppc/pnv_core.h" 19 #include "hw/ppc/pnv_xscom.h" 20 #include "hw/ppc/xive2.h" 21 #include "hw/ppc/pnv_xive.h" 22 #include "hw/ppc/xive_regs.h" 23 #include "hw/ppc/xive2_regs.h" 24 #include "hw/ppc/ppc.h" 25 #include "hw/qdev-properties.h" 26 #include "system/reset.h" 27 #include "system/qtest.h" 28 29 #include <libfdt.h> 30 31 #include "pnv_xive2_regs.h" 32 33 #undef XIVE2_DEBUG 34 35 /* XIVE Sync or Flush Notification Block */ 36 typedef struct XiveSfnBlock { 37 uint8_t bytes[32]; 38 } XiveSfnBlock; 39 40 /* XIVE Thread Sync or Flush Notification Area */ 41 typedef struct XiveThreadNA { 42 XiveSfnBlock topo[16]; 43 } XiveThreadNA; 44 45 /* 46 * Virtual structures table (VST) 47 */ 48 #define SBE_PER_BYTE 4 49 50 typedef struct XiveVstInfo { 51 const char *name; 52 uint32_t size; 53 uint32_t max_blocks; 54 } XiveVstInfo; 55 56 static const XiveVstInfo vst_infos[] = { 57 58 [VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 }, 59 [VST_ESB] = { "ESB", 1, 16 }, 60 [VST_END] = { "ENDT", sizeof(Xive2End), 16 }, 61 62 [VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 }, 63 [VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 }, 64 [VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 }, 65 66 [VST_IC] = { "IC", 1, /* ? */ 16 }, /* Topology # */ 67 [VST_SYNC] = { "SYNC", sizeof(XiveThreadNA), 16 }, /* Topology # */ 68 69 /* 70 * This table contains the backing store pages for the interrupt 71 * fifos of the VC sub-engine in case of overflow. 72 * 73 * 0 - IPI, 74 * 1 - HWD, 75 * 2 - NxC, 76 * 3 - INT, 77 * 4 - OS-Queue, 78 * 5 - Pool-Queue, 79 * 6 - Hard-Queue 80 */ 81 [VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT }, 82 }; 83 84 #define xive2_error(xive, fmt, ...) \ 85 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ 86 (xive)->chip->chip_id, ## __VA_ARGS__); 87 88 /* 89 * TODO: Document block id override 90 */ 91 static uint32_t pnv_xive2_block_id(PnvXive2 *xive) 92 { 93 uint8_t blk = xive->chip->chip_id; 94 uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3]; 95 96 if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) { 97 blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val); 98 } 99 100 return blk; 101 } 102 103 /* 104 * Remote access to INT controllers. HW uses MMIOs(?). For now, a simple 105 * scan of all the chips INT controller is good enough. 106 */ 107 static PnvXive2 *pnv_xive2_get_remote(uint32_t vsd_type, hwaddr fwd_addr) 108 { 109 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 110 int i; 111 112 for (i = 0; i < pnv->num_chips; i++) { 113 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 114 PnvXive2 *xive = &chip10->xive; 115 116 /* 117 * Is this the XIVE matching the forwarded VSD address is for this 118 * VSD type 119 */ 120 if ((vsd_type == VST_ESB && fwd_addr == xive->esb_base) || 121 (vsd_type == VST_END && fwd_addr == xive->end_base) || 122 ((vsd_type == VST_NVP || 123 vsd_type == VST_NVG) && fwd_addr == xive->nvpg_base) || 124 (vsd_type == VST_NVC && fwd_addr == xive->nvc_base)) { 125 return xive; 126 } 127 } 128 129 qemu_log_mask(LOG_GUEST_ERROR, 130 "XIVE: >>>>> %s vsd_type %u fwd_addr 0x%"HWADDR_PRIx 131 " NOT FOUND\n", 132 __func__, vsd_type, fwd_addr); 133 return NULL; 134 } 135 136 /* 137 * VST accessors for ESB, EAT, ENDT, NVP 138 * 139 * Indirect VST tables are arrays of VSDs pointing to a page (of same 140 * size). Each page is a direct VST table. 141 */ 142 143 #define XIVE_VSD_SIZE 8 144 145 /* Indirect page size can be 4K, 64K, 2M, 16M. */ 146 static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift) 147 { 148 return page_shift == 12 || page_shift == 16 || 149 page_shift == 21 || page_shift == 24; 150 } 151 152 static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type, 153 uint64_t vsd, uint32_t idx) 154 { 155 const XiveVstInfo *info = &vst_infos[type]; 156 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 157 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); 158 uint32_t idx_max; 159 160 idx_max = vst_tsize / info->size - 1; 161 if (idx > idx_max) { 162 #ifdef XIVE2_DEBUG 163 xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", 164 info->name, idx, idx_max); 165 #endif 166 return 0; 167 } 168 169 return vst_addr + idx * info->size; 170 } 171 172 static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type, 173 uint64_t vsd, uint32_t idx) 174 { 175 const XiveVstInfo *info = &vst_infos[type]; 176 uint64_t vsd_addr; 177 uint32_t vsd_idx; 178 uint32_t page_shift; 179 uint32_t vst_per_page; 180 181 /* Get the page size of the indirect table. */ 182 vsd_addr = vsd & VSD_ADDRESS_MASK; 183 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); 184 185 if (!(vsd & VSD_ADDRESS_MASK)) { 186 #ifdef XIVE2_DEBUG 187 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 188 #endif 189 return 0; 190 } 191 192 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 193 194 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 195 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 196 page_shift); 197 return 0; 198 } 199 200 vst_per_page = (1ull << page_shift) / info->size; 201 vsd_idx = idx / vst_per_page; 202 203 /* Load the VSD we are looking for, if not already done */ 204 if (vsd_idx) { 205 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; 206 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, 207 MEMTXATTRS_UNSPECIFIED); 208 209 if (!(vsd & VSD_ADDRESS_MASK)) { 210 #ifdef XIVE2_DEBUG 211 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 212 #endif 213 return 0; 214 } 215 216 /* 217 * Check that the pages have a consistent size across the 218 * indirect table 219 */ 220 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { 221 xive2_error(xive, "VST: %s entry %x indirect page size differ !?", 222 info->name, idx); 223 return 0; 224 } 225 } 226 227 return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); 228 } 229 230 static uint8_t pnv_xive2_nvc_table_compress_shift(PnvXive2 *xive) 231 { 232 uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVC_TABLE_COMPRESS, 233 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 234 return shift > 8 ? 0 : shift; 235 } 236 237 static uint8_t pnv_xive2_nvg_table_compress_shift(PnvXive2 *xive) 238 { 239 uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVG_TABLE_COMPRESS, 240 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 241 return shift > 8 ? 0 : shift; 242 } 243 244 static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk, 245 uint32_t idx) 246 { 247 const XiveVstInfo *info = &vst_infos[type]; 248 uint64_t vsd; 249 250 if (blk >= info->max_blocks) { 251 xive2_error(xive, "VST: invalid block id %d for VST %s %d !?", 252 blk, info->name, idx); 253 return 0; 254 } 255 256 vsd = xive->vsds[type][blk]; 257 if (vsd == 0) { 258 xive2_error(xive, "VST: vsd == 0 block id %d for VST %s %d !?", 259 blk, info->name, idx); 260 return 0; 261 } 262 263 /* Remote VST access */ 264 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { 265 xive = pnv_xive2_get_remote(type, (vsd & VSD_ADDRESS_MASK)); 266 return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0; 267 } 268 269 if (type == VST_NVG) { 270 idx >>= pnv_xive2_nvg_table_compress_shift(xive); 271 } else if (type == VST_NVC) { 272 idx >>= pnv_xive2_nvc_table_compress_shift(xive); 273 } 274 275 if (VSD_INDIRECT & vsd) { 276 return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx); 277 } 278 279 return pnv_xive2_vst_addr_direct(xive, type, vsd, idx); 280 } 281 282 static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk, 283 uint32_t idx, void *data) 284 { 285 const XiveVstInfo *info = &vst_infos[type]; 286 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); 287 MemTxResult result; 288 289 if (!addr) { 290 return -1; 291 } 292 293 result = address_space_read(&address_space_memory, addr, 294 MEMTXATTRS_UNSPECIFIED, data, 295 info->size); 296 if (result != MEMTX_OK) { 297 xive2_error(xive, "VST: read failed at @0x%" HWADDR_PRIx 298 " for VST %s %x/%x\n", addr, info->name, blk, idx); 299 return -1; 300 } 301 return 0; 302 } 303 304 #define XIVE_VST_WORD_ALL -1 305 306 static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk, 307 uint32_t idx, void *data, uint32_t word_number) 308 { 309 const XiveVstInfo *info = &vst_infos[type]; 310 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); 311 MemTxResult result; 312 313 if (!addr) { 314 return -1; 315 } 316 317 if (word_number == XIVE_VST_WORD_ALL) { 318 result = address_space_write(&address_space_memory, addr, 319 MEMTXATTRS_UNSPECIFIED, data, 320 info->size); 321 } else { 322 result = address_space_write(&address_space_memory, 323 addr + word_number * 4, 324 MEMTXATTRS_UNSPECIFIED, 325 data + word_number * 4, 4); 326 } 327 328 if (result != MEMTX_OK) { 329 xive2_error(xive, "VST: write failed at @0x%" HWADDR_PRIx 330 "for VST %s %x/%x\n", addr, info->name, blk, idx); 331 return -1; 332 } 333 return 0; 334 } 335 336 static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 337 uint8_t *pq) 338 { 339 PnvXive2 *xive = PNV_XIVE2(xrtr); 340 341 if (pnv_xive2_block_id(xive) != blk) { 342 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 343 return -1; 344 } 345 346 *pq = xive_source_esb_get(&xive->ipi_source, idx); 347 return 0; 348 } 349 350 static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 351 uint8_t *pq) 352 { 353 PnvXive2 *xive = PNV_XIVE2(xrtr); 354 355 if (pnv_xive2_block_id(xive) != blk) { 356 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 357 return -1; 358 } 359 360 *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); 361 return 0; 362 } 363 364 static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 365 Xive2End *end) 366 { 367 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end); 368 } 369 370 static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 371 Xive2End *end, uint8_t word_number) 372 { 373 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end, 374 word_number); 375 } 376 377 static inline int pnv_xive2_get_current_pir(PnvXive2 *xive) 378 { 379 if (!qtest_enabled()) { 380 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 381 return ppc_cpu_pir(cpu); 382 } 383 return 0; 384 } 385 386 /* 387 * After SW injects a Queue Sync or Cache Flush operation, HW will notify 388 * SW of the completion of the operation by writing a byte of all 1's (0xff) 389 * to a specific memory location. The memory location is calculated by first 390 * looking up a base address in the SYNC VSD using the Topology ID of the 391 * originating thread as the "block" number. This points to a 392 * 64k block of memory that is further divided into 128 512 byte chunks of 393 * memory, which is indexed by the thread id of the requesting thread. 394 * Finally, this 512 byte chunk of memory is divided into 16 32 byte 395 * chunks which are indexed by the topology id of the targeted IC's chip. 396 * The values below are the offsets into that 32 byte chunk of memory for 397 * each type of cache flush or queue sync operation. 398 */ 399 #define PNV_XIVE2_QUEUE_IPI 0x00 400 #define PNV_XIVE2_QUEUE_HW 0x01 401 #define PNV_XIVE2_QUEUE_NXC 0x02 402 #define PNV_XIVE2_QUEUE_INT 0x03 403 #define PNV_XIVE2_QUEUE_OS 0x04 404 #define PNV_XIVE2_QUEUE_POOL 0x05 405 #define PNV_XIVE2_QUEUE_HARD 0x06 406 #define PNV_XIVE2_CACHE_ENDC 0x08 407 #define PNV_XIVE2_CACHE_ESBC 0x09 408 #define PNV_XIVE2_CACHE_EASC 0x0a 409 #define PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO 0x10 410 #define PNV_XIVE2_QUEUE_NXC_LD_LCL_CO 0x11 411 #define PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI 0x12 412 #define PNV_XIVE2_QUEUE_NXC_ST_LCL_CI 0x13 413 #define PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI 0x14 414 #define PNV_XIVE2_QUEUE_NXC_ST_RMT_CI 0x15 415 #define PNV_XIVE2_CACHE_NXC 0x18 416 417 static int pnv_xive2_inject_notify(PnvXive2 *xive, int type) 418 { 419 uint64_t addr; 420 int pir = pnv_xive2_get_current_pir(xive); 421 int thread_nr = PNV10_PIR2THREAD(pir); 422 int thread_topo_id = PNV10_PIR2CHIP(pir); 423 int ic_topo_id = xive->chip->chip_id; 424 uint64_t offset = ic_topo_id * sizeof(XiveSfnBlock); 425 uint8_t byte = 0xff; 426 MemTxResult result; 427 428 /* Retrieve the address of requesting thread's notification area */ 429 addr = pnv_xive2_vst_addr(xive, VST_SYNC, thread_topo_id, thread_nr); 430 431 if (!addr) { 432 xive2_error(xive, "VST: no SYNC entry %x/%x !?", 433 thread_topo_id, thread_nr); 434 return -1; 435 } 436 437 address_space_stb(&address_space_memory, addr + offset + type, byte, 438 MEMTXATTRS_UNSPECIFIED, &result); 439 assert(result == MEMTX_OK); 440 441 return 0; 442 } 443 444 static int pnv_xive2_end_update(PnvXive2 *xive, uint8_t watch_engine) 445 { 446 uint8_t blk; 447 uint32_t idx; 448 int i, spec_reg, data_reg; 449 uint64_t endc_watch[4]; 450 451 assert(watch_engine < ARRAY_SIZE(endc_watch)); 452 453 spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 454 data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 455 blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); 456 idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); 457 458 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { 459 endc_watch[i] = cpu_to_be64(xive->vc_regs[data_reg + i]); 460 } 461 462 return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch, 463 XIVE_VST_WORD_ALL); 464 } 465 466 static void pnv_xive2_end_cache_load(PnvXive2 *xive, uint8_t watch_engine) 467 { 468 uint8_t blk; 469 uint32_t idx; 470 uint64_t endc_watch[4] = { 0 }; 471 int i, spec_reg, data_reg; 472 473 assert(watch_engine < ARRAY_SIZE(endc_watch)); 474 475 spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 476 data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 477 blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]); 478 idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]); 479 480 if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) { 481 xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx); 482 } 483 484 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { 485 xive->vc_regs[data_reg + i] = be64_to_cpu(endc_watch[i]); 486 } 487 } 488 489 static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 490 Xive2Nvp *nvp) 491 { 492 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp); 493 } 494 495 static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 496 Xive2Nvp *nvp, uint8_t word_number) 497 { 498 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp, 499 word_number); 500 } 501 502 static int pnv_xive2_get_nvgc(Xive2Router *xrtr, bool crowd, 503 uint8_t blk, uint32_t idx, 504 Xive2Nvgc *nvgc) 505 { 506 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG, 507 blk, idx, nvgc); 508 } 509 510 static int pnv_xive2_write_nvgc(Xive2Router *xrtr, bool crowd, 511 uint8_t blk, uint32_t idx, 512 Xive2Nvgc *nvgc) 513 { 514 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG, 515 blk, idx, nvgc, 516 XIVE_VST_WORD_ALL); 517 } 518 519 static int pnv_xive2_nxc_to_table_type(uint8_t nxc_type, uint32_t *table_type) 520 { 521 switch (nxc_type) { 522 case PC_NXC_WATCH_NXC_NVP: 523 *table_type = VST_NVP; 524 break; 525 case PC_NXC_WATCH_NXC_NVG: 526 *table_type = VST_NVG; 527 break; 528 case PC_NXC_WATCH_NXC_NVC: 529 *table_type = VST_NVC; 530 break; 531 default: 532 qemu_log_mask(LOG_GUEST_ERROR, 533 "XIVE: invalid table type for nxc operation\n"); 534 return -1; 535 } 536 return 0; 537 } 538 539 static int pnv_xive2_nxc_update(PnvXive2 *xive, uint8_t watch_engine) 540 { 541 uint8_t blk, nxc_type; 542 uint32_t idx, table_type = -1; 543 int i, spec_reg, data_reg; 544 uint64_t nxc_watch[4]; 545 546 assert(watch_engine < ARRAY_SIZE(nxc_watch)); 547 548 spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 549 data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 550 nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); 551 blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); 552 idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); 553 554 assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); 555 556 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { 557 nxc_watch[i] = cpu_to_be64(xive->pc_regs[data_reg + i]); 558 } 559 560 return pnv_xive2_vst_write(xive, table_type, blk, idx, nxc_watch, 561 XIVE_VST_WORD_ALL); 562 } 563 564 static void pnv_xive2_nxc_cache_load(PnvXive2 *xive, uint8_t watch_engine) 565 { 566 uint8_t blk, nxc_type; 567 uint32_t idx, table_type = -1; 568 uint64_t nxc_watch[4] = { 0 }; 569 int i, spec_reg, data_reg; 570 571 assert(watch_engine < ARRAY_SIZE(nxc_watch)); 572 573 spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3; 574 data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3; 575 nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]); 576 blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]); 577 idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]); 578 579 assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type)); 580 581 if (pnv_xive2_vst_read(xive, table_type, blk, idx, nxc_watch)) { 582 xive2_error(xive, "VST: no NXC entry %x/%x in %s table!?", 583 blk, idx, vst_infos[table_type].name); 584 } 585 586 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { 587 xive->pc_regs[data_reg + i] = be64_to_cpu(nxc_watch[i]); 588 } 589 } 590 591 static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx, 592 Xive2Eas *eas) 593 { 594 PnvXive2 *xive = PNV_XIVE2(xrtr); 595 596 if (pnv_xive2_block_id(xive) != blk) { 597 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); 598 return -1; 599 } 600 601 return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas); 602 } 603 604 static uint32_t pnv_xive2_get_config(Xive2Router *xrtr) 605 { 606 PnvXive2 *xive = PNV_XIVE2(xrtr); 607 uint32_t cfg = 0; 608 609 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { 610 cfg |= XIVE2_GEN1_TIMA_OS; 611 } 612 613 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) { 614 cfg |= XIVE2_VP_SAVE_RESTORE; 615 } 616 617 if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 618 xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) { 619 cfg |= XIVE2_THREADID_8BITS; 620 } 621 622 return cfg; 623 } 624 625 static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu) 626 { 627 int pir = ppc_cpu_pir(cpu); 628 uint32_t fc = PNV10_PIR2FUSEDCORE(pir); 629 uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1; 630 uint32_t bit = pir & 0x3f; 631 632 return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit); 633 } 634 635 static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format, 636 uint8_t nvt_blk, uint32_t nvt_idx, 637 bool crowd, bool cam_ignore, uint8_t priority, 638 uint32_t logic_serv, XiveTCTXMatch *match) 639 { 640 PnvXive2 *xive = PNV_XIVE2(xptr); 641 PnvChip *chip = xive->chip; 642 int count = 0; 643 int i, j; 644 bool gen1_tima_os = 645 xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; 646 static int next_start_core; 647 static int next_start_thread; 648 int start_core = next_start_core; 649 int start_thread = next_start_thread; 650 651 for (i = 0; i < chip->nr_cores; i++) { 652 PnvCore *pc = chip->cores[(i + start_core) % chip->nr_cores]; 653 CPUCore *cc = CPU_CORE(pc); 654 655 for (j = 0; j < cc->nr_threads; j++) { 656 /* Start search for match with different thread each call */ 657 PowerPCCPU *cpu = pc->threads[(j + start_thread) % cc->nr_threads]; 658 XiveTCTX *tctx; 659 int ring; 660 661 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 662 continue; 663 } 664 665 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 666 667 if (gen1_tima_os) { 668 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, 669 nvt_idx, cam_ignore, 670 logic_serv); 671 } else { 672 ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk, 673 nvt_idx, crowd, cam_ignore, 674 logic_serv); 675 } 676 677 if (ring != -1) { 678 /* 679 * For VP-specific match, finding more than one is a 680 * problem. For group notification, it's possible. 681 */ 682 if (!cam_ignore && match->tctx) { 683 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " 684 "thread context NVT %x/%x\n", 685 nvt_blk, nvt_idx); 686 /* Should set a FIR if we ever model it */ 687 return -1; 688 } 689 /* 690 * For a group notification, we need to know if the 691 * match is precluded first by checking the current 692 * thread priority. If the interrupt can be delivered, 693 * we always notify the first match (for now). 694 */ 695 if (cam_ignore && 696 xive2_tm_irq_precluded(tctx, ring, priority)) { 697 match->precluded = true; 698 } else { 699 if (!match->tctx) { 700 match->ring = ring; 701 match->tctx = tctx; 702 703 next_start_thread = j + start_thread + 1; 704 if (next_start_thread >= cc->nr_threads) { 705 next_start_thread = 0; 706 next_start_core = i + start_core + 1; 707 if (next_start_core >= chip->nr_cores) { 708 next_start_core = 0; 709 } 710 } 711 } 712 count++; 713 } 714 } 715 } 716 } 717 718 return count; 719 } 720 721 static uint32_t pnv_xive2_presenter_get_config(XivePresenter *xptr) 722 { 723 PnvXive2 *xive = PNV_XIVE2(xptr); 724 uint32_t cfg = 0; 725 726 if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { 727 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS; 728 } 729 return cfg; 730 } 731 732 static int pnv_xive2_broadcast(XivePresenter *xptr, 733 uint8_t nvt_blk, uint32_t nvt_idx, 734 bool crowd, bool ignore, uint8_t priority) 735 { 736 PnvXive2 *xive = PNV_XIVE2(xptr); 737 PnvChip *chip = xive->chip; 738 int i, j; 739 bool gen1_tima_os = 740 xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; 741 742 for (i = 0; i < chip->nr_cores; i++) { 743 PnvCore *pc = chip->cores[i]; 744 CPUCore *cc = CPU_CORE(pc); 745 746 for (j = 0; j < cc->nr_threads; j++) { 747 PowerPCCPU *cpu = pc->threads[j]; 748 XiveTCTX *tctx; 749 int ring; 750 751 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 752 continue; 753 } 754 755 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 756 757 if (gen1_tima_os) { 758 ring = xive_presenter_tctx_match(xptr, tctx, 0, nvt_blk, 759 nvt_idx, ignore, 0); 760 } else { 761 ring = xive2_presenter_tctx_match(xptr, tctx, 0, nvt_blk, 762 nvt_idx, crowd, ignore, 0); 763 } 764 765 if (ring != -1) { 766 xive2_tm_set_lsmfb(tctx, ring, priority); 767 } 768 } 769 } 770 return 0; 771 } 772 773 static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr) 774 { 775 return pnv_xive2_block_id(PNV_XIVE2(xrtr)); 776 } 777 778 /* 779 * The TIMA MMIO space is shared among the chips and to identify the 780 * chip from which the access is being done, we extract the chip id 781 * from the PIR. 782 */ 783 static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu) 784 { 785 int pir = ppc_cpu_pir(cpu); 786 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; 787 PnvXive2 *xive = PNV_XIVE2(xptr); 788 789 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 790 xive2_error(xive, "IC: CPU %x is not enabled", pir); 791 } 792 return xive; 793 } 794 795 /* 796 * The internal sources of the interrupt controller have no knowledge 797 * of the XIVE2 chip on which they reside. Encode the block id in the 798 * source interrupt number before forwarding the source event 799 * notification to the Router. This is required on a multichip system. 800 */ 801 static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) 802 { 803 PnvXive2 *xive = PNV_XIVE2(xn); 804 uint8_t blk = pnv_xive2_block_id(xive); 805 806 xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); 807 } 808 809 /* 810 * Set Translation Tables 811 * 812 * TODO add support for multiple sets 813 */ 814 static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val) 815 { 816 uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]); 817 uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT, 818 xive->cq_regs[CQ_TAR >> 3]); 819 820 switch (tsel) { 821 case CQ_TAR_NVPG: 822 case CQ_TAR_ESB: 823 case CQ_TAR_END: 824 case CQ_TAR_NVC: 825 xive->tables[tsel][entry] = val; 826 break; 827 default: 828 xive2_error(xive, "IC: unsupported table %d", tsel); 829 return -1; 830 } 831 832 if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) { 833 xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT, 834 xive->cq_regs[CQ_TAR >> 3], ++entry); 835 } 836 837 return 0; 838 } 839 /* 840 * Virtual Structure Tables (VST) configuration 841 */ 842 static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type, 843 uint8_t blk, uint64_t vsd) 844 { 845 Xive2EndSource *end_xsrc = &xive->end_source; 846 XiveSource *xsrc = &xive->ipi_source; 847 const XiveVstInfo *info = &vst_infos[type]; 848 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 849 uint64_t vst_tsize = 1ull << page_shift; 850 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 851 852 /* Basic checks */ 853 854 if (VSD_INDIRECT & vsd) { 855 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 856 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 857 page_shift); 858 return; 859 } 860 } 861 862 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { 863 xive2_error(xive, "VST: %s table address 0x%"PRIx64 864 " is not aligned with page shift %d", 865 info->name, vst_addr, page_shift); 866 return; 867 } 868 869 /* Record the table configuration (in SRAM on HW) */ 870 xive->vsds[type][blk] = vsd; 871 872 /* Now tune the models with the configuration provided by the FW */ 873 874 switch (type) { 875 case VST_ESB: 876 /* 877 * Backing store pages for the source PQ bits. The model does 878 * not use these PQ bits backed in RAM because the XiveSource 879 * model has its own. 880 * 881 * If the table is direct, we can compute the number of PQ 882 * entries provisioned by FW (such as skiboot) and resize the 883 * ESB window accordingly. 884 */ 885 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 886 memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); 887 } 888 if (!(VSD_INDIRECT & vsd)) { 889 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE 890 * (1ull << xsrc->esb_shift)); 891 } 892 893 memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio); 894 break; 895 896 case VST_EAS: /* Nothing to be done */ 897 break; 898 899 case VST_END: 900 /* 901 * Backing store pages for the END. 902 */ 903 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { 904 memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); 905 } 906 if (!(VSD_INDIRECT & vsd)) { 907 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) 908 * (1ull << end_xsrc->esb_shift)); 909 } 910 memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio); 911 break; 912 913 case VST_NVP: /* Not modeled */ 914 case VST_NVG: /* Not modeled */ 915 case VST_NVC: /* Not modeled */ 916 case VST_IC: /* Not modeled */ 917 case VST_SYNC: /* Not modeled */ 918 case VST_ERQ: /* Not modeled */ 919 break; 920 921 default: 922 g_assert_not_reached(); 923 } 924 } 925 926 /* 927 * Both PC and VC sub-engines are configured as each use the Virtual 928 * Structure Tables 929 */ 930 static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd, 931 uint8_t type, uint8_t blk) 932 { 933 uint8_t mode = GETFIELD(VSD_MODE, vsd); 934 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 935 936 if (type > VST_ERQ) { 937 xive2_error(xive, "VST: invalid table type %d", type); 938 return; 939 } 940 941 if (blk >= vst_infos[type].max_blocks) { 942 xive2_error(xive, "VST: invalid block id %d for" 943 " %s table", blk, vst_infos[type].name); 944 return; 945 } 946 947 if (!vst_addr) { 948 xive2_error(xive, "VST: invalid %s table address", 949 vst_infos[type].name); 950 return; 951 } 952 953 switch (mode) { 954 case VSD_MODE_FORWARD: 955 xive->vsds[type][blk] = vsd; 956 break; 957 958 case VSD_MODE_EXCLUSIVE: 959 pnv_xive2_vst_set_exclusive(xive, type, blk, vsd); 960 break; 961 962 default: 963 xive2_error(xive, "VST: unsupported table mode %d", mode); 964 return; 965 } 966 } 967 968 static void pnv_xive2_vc_vst_set_data(PnvXive2 *xive, uint64_t vsd) 969 { 970 uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT, 971 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); 972 uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS, 973 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); 974 975 pnv_xive2_vst_set_data(xive, vsd, type, blk); 976 } 977 978 /* 979 * MMIO handlers 980 */ 981 982 983 /* 984 * IC BAR layout 985 * 986 * Page 0: Internal CQ register accesses (reads & writes) 987 * Page 1: Internal PC register accesses (reads & writes) 988 * Page 2: Internal VC register accesses (reads & writes) 989 * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes) 990 * Page 4: Notify Port page (writes only, w/data), 991 * Page 5: Reserved 992 * Page 6: Sync Poll page (writes only, dataless) 993 * Page 7: Sync Inject page (writes only, dataless) 994 * Page 8: LSI Trigger page (writes only, dataless) 995 * Page 9: LSI SB Management page (reads & writes dataless) 996 * Pages 10-255: Reserved 997 * Pages 256-383: Direct mapped Thread Context Area (reads & writes) 998 * covering the 128 threads in P10. 999 * Pages 384-511: Reserved 1000 */ 1001 typedef struct PnvXive2Region { 1002 const char *name; 1003 uint32_t pgoff; 1004 uint32_t pgsize; 1005 const MemoryRegionOps *ops; 1006 } PnvXive2Region; 1007 1008 static const MemoryRegionOps pnv_xive2_ic_cq_ops; 1009 static const MemoryRegionOps pnv_xive2_ic_pc_ops; 1010 static const MemoryRegionOps pnv_xive2_ic_vc_ops; 1011 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops; 1012 static const MemoryRegionOps pnv_xive2_ic_notify_ops; 1013 static const MemoryRegionOps pnv_xive2_ic_sync_ops; 1014 static const MemoryRegionOps pnv_xive2_ic_lsi_ops; 1015 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops; 1016 1017 /* 512 pages. 4K: 2M range, 64K: 32M range */ 1018 static const PnvXive2Region pnv_xive2_ic_regions[] = { 1019 { "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops }, 1020 { "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops }, 1021 { "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops }, 1022 { "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops }, 1023 { "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops }, 1024 /* page 5 reserved */ 1025 { "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops }, 1026 { "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops }, 1027 /* pages 10-255 reserved */ 1028 { "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops }, 1029 /* pages 384-511 reserved */ 1030 }; 1031 1032 /* 1033 * CQ operations 1034 */ 1035 1036 static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset, 1037 unsigned size) 1038 { 1039 PnvXive2 *xive = PNV_XIVE2(opaque); 1040 uint32_t reg = offset >> 3; 1041 uint64_t val = 0; 1042 1043 switch (offset) { 1044 case CQ_XIVE_CAP: /* Set at reset */ 1045 case CQ_XIVE_CFG: 1046 val = xive->cq_regs[reg]; 1047 break; 1048 case CQ_MSGSND: /* TODO check the #cores of the machine */ 1049 val = 0xffffffff00000000; 1050 break; 1051 case CQ_CFG_PB_GEN: 1052 val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */ 1053 break; 1054 default: 1055 xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset); 1056 } 1057 1058 return val; 1059 } 1060 1061 static uint64_t pnv_xive2_bar_size(uint64_t val) 1062 { 1063 return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24); 1064 } 1065 1066 static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset, 1067 uint64_t val, unsigned size) 1068 { 1069 PnvXive2 *xive = PNV_XIVE2(opaque); 1070 MemoryRegion *sysmem = get_system_memory(); 1071 uint32_t reg = offset >> 3; 1072 int i; 1073 1074 switch (offset) { 1075 case CQ_XIVE_CFG: 1076 case CQ_RST_CTL: /* TODO: reset all BARs */ 1077 break; 1078 1079 case CQ_IC_BAR: 1080 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; 1081 if (!(val & CQ_IC_BAR_VALID)) { 1082 xive->ic_base = 0; 1083 if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) { 1084 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 1085 memory_region_del_subregion(&xive->ic_mmio, 1086 &xive->ic_mmios[i]); 1087 } 1088 memory_region_del_subregion(sysmem, &xive->ic_mmio); 1089 } 1090 } else { 1091 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); 1092 if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) { 1093 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 1094 memory_region_add_subregion(&xive->ic_mmio, 1095 pnv_xive2_ic_regions[i].pgoff << xive->ic_shift, 1096 &xive->ic_mmios[i]); 1097 } 1098 memory_region_add_subregion(sysmem, xive->ic_base, 1099 &xive->ic_mmio); 1100 } 1101 } 1102 break; 1103 1104 case CQ_TM_BAR: 1105 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; 1106 if (!(val & CQ_TM_BAR_VALID)) { 1107 xive->tm_base = 0; 1108 if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) { 1109 memory_region_del_subregion(sysmem, &xive->tm_mmio); 1110 } 1111 } else { 1112 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); 1113 if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) { 1114 memory_region_add_subregion(sysmem, xive->tm_base, 1115 &xive->tm_mmio); 1116 } 1117 } 1118 break; 1119 1120 case CQ_ESB_BAR: 1121 xive->esb_shift = val & CQ_BAR_64K ? 16 : 12; 1122 if (!(val & CQ_BAR_VALID)) { 1123 xive->esb_base = 0; 1124 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1125 memory_region_del_subregion(sysmem, &xive->esb_mmio); 1126 } 1127 } else { 1128 xive->esb_base = val & CQ_BAR_ADDR; 1129 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1130 memory_region_set_size(&xive->esb_mmio, 1131 pnv_xive2_bar_size(val)); 1132 memory_region_add_subregion(sysmem, xive->esb_base, 1133 &xive->esb_mmio); 1134 } 1135 } 1136 break; 1137 1138 case CQ_END_BAR: 1139 xive->end_shift = val & CQ_BAR_64K ? 16 : 12; 1140 if (!(val & CQ_BAR_VALID)) { 1141 xive->end_base = 0; 1142 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1143 memory_region_del_subregion(sysmem, &xive->end_mmio); 1144 } 1145 } else { 1146 xive->end_base = val & CQ_BAR_ADDR; 1147 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1148 memory_region_set_size(&xive->end_mmio, 1149 pnv_xive2_bar_size(val)); 1150 memory_region_add_subregion(sysmem, xive->end_base, 1151 &xive->end_mmio); 1152 } 1153 } 1154 break; 1155 1156 case CQ_NVC_BAR: 1157 xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12; 1158 if (!(val & CQ_BAR_VALID)) { 1159 xive->nvc_base = 0; 1160 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1161 memory_region_del_subregion(sysmem, &xive->nvc_mmio); 1162 } 1163 } else { 1164 xive->nvc_base = val & CQ_BAR_ADDR; 1165 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1166 memory_region_set_size(&xive->nvc_mmio, 1167 pnv_xive2_bar_size(val)); 1168 memory_region_add_subregion(sysmem, xive->nvc_base, 1169 &xive->nvc_mmio); 1170 } 1171 } 1172 break; 1173 1174 case CQ_NVPG_BAR: 1175 xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12; 1176 if (!(val & CQ_BAR_VALID)) { 1177 xive->nvpg_base = 0; 1178 if (xive->cq_regs[reg] & CQ_BAR_VALID) { 1179 memory_region_del_subregion(sysmem, &xive->nvpg_mmio); 1180 } 1181 } else { 1182 xive->nvpg_base = val & CQ_BAR_ADDR; 1183 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { 1184 memory_region_set_size(&xive->nvpg_mmio, 1185 pnv_xive2_bar_size(val)); 1186 memory_region_add_subregion(sysmem, xive->nvpg_base, 1187 &xive->nvpg_mmio); 1188 } 1189 } 1190 break; 1191 1192 case CQ_TAR: /* Set Translation Table Address */ 1193 break; 1194 case CQ_TDR: /* Set Translation Table Data */ 1195 pnv_xive2_stt_set_data(xive, val); 1196 break; 1197 case CQ_FIRMASK_OR: /* FIR error reporting */ 1198 break; 1199 default: 1200 xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx" value 0x%"PRIx64, 1201 offset, val); 1202 return; 1203 } 1204 1205 xive->cq_regs[reg] = val; 1206 } 1207 1208 static const MemoryRegionOps pnv_xive2_ic_cq_ops = { 1209 .read = pnv_xive2_ic_cq_read, 1210 .write = pnv_xive2_ic_cq_write, 1211 .endianness = DEVICE_BIG_ENDIAN, 1212 .valid = { 1213 .min_access_size = 8, 1214 .max_access_size = 8, 1215 }, 1216 .impl = { 1217 .min_access_size = 8, 1218 .max_access_size = 8, 1219 }, 1220 }; 1221 1222 static uint8_t pnv_xive2_cache_watch_assign(uint64_t engine_mask, 1223 uint64_t *state) 1224 { 1225 uint8_t val = 0xFF; 1226 int i; 1227 1228 for (i = 3; i >= 0; i--) { 1229 if (BIT(i) & engine_mask) { 1230 if (!(BIT(i) & *state)) { 1231 *state |= BIT(i); 1232 val = 3 - i; 1233 break; 1234 } 1235 } 1236 } 1237 return val; 1238 } 1239 1240 static void pnv_xive2_cache_watch_release(uint64_t *state, uint8_t watch_engine) 1241 { 1242 uint8_t engine_bit = 3 - watch_engine; 1243 1244 if (*state & BIT(engine_bit)) { 1245 *state &= ~BIT(engine_bit); 1246 } 1247 } 1248 1249 static uint8_t pnv_xive2_endc_cache_watch_assign(PnvXive2 *xive) 1250 { 1251 uint64_t engine_mask = GETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 1252 xive->vc_regs[VC_ENDC_CFG >> 3]); 1253 uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; 1254 uint8_t val; 1255 1256 /* 1257 * We keep track of which engines are currently busy in the 1258 * VC_ENDC_WATCH_ASSIGN register directly. When the firmware reads 1259 * the register, we don't return its value but the ID of an engine 1260 * it can use. 1261 * There are 4 engines. 0xFF means no engine is available. 1262 */ 1263 val = pnv_xive2_cache_watch_assign(engine_mask, &state); 1264 if (val != 0xFF) { 1265 xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; 1266 } 1267 return val; 1268 } 1269 1270 static void pnv_xive2_endc_cache_watch_release(PnvXive2 *xive, 1271 uint8_t watch_engine) 1272 { 1273 uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3]; 1274 1275 pnv_xive2_cache_watch_release(&state, watch_engine); 1276 xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state; 1277 } 1278 1279 static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset, 1280 unsigned size) 1281 { 1282 PnvXive2 *xive = PNV_XIVE2(opaque); 1283 uint64_t val = 0; 1284 uint32_t reg = offset >> 3; 1285 uint8_t watch_engine; 1286 1287 switch (offset) { 1288 /* 1289 * VSD table settings. 1290 */ 1291 case VC_VSD_TABLE_ADDR: 1292 case VC_VSD_TABLE_DATA: 1293 val = xive->vc_regs[reg]; 1294 break; 1295 1296 /* 1297 * ESB cache updates (not modeled) 1298 */ 1299 case VC_ESBC_FLUSH_CTRL: 1300 xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID; 1301 val = xive->vc_regs[reg]; 1302 break; 1303 1304 case VC_ESBC_CFG: 1305 val = xive->vc_regs[reg]; 1306 break; 1307 1308 /* 1309 * EAS cache updates (not modeled) 1310 */ 1311 case VC_EASC_FLUSH_CTRL: 1312 xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID; 1313 val = xive->vc_regs[reg]; 1314 break; 1315 1316 case VC_ENDC_WATCH_ASSIGN: 1317 val = pnv_xive2_endc_cache_watch_assign(xive); 1318 break; 1319 1320 case VC_ENDC_CFG: 1321 val = xive->vc_regs[reg]; 1322 break; 1323 1324 /* 1325 * END cache updates 1326 */ 1327 case VC_ENDC_WATCH0_SPEC: 1328 case VC_ENDC_WATCH1_SPEC: 1329 case VC_ENDC_WATCH2_SPEC: 1330 case VC_ENDC_WATCH3_SPEC: 1331 watch_engine = (offset - VC_ENDC_WATCH0_SPEC) >> 6; 1332 xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT); 1333 pnv_xive2_endc_cache_watch_release(xive, watch_engine); 1334 val = xive->vc_regs[reg]; 1335 break; 1336 1337 case VC_ENDC_WATCH0_DATA0: 1338 case VC_ENDC_WATCH1_DATA0: 1339 case VC_ENDC_WATCH2_DATA0: 1340 case VC_ENDC_WATCH3_DATA0: 1341 /* 1342 * Load DATA registers from cache with data requested by the 1343 * SPEC register. Clear gen_flipped bit in word 1. 1344 */ 1345 watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; 1346 pnv_xive2_end_cache_load(xive, watch_engine); 1347 xive->vc_regs[reg] &= ~(uint64_t)END2_W1_GEN_FLIPPED; 1348 val = xive->vc_regs[reg]; 1349 break; 1350 1351 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: 1352 case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: 1353 case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: 1354 case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: 1355 val = xive->vc_regs[reg]; 1356 break; 1357 1358 case VC_ENDC_FLUSH_CTRL: 1359 xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID; 1360 val = xive->vc_regs[reg]; 1361 break; 1362 1363 /* 1364 * Indirect invalidation 1365 */ 1366 case VC_AT_MACRO_KILL_MASK: 1367 val = xive->vc_regs[reg]; 1368 break; 1369 1370 case VC_AT_MACRO_KILL: 1371 xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID; 1372 val = xive->vc_regs[reg]; 1373 break; 1374 1375 /* 1376 * Interrupt fifo overflow in memory backing store (Not modeled) 1377 */ 1378 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: 1379 val = xive->vc_regs[reg]; 1380 break; 1381 1382 /* 1383 * Synchronisation 1384 */ 1385 case VC_ENDC_SYNC_DONE: 1386 val = VC_ENDC_SYNC_POLL_DONE; 1387 break; 1388 default: 1389 xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset); 1390 } 1391 1392 return val; 1393 } 1394 1395 static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset, 1396 uint64_t val, unsigned size) 1397 { 1398 PnvXive2 *xive = PNV_XIVE2(opaque); 1399 uint32_t reg = offset >> 3; 1400 uint8_t watch_engine; 1401 1402 switch (offset) { 1403 /* 1404 * VSD table settings. 1405 */ 1406 case VC_VSD_TABLE_ADDR: 1407 break; 1408 case VC_VSD_TABLE_DATA: 1409 pnv_xive2_vc_vst_set_data(xive, val); 1410 break; 1411 1412 /* 1413 * ESB cache updates (not modeled) 1414 */ 1415 /* case VC_ESBC_FLUSH_CTRL: */ 1416 case VC_ESBC_FLUSH_POLL: 1417 xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID; 1418 /* ESB update */ 1419 break; 1420 1421 case VC_ESBC_FLUSH_INJECT: 1422 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ESBC); 1423 break; 1424 1425 case VC_ESBC_CFG: 1426 break; 1427 1428 /* 1429 * EAS cache updates (not modeled) 1430 */ 1431 /* case VC_EASC_FLUSH_CTRL: */ 1432 case VC_EASC_FLUSH_POLL: 1433 xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID; 1434 /* EAS update */ 1435 break; 1436 1437 case VC_EASC_FLUSH_INJECT: 1438 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_EASC); 1439 break; 1440 1441 case VC_ENDC_CFG: 1442 break; 1443 1444 /* 1445 * END cache updates 1446 */ 1447 case VC_ENDC_WATCH0_SPEC: 1448 case VC_ENDC_WATCH1_SPEC: 1449 case VC_ENDC_WATCH2_SPEC: 1450 case VC_ENDC_WATCH3_SPEC: 1451 val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */ 1452 break; 1453 1454 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: 1455 case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3: 1456 case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3: 1457 case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3: 1458 break; 1459 case VC_ENDC_WATCH0_DATA0: 1460 case VC_ENDC_WATCH1_DATA0: 1461 case VC_ENDC_WATCH2_DATA0: 1462 case VC_ENDC_WATCH3_DATA0: 1463 /* writing to DATA0 triggers the cache write */ 1464 watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6; 1465 xive->vc_regs[reg] = val; 1466 pnv_xive2_end_update(xive, watch_engine); 1467 break; 1468 1469 1470 /* case VC_ENDC_FLUSH_CTRL: */ 1471 case VC_ENDC_FLUSH_POLL: 1472 xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID; 1473 break; 1474 1475 case VC_ENDC_FLUSH_INJECT: 1476 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ENDC); 1477 break; 1478 1479 /* 1480 * Indirect invalidation 1481 */ 1482 case VC_AT_MACRO_KILL: 1483 case VC_AT_MACRO_KILL_MASK: 1484 break; 1485 1486 /* 1487 * Interrupt fifo overflow in memory backing store (Not modeled) 1488 */ 1489 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: 1490 break; 1491 1492 /* 1493 * Synchronisation 1494 */ 1495 case VC_ENDC_SYNC_DONE: 1496 break; 1497 1498 default: 1499 xive2_error(xive, "VC: invalid write @0x%"HWADDR_PRIx" value 0x%"PRIx64, 1500 offset, val); 1501 return; 1502 } 1503 1504 xive->vc_regs[reg] = val; 1505 } 1506 1507 static const MemoryRegionOps pnv_xive2_ic_vc_ops = { 1508 .read = pnv_xive2_ic_vc_read, 1509 .write = pnv_xive2_ic_vc_write, 1510 .endianness = DEVICE_BIG_ENDIAN, 1511 .valid = { 1512 .min_access_size = 8, 1513 .max_access_size = 8, 1514 }, 1515 .impl = { 1516 .min_access_size = 8, 1517 .max_access_size = 8, 1518 }, 1519 }; 1520 1521 static uint8_t pnv_xive2_nxc_cache_watch_assign(PnvXive2 *xive) 1522 { 1523 uint64_t engine_mask = GETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 1524 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]); 1525 uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; 1526 uint8_t val; 1527 1528 /* 1529 * We keep track of which engines are currently busy in the 1530 * PC_NXC_WATCH_ASSIGN register directly. When the firmware reads 1531 * the register, we don't return its value but the ID of an engine 1532 * it can use. 1533 * There are 4 engines. 0xFF means no engine is available. 1534 */ 1535 val = pnv_xive2_cache_watch_assign(engine_mask, &state); 1536 if (val != 0xFF) { 1537 xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; 1538 } 1539 return val; 1540 } 1541 1542 static void pnv_xive2_nxc_cache_watch_release(PnvXive2 *xive, 1543 uint8_t watch_engine) 1544 { 1545 uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3]; 1546 1547 pnv_xive2_cache_watch_release(&state, watch_engine); 1548 xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state; 1549 } 1550 1551 static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset, 1552 unsigned size) 1553 { 1554 PnvXive2 *xive = PNV_XIVE2(opaque); 1555 uint64_t val = -1; 1556 uint32_t reg = offset >> 3; 1557 uint8_t watch_engine; 1558 1559 switch (offset) { 1560 /* 1561 * VSD table settings. 1562 */ 1563 case PC_VSD_TABLE_ADDR: 1564 case PC_VSD_TABLE_DATA: 1565 val = xive->pc_regs[reg]; 1566 break; 1567 1568 case PC_NXC_WATCH_ASSIGN: 1569 val = pnv_xive2_nxc_cache_watch_assign(xive); 1570 break; 1571 1572 case PC_NXC_PROC_CONFIG: 1573 val = xive->pc_regs[reg]; 1574 break; 1575 1576 /* 1577 * cache updates 1578 */ 1579 case PC_NXC_WATCH0_SPEC: 1580 case PC_NXC_WATCH1_SPEC: 1581 case PC_NXC_WATCH2_SPEC: 1582 case PC_NXC_WATCH3_SPEC: 1583 watch_engine = (offset - PC_NXC_WATCH0_SPEC) >> 6; 1584 xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT); 1585 pnv_xive2_nxc_cache_watch_release(xive, watch_engine); 1586 val = xive->pc_regs[reg]; 1587 break; 1588 1589 case PC_NXC_WATCH0_DATA0: 1590 case PC_NXC_WATCH1_DATA0: 1591 case PC_NXC_WATCH2_DATA0: 1592 case PC_NXC_WATCH3_DATA0: 1593 /* 1594 * Load DATA registers from cache with data requested by the 1595 * SPEC register 1596 */ 1597 watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; 1598 pnv_xive2_nxc_cache_load(xive, watch_engine); 1599 val = xive->pc_regs[reg]; 1600 break; 1601 1602 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: 1603 case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: 1604 case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: 1605 case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: 1606 val = xive->pc_regs[reg]; 1607 break; 1608 1609 case PC_NXC_FLUSH_CTRL: 1610 xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID; 1611 val = xive->pc_regs[reg]; 1612 break; 1613 1614 /* 1615 * Indirect invalidation 1616 */ 1617 case PC_AT_KILL: 1618 xive->pc_regs[reg] &= ~PC_AT_KILL_VALID; 1619 val = xive->pc_regs[reg]; 1620 break; 1621 1622 default: 1623 xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset); 1624 } 1625 1626 return val; 1627 } 1628 1629 static void pnv_xive2_pc_vst_set_data(PnvXive2 *xive, uint64_t vsd) 1630 { 1631 uint8_t type = GETFIELD(PC_VSD_TABLE_SELECT, 1632 xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); 1633 uint8_t blk = GETFIELD(PC_VSD_TABLE_ADDRESS, 1634 xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]); 1635 1636 pnv_xive2_vst_set_data(xive, vsd, type, blk); 1637 } 1638 1639 static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset, 1640 uint64_t val, unsigned size) 1641 { 1642 PnvXive2 *xive = PNV_XIVE2(opaque); 1643 uint32_t reg = offset >> 3; 1644 uint8_t watch_engine; 1645 1646 switch (offset) { 1647 1648 /* 1649 * VSD table settings. 1650 * The Xive2Router model combines both VC and PC sub-engines. We 1651 * allow to configure the tables through both, for the rare cases 1652 * where a table only really needs to be configured for one of 1653 * them (e.g. the NVG table for the presenter). It assumes that 1654 * firmware passes the same address to the VC and PC when tables 1655 * are defined for both, which seems acceptable. 1656 */ 1657 case PC_VSD_TABLE_ADDR: 1658 break; 1659 case PC_VSD_TABLE_DATA: 1660 pnv_xive2_pc_vst_set_data(xive, val); 1661 break; 1662 1663 case PC_NXC_PROC_CONFIG: 1664 break; 1665 1666 /* 1667 * cache updates 1668 */ 1669 case PC_NXC_WATCH0_SPEC: 1670 case PC_NXC_WATCH1_SPEC: 1671 case PC_NXC_WATCH2_SPEC: 1672 case PC_NXC_WATCH3_SPEC: 1673 val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */ 1674 break; 1675 1676 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: 1677 case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3: 1678 case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3: 1679 case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3: 1680 break; 1681 case PC_NXC_WATCH0_DATA0: 1682 case PC_NXC_WATCH1_DATA0: 1683 case PC_NXC_WATCH2_DATA0: 1684 case PC_NXC_WATCH3_DATA0: 1685 /* writing to DATA0 triggers the cache write */ 1686 watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6; 1687 xive->pc_regs[reg] = val; 1688 pnv_xive2_nxc_update(xive, watch_engine); 1689 break; 1690 1691 /* case PC_NXC_FLUSH_CTRL: */ 1692 case PC_NXC_FLUSH_POLL: 1693 xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID; 1694 break; 1695 1696 case PC_NXC_FLUSH_INJECT: 1697 pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_NXC); 1698 break; 1699 1700 /* 1701 * Indirect invalidation 1702 */ 1703 case PC_AT_KILL: 1704 case PC_AT_KILL_MASK: 1705 break; 1706 1707 default: 1708 xive2_error(xive, "PC: invalid write @0x%"HWADDR_PRIx" value 0x%"PRIx64, 1709 offset, val); 1710 return; 1711 } 1712 1713 xive->pc_regs[reg] = val; 1714 } 1715 1716 static const MemoryRegionOps pnv_xive2_ic_pc_ops = { 1717 .read = pnv_xive2_ic_pc_read, 1718 .write = pnv_xive2_ic_pc_write, 1719 .endianness = DEVICE_BIG_ENDIAN, 1720 .valid = { 1721 .min_access_size = 8, 1722 .max_access_size = 8, 1723 }, 1724 .impl = { 1725 .min_access_size = 8, 1726 .max_access_size = 8, 1727 }, 1728 }; 1729 1730 1731 static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset, 1732 unsigned size) 1733 { 1734 PnvXive2 *xive = PNV_XIVE2(opaque); 1735 uint64_t val = -1; 1736 uint32_t reg = offset >> 3; 1737 1738 switch (offset) { 1739 /* 1740 * XIVE2 hardware thread enablement 1741 */ 1742 case TCTXT_EN0: 1743 case TCTXT_EN1: 1744 val = xive->tctxt_regs[reg]; 1745 break; 1746 1747 case TCTXT_EN0_SET: 1748 case TCTXT_EN0_RESET: 1749 val = xive->tctxt_regs[TCTXT_EN0 >> 3]; 1750 break; 1751 case TCTXT_EN1_SET: 1752 case TCTXT_EN1_RESET: 1753 val = xive->tctxt_regs[TCTXT_EN1 >> 3]; 1754 break; 1755 case TCTXT_CFG: 1756 val = xive->tctxt_regs[reg]; 1757 break; 1758 default: 1759 xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset); 1760 } 1761 1762 return val; 1763 } 1764 1765 static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset, 1766 uint64_t val, unsigned size) 1767 { 1768 PnvXive2 *xive = PNV_XIVE2(opaque); 1769 uint32_t reg = offset >> 3; 1770 1771 switch (offset) { 1772 /* 1773 * XIVE2 hardware thread enablement 1774 */ 1775 case TCTXT_EN0: /* Physical Thread Enable */ 1776 case TCTXT_EN1: /* Physical Thread Enable (fused core) */ 1777 xive->tctxt_regs[reg] = val; 1778 break; 1779 1780 case TCTXT_EN0_SET: 1781 xive->tctxt_regs[TCTXT_EN0 >> 3] |= val; 1782 break; 1783 case TCTXT_EN1_SET: 1784 xive->tctxt_regs[TCTXT_EN1 >> 3] |= val; 1785 break; 1786 case TCTXT_EN0_RESET: 1787 xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val; 1788 break; 1789 case TCTXT_EN1_RESET: 1790 xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val; 1791 break; 1792 case TCTXT_CFG: 1793 xive->tctxt_regs[reg] = val; 1794 break; 1795 default: 1796 xive2_error(xive, "TCTXT: invalid write @0x%"HWADDR_PRIx 1797 " data 0x%"PRIx64, offset, val); 1798 return; 1799 } 1800 } 1801 1802 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = { 1803 .read = pnv_xive2_ic_tctxt_read, 1804 .write = pnv_xive2_ic_tctxt_write, 1805 .endianness = DEVICE_BIG_ENDIAN, 1806 .valid = { 1807 .min_access_size = 8, 1808 .max_access_size = 8, 1809 }, 1810 .impl = { 1811 .min_access_size = 8, 1812 .max_access_size = 8, 1813 }, 1814 }; 1815 1816 /* 1817 * Redirect XSCOM to MMIO handlers 1818 */ 1819 static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset, 1820 unsigned size) 1821 { 1822 PnvXive2 *xive = PNV_XIVE2(opaque); 1823 uint64_t val = -1; 1824 uint32_t xscom_reg = offset >> 3; 1825 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; 1826 1827 switch (xscom_reg) { 1828 case 0x000 ... 0x0FF: 1829 val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size); 1830 break; 1831 case 0x100 ... 0x1FF: 1832 val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size); 1833 break; 1834 case 0x200 ... 0x2FF: 1835 val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size); 1836 break; 1837 case 0x300 ... 0x3FF: 1838 val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size); 1839 break; 1840 default: 1841 xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset); 1842 } 1843 1844 return val; 1845 } 1846 1847 static void pnv_xive2_xscom_write(void *opaque, hwaddr offset, 1848 uint64_t val, unsigned size) 1849 { 1850 PnvXive2 *xive = PNV_XIVE2(opaque); 1851 uint32_t xscom_reg = offset >> 3; 1852 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; 1853 1854 switch (xscom_reg) { 1855 case 0x000 ... 0x0FF: 1856 pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size); 1857 break; 1858 case 0x100 ... 0x1FF: 1859 pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size); 1860 break; 1861 case 0x200 ... 0x2FF: 1862 pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size); 1863 break; 1864 case 0x300 ... 0x3FF: 1865 pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size); 1866 break; 1867 default: 1868 xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx 1869 " value 0x%"PRIx64, offset, val); 1870 } 1871 } 1872 1873 static const MemoryRegionOps pnv_xive2_xscom_ops = { 1874 .read = pnv_xive2_xscom_read, 1875 .write = pnv_xive2_xscom_write, 1876 .endianness = DEVICE_BIG_ENDIAN, 1877 .valid = { 1878 .min_access_size = 8, 1879 .max_access_size = 8, 1880 }, 1881 .impl = { 1882 .min_access_size = 8, 1883 .max_access_size = 8, 1884 }, 1885 }; 1886 1887 /* 1888 * Notify port page. The layout is compatible between 4K and 64K pages : 1889 * 1890 * Page 1 Notify page (writes only) 1891 * 0x000 - 0x7FF IPI interrupt (NPU) 1892 * 0x800 - 0xFFF HW interrupt triggers (PSI, PHB) 1893 */ 1894 1895 static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr, 1896 uint64_t val) 1897 { 1898 uint8_t blk; 1899 uint32_t idx; 1900 1901 if (val & XIVE_TRIGGER_END) { 1902 xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64, 1903 addr, val); 1904 return; 1905 } 1906 1907 /* 1908 * Forward the source event notification directly to the Router. 1909 * The source interrupt number should already be correctly encoded 1910 * with the chip block id by the sending device (PHB, PSI). 1911 */ 1912 blk = XIVE_EAS_BLOCK(val); 1913 idx = XIVE_EAS_INDEX(val); 1914 1915 xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), 1916 !!(val & XIVE_TRIGGER_PQ)); 1917 } 1918 1919 static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset, 1920 uint64_t val, unsigned size) 1921 { 1922 PnvXive2 *xive = PNV_XIVE2(opaque); 1923 1924 /* VC: IPI triggers */ 1925 switch (offset) { 1926 case 0x000 ... 0x7FF: 1927 /* TODO: check IPI notify sub-page routing */ 1928 pnv_xive2_ic_hw_trigger(opaque, offset, val); 1929 break; 1930 1931 /* VC: HW triggers */ 1932 case 0x800 ... 0xFFF: 1933 pnv_xive2_ic_hw_trigger(opaque, offset, val); 1934 break; 1935 1936 default: 1937 xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx 1938 " value 0x%"PRIx64, offset, val); 1939 } 1940 } 1941 1942 static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset, 1943 unsigned size) 1944 { 1945 PnvXive2 *xive = PNV_XIVE2(opaque); 1946 1947 /* loads are invalid */ 1948 xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset); 1949 return -1; 1950 } 1951 1952 static const MemoryRegionOps pnv_xive2_ic_notify_ops = { 1953 .read = pnv_xive2_ic_notify_read, 1954 .write = pnv_xive2_ic_notify_write, 1955 .endianness = DEVICE_BIG_ENDIAN, 1956 .valid = { 1957 .min_access_size = 8, 1958 .max_access_size = 8, 1959 }, 1960 .impl = { 1961 .min_access_size = 8, 1962 .max_access_size = 8, 1963 }, 1964 }; 1965 1966 static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset, 1967 unsigned size) 1968 { 1969 PnvXive2 *xive = PNV_XIVE2(opaque); 1970 1971 xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset); 1972 return -1; 1973 } 1974 1975 static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset, 1976 uint64_t val, unsigned size) 1977 { 1978 PnvXive2 *xive = PNV_XIVE2(opaque); 1979 1980 xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx" value 0x%"PRIx64, 1981 offset, val); 1982 } 1983 1984 static const MemoryRegionOps pnv_xive2_ic_lsi_ops = { 1985 .read = pnv_xive2_ic_lsi_read, 1986 .write = pnv_xive2_ic_lsi_write, 1987 .endianness = DEVICE_BIG_ENDIAN, 1988 .valid = { 1989 .min_access_size = 8, 1990 .max_access_size = 8, 1991 }, 1992 .impl = { 1993 .min_access_size = 8, 1994 .max_access_size = 8, 1995 }, 1996 }; 1997 1998 /* 1999 * Sync MMIO page (write only) 2000 */ 2001 #define PNV_XIVE2_SYNC_IPI 0x000 2002 #define PNV_XIVE2_SYNC_HW 0x080 2003 #define PNV_XIVE2_SYNC_NxC 0x100 2004 #define PNV_XIVE2_SYNC_INT 0x180 2005 #define PNV_XIVE2_SYNC_OS_ESC 0x200 2006 #define PNV_XIVE2_SYNC_POOL_ESC 0x280 2007 #define PNV_XIVE2_SYNC_HARD_ESC 0x300 2008 #define PNV_XIVE2_SYNC_NXC_LD_LCL_NCO 0x800 2009 #define PNV_XIVE2_SYNC_NXC_LD_LCL_CO 0x880 2010 #define PNV_XIVE2_SYNC_NXC_ST_LCL_NCI 0x900 2011 #define PNV_XIVE2_SYNC_NXC_ST_LCL_CI 0x980 2012 #define PNV_XIVE2_SYNC_NXC_ST_RMT_NCI 0xA00 2013 #define PNV_XIVE2_SYNC_NXC_ST_RMT_CI 0xA80 2014 2015 static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset, 2016 unsigned size) 2017 { 2018 PnvXive2 *xive = PNV_XIVE2(opaque); 2019 2020 /* loads are invalid */ 2021 xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset); 2022 return -1; 2023 } 2024 2025 /* 2026 * The sync MMIO space spans two pages. The lower page is use for 2027 * queue sync "poll" requests while the upper page is used for queue 2028 * sync "inject" requests. Inject requests require the HW to write 2029 * a byte of all 1's to a predetermined location in memory in order 2030 * to signal completion of the request. Both pages have the same 2031 * layout, so it is easiest to handle both with a single function. 2032 */ 2033 static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset, 2034 uint64_t val, unsigned size) 2035 { 2036 PnvXive2 *xive = PNV_XIVE2(opaque); 2037 int inject_type; 2038 hwaddr pg_offset_mask = (1ull << xive->ic_shift) - 1; 2039 2040 /* adjust offset for inject page */ 2041 hwaddr adj_offset = offset & pg_offset_mask; 2042 2043 switch (adj_offset) { 2044 case PNV_XIVE2_SYNC_IPI: 2045 inject_type = PNV_XIVE2_QUEUE_IPI; 2046 break; 2047 case PNV_XIVE2_SYNC_HW: 2048 inject_type = PNV_XIVE2_QUEUE_HW; 2049 break; 2050 case PNV_XIVE2_SYNC_NxC: 2051 inject_type = PNV_XIVE2_QUEUE_NXC; 2052 break; 2053 case PNV_XIVE2_SYNC_INT: 2054 inject_type = PNV_XIVE2_QUEUE_INT; 2055 break; 2056 case PNV_XIVE2_SYNC_OS_ESC: 2057 inject_type = PNV_XIVE2_QUEUE_OS; 2058 break; 2059 case PNV_XIVE2_SYNC_POOL_ESC: 2060 inject_type = PNV_XIVE2_QUEUE_POOL; 2061 break; 2062 case PNV_XIVE2_SYNC_HARD_ESC: 2063 inject_type = PNV_XIVE2_QUEUE_HARD; 2064 break; 2065 case PNV_XIVE2_SYNC_NXC_LD_LCL_NCO: 2066 inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO; 2067 break; 2068 case PNV_XIVE2_SYNC_NXC_LD_LCL_CO: 2069 inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_CO; 2070 break; 2071 case PNV_XIVE2_SYNC_NXC_ST_LCL_NCI: 2072 inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI; 2073 break; 2074 case PNV_XIVE2_SYNC_NXC_ST_LCL_CI: 2075 inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_CI; 2076 break; 2077 case PNV_XIVE2_SYNC_NXC_ST_RMT_NCI: 2078 inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI; 2079 break; 2080 case PNV_XIVE2_SYNC_NXC_ST_RMT_CI: 2081 inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_CI; 2082 break; 2083 default: 2084 xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx" value 0x%"PRIx64, 2085 offset, val); 2086 return; 2087 } 2088 2089 /* Write Queue Sync notification byte if writing to sync inject page */ 2090 if ((offset & ~pg_offset_mask) != 0) { 2091 pnv_xive2_inject_notify(xive, inject_type); 2092 } 2093 } 2094 2095 static const MemoryRegionOps pnv_xive2_ic_sync_ops = { 2096 .read = pnv_xive2_ic_sync_read, 2097 .write = pnv_xive2_ic_sync_write, 2098 .endianness = DEVICE_BIG_ENDIAN, 2099 .valid = { 2100 .min_access_size = 8, 2101 .max_access_size = 8, 2102 }, 2103 .impl = { 2104 .min_access_size = 8, 2105 .max_access_size = 8, 2106 }, 2107 }; 2108 2109 /* 2110 * When the TM direct pages of the IC controller are accessed, the 2111 * target HW thread is deduced from the page offset. 2112 */ 2113 static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset) 2114 { 2115 /* On P10, the node ID shift in the PIR register is 8 bits */ 2116 return xive->chip->chip_id << 8 | offset >> xive->ic_shift; 2117 } 2118 2119 static uint32_t pnv_xive2_ic_tm_get_hw_page_offset(PnvXive2 *xive, 2120 hwaddr offset) 2121 { 2122 /* 2123 * Indirect TIMA accesses are similar to direct accesses for 2124 * privilege ring 0. So remove any traces of the hw thread ID from 2125 * the offset in the IC BAR as it could be interpreted as the ring 2126 * privilege when calling the underlying direct access functions. 2127 */ 2128 return offset & ((1ull << xive->ic_shift) - 1); 2129 } 2130 2131 static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir) 2132 { 2133 PnvChip *chip = xive->chip; 2134 PowerPCCPU *cpu = NULL; 2135 2136 cpu = pnv_chip_find_cpu(chip, pir); 2137 if (!cpu) { 2138 xive2_error(xive, "IC: invalid PIR %x for indirect access", pir); 2139 return NULL; 2140 } 2141 2142 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { 2143 xive2_error(xive, "IC: CPU %x is not enabled", pir); 2144 } 2145 2146 return XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2147 } 2148 2149 static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset, 2150 unsigned size) 2151 { 2152 PnvXive2 *xive = PNV_XIVE2(opaque); 2153 XivePresenter *xptr = XIVE_PRESENTER(xive); 2154 hwaddr hw_page_offset; 2155 uint32_t pir; 2156 XiveTCTX *tctx; 2157 uint64_t val = -1; 2158 2159 pir = pnv_xive2_ic_tm_get_pir(xive, offset); 2160 hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); 2161 tctx = pnv_xive2_get_indirect_tctx(xive, pir); 2162 if (tctx) { 2163 val = xive_tctx_tm_read(xptr, tctx, hw_page_offset, size); 2164 } 2165 2166 return val; 2167 } 2168 2169 static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset, 2170 uint64_t val, unsigned size) 2171 { 2172 PnvXive2 *xive = PNV_XIVE2(opaque); 2173 XivePresenter *xptr = XIVE_PRESENTER(xive); 2174 hwaddr hw_page_offset; 2175 uint32_t pir; 2176 XiveTCTX *tctx; 2177 2178 pir = pnv_xive2_ic_tm_get_pir(xive, offset); 2179 hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset); 2180 tctx = pnv_xive2_get_indirect_tctx(xive, pir); 2181 if (tctx) { 2182 xive_tctx_tm_write(xptr, tctx, hw_page_offset, val, size); 2183 } 2184 } 2185 2186 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = { 2187 .read = pnv_xive2_ic_tm_indirect_read, 2188 .write = pnv_xive2_ic_tm_indirect_write, 2189 .endianness = DEVICE_BIG_ENDIAN, 2190 .valid = { 2191 .min_access_size = 1, 2192 .max_access_size = 8, 2193 }, 2194 .impl = { 2195 .min_access_size = 1, 2196 .max_access_size = 8, 2197 }, 2198 }; 2199 2200 /* 2201 * TIMA ops 2202 */ 2203 static void pnv_xive2_tm_write(void *opaque, hwaddr offset, 2204 uint64_t value, unsigned size) 2205 { 2206 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 2207 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); 2208 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2209 XivePresenter *xptr = XIVE_PRESENTER(xive); 2210 2211 xive_tctx_tm_write(xptr, tctx, offset, value, size); 2212 } 2213 2214 static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size) 2215 { 2216 PowerPCCPU *cpu = POWERPC_CPU(current_cpu); 2217 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); 2218 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 2219 XivePresenter *xptr = XIVE_PRESENTER(xive); 2220 2221 return xive_tctx_tm_read(xptr, tctx, offset, size); 2222 } 2223 2224 static const MemoryRegionOps pnv_xive2_tm_ops = { 2225 .read = pnv_xive2_tm_read, 2226 .write = pnv_xive2_tm_write, 2227 .endianness = DEVICE_BIG_ENDIAN, 2228 .valid = { 2229 .min_access_size = 1, 2230 .max_access_size = 8, 2231 }, 2232 .impl = { 2233 .min_access_size = 1, 2234 .max_access_size = 8, 2235 }, 2236 }; 2237 2238 static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr addr, 2239 unsigned size) 2240 { 2241 PnvXive2 *xive = PNV_XIVE2(opaque); 2242 XivePresenter *xptr = XIVE_PRESENTER(xive); 2243 uint32_t page = addr >> xive->nvpg_shift; 2244 uint16_t op = addr & 0xFFF; 2245 uint8_t blk = pnv_xive2_block_id(xive); 2246 2247 if (size != 2) { 2248 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvc load size %d\n", 2249 size); 2250 return -1; 2251 } 2252 2253 return xive2_presenter_nvgc_backlog_op(xptr, true, blk, page, op, 1); 2254 } 2255 2256 static void pnv_xive2_nvc_write(void *opaque, hwaddr addr, 2257 uint64_t val, unsigned size) 2258 { 2259 PnvXive2 *xive = PNV_XIVE2(opaque); 2260 XivePresenter *xptr = XIVE_PRESENTER(xive); 2261 uint32_t page = addr >> xive->nvc_shift; 2262 uint16_t op = addr & 0xFFF; 2263 uint8_t blk = pnv_xive2_block_id(xive); 2264 2265 if (size != 1) { 2266 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvc write size %d\n", 2267 size); 2268 return; 2269 } 2270 2271 (void)xive2_presenter_nvgc_backlog_op(xptr, true, blk, page, op, val); 2272 } 2273 2274 static const MemoryRegionOps pnv_xive2_nvc_ops = { 2275 .read = pnv_xive2_nvc_read, 2276 .write = pnv_xive2_nvc_write, 2277 .endianness = DEVICE_BIG_ENDIAN, 2278 .valid = { 2279 .min_access_size = 1, 2280 .max_access_size = 8, 2281 }, 2282 .impl = { 2283 .min_access_size = 1, 2284 .max_access_size = 8, 2285 }, 2286 }; 2287 2288 static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr addr, 2289 unsigned size) 2290 { 2291 PnvXive2 *xive = PNV_XIVE2(opaque); 2292 XivePresenter *xptr = XIVE_PRESENTER(xive); 2293 uint32_t page = addr >> xive->nvpg_shift; 2294 uint16_t op = addr & 0xFFF; 2295 uint32_t index = page >> 1; 2296 uint8_t blk = pnv_xive2_block_id(xive); 2297 2298 if (size != 2) { 2299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvpg load size %d\n", 2300 size); 2301 return -1; 2302 } 2303 2304 if (page % 2) { 2305 /* odd page - NVG */ 2306 return xive2_presenter_nvgc_backlog_op(xptr, false, blk, index, op, 1); 2307 } else { 2308 /* even page - NVP */ 2309 return xive2_presenter_nvp_backlog_op(xptr, blk, index, op); 2310 } 2311 } 2312 2313 static void pnv_xive2_nvpg_write(void *opaque, hwaddr addr, 2314 uint64_t val, unsigned size) 2315 { 2316 PnvXive2 *xive = PNV_XIVE2(opaque); 2317 XivePresenter *xptr = XIVE_PRESENTER(xive); 2318 uint32_t page = addr >> xive->nvpg_shift; 2319 uint16_t op = addr & 0xFFF; 2320 uint32_t index = page >> 1; 2321 uint8_t blk = pnv_xive2_block_id(xive); 2322 2323 if (size != 1) { 2324 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid nvpg write size %d\n", 2325 size); 2326 return; 2327 } 2328 2329 if (page % 2) { 2330 /* odd page - NVG */ 2331 (void)xive2_presenter_nvgc_backlog_op(xptr, false, blk, index, op, val); 2332 } else { 2333 /* even page - NVP */ 2334 (void)xive2_presenter_nvp_backlog_op(xptr, blk, index, op); 2335 } 2336 } 2337 2338 static const MemoryRegionOps pnv_xive2_nvpg_ops = { 2339 .read = pnv_xive2_nvpg_read, 2340 .write = pnv_xive2_nvpg_write, 2341 .endianness = DEVICE_BIG_ENDIAN, 2342 .valid = { 2343 .min_access_size = 1, 2344 .max_access_size = 8, 2345 }, 2346 .impl = { 2347 .min_access_size = 1, 2348 .max_access_size = 8, 2349 }, 2350 }; 2351 2352 /* 2353 * POWER10 default capabilities: 0x2000120076f000FC 2354 */ 2355 #define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC 2356 2357 /* 2358 * POWER10 default configuration: 0x0030000033000000 2359 * 2360 * 8bits thread id was dropped for P10 2361 */ 2362 #define PNV_XIVE2_CONFIGURATION 0x0030000033000000 2363 2364 static void pnv_xive2_reset(void *dev) 2365 { 2366 PnvXive2 *xive = PNV_XIVE2(dev); 2367 XiveSource *xsrc = &xive->ipi_source; 2368 Xive2EndSource *end_xsrc = &xive->end_source; 2369 2370 xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities; 2371 xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config; 2372 2373 /* HW hardwires the #Topology of the chip in the block field */ 2374 xive->cq_regs[CQ_XIVE_CFG >> 3] |= 2375 SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id); 2376 2377 /* VC and PC cache watch assign mechanism */ 2378 xive->vc_regs[VC_ENDC_CFG >> 3] = 2379 SETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 0ull, 0b0111); 2380 xive->pc_regs[PC_NXC_PROC_CONFIG >> 3] = 2381 SETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 0ull, 0b0111); 2382 2383 /* Set default page size to 64k */ 2384 xive->ic_shift = xive->esb_shift = xive->end_shift = 16; 2385 xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16; 2386 2387 /* Clear source MMIOs */ 2388 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 2389 memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); 2390 } 2391 2392 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { 2393 memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); 2394 } 2395 } 2396 2397 /* 2398 * Maximum number of IRQs and ENDs supported by HW. Will be tuned by 2399 * software. 2400 */ 2401 #define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 2402 #define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 2403 2404 static void pnv_xive2_realize(DeviceState *dev, Error **errp) 2405 { 2406 PnvXive2 *xive = PNV_XIVE2(dev); 2407 PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev); 2408 XiveSource *xsrc = &xive->ipi_source; 2409 Xive2EndSource *end_xsrc = &xive->end_source; 2410 Error *local_err = NULL; 2411 int i; 2412 2413 pxc->parent_realize(dev, &local_err); 2414 if (local_err) { 2415 error_propagate(errp, local_err); 2416 return; 2417 } 2418 2419 assert(xive->chip); 2420 2421 /* 2422 * The XiveSource and Xive2EndSource objects are realized with the 2423 * maximum allowed HW configuration. The ESB MMIO regions will be 2424 * resized dynamically when the controller is configured by the FW 2425 * to limit accesses to resources not provisioned. 2426 */ 2427 object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI, 2428 &error_fatal); 2429 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS, 2430 &error_fatal); 2431 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), 2432 &error_fatal); 2433 qdev_realize(DEVICE(xsrc), NULL, &local_err); 2434 if (local_err) { 2435 error_propagate(errp, local_err); 2436 return; 2437 } 2438 2439 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS, 2440 &error_fatal); 2441 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), 2442 &error_abort); 2443 qdev_realize(DEVICE(end_xsrc), NULL, &local_err); 2444 if (local_err) { 2445 error_propagate(errp, local_err); 2446 return; 2447 } 2448 2449 /* XSCOM region, used for initial configuration of the BARs */ 2450 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), 2451 &pnv_xive2_xscom_ops, xive, "xscom-xive", 2452 PNV10_XSCOM_XIVE2_SIZE << 3); 2453 2454 /* Interrupt controller MMIO regions */ 2455 xive->ic_shift = 16; 2456 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", 2457 PNV10_XIVE2_IC_SIZE); 2458 2459 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { 2460 memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev), 2461 pnv_xive2_ic_regions[i].ops, xive, 2462 pnv_xive2_ic_regions[i].name, 2463 pnv_xive2_ic_regions[i].pgsize << xive->ic_shift); 2464 } 2465 2466 /* 2467 * VC MMIO regions. 2468 */ 2469 xive->esb_shift = 16; 2470 xive->end_shift = 16; 2471 memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb", 2472 PNV10_XIVE2_ESB_SIZE); 2473 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end", 2474 PNV10_XIVE2_END_SIZE); 2475 2476 /* Presenter Controller MMIO region (not modeled) */ 2477 xive->nvc_shift = 16; 2478 xive->nvpg_shift = 16; 2479 memory_region_init_io(&xive->nvc_mmio, OBJECT(dev), 2480 &pnv_xive2_nvc_ops, xive, 2481 "xive-nvc", PNV10_XIVE2_NVC_SIZE); 2482 2483 memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev), 2484 &pnv_xive2_nvpg_ops, xive, 2485 "xive-nvpg", PNV10_XIVE2_NVPG_SIZE); 2486 2487 /* Thread Interrupt Management Area (Direct) */ 2488 xive->tm_shift = 16; 2489 memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops, 2490 xive, "xive-tima", PNV10_XIVE2_TM_SIZE); 2491 2492 qemu_register_reset(pnv_xive2_reset, dev); 2493 } 2494 2495 static const Property pnv_xive2_properties[] = { 2496 DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0), 2497 DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0), 2498 DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0), 2499 DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0), 2500 DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0), 2501 DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0), 2502 DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities, 2503 PNV_XIVE2_CAPABILITIES), 2504 DEFINE_PROP_UINT64("config", PnvXive2, config, 2505 PNV_XIVE2_CONFIGURATION), 2506 DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *), 2507 }; 2508 2509 static void pnv_xive2_instance_init(Object *obj) 2510 { 2511 PnvXive2 *xive = PNV_XIVE2(obj); 2512 2513 object_initialize_child(obj, "ipi_source", &xive->ipi_source, 2514 TYPE_XIVE_SOURCE); 2515 object_initialize_child(obj, "end_source", &xive->end_source, 2516 TYPE_XIVE2_END_SOURCE); 2517 } 2518 2519 static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt, 2520 int xscom_offset) 2521 { 2522 const char compat_p10[] = "ibm,power10-xive-x"; 2523 char *name; 2524 int offset; 2525 uint32_t reg[] = { 2526 cpu_to_be32(PNV10_XSCOM_XIVE2_BASE), 2527 cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE) 2528 }; 2529 2530 name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE); 2531 offset = fdt_add_subnode(fdt, xscom_offset, name); 2532 _FDT(offset); 2533 g_free(name); 2534 2535 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 2536 _FDT(fdt_setprop(fdt, offset, "compatible", compat_p10, 2537 sizeof(compat_p10))); 2538 return 0; 2539 } 2540 2541 static void pnv_xive2_class_init(ObjectClass *klass, const void *data) 2542 { 2543 DeviceClass *dc = DEVICE_CLASS(klass); 2544 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); 2545 Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass); 2546 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 2547 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); 2548 PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass); 2549 2550 xdc->dt_xscom = pnv_xive2_dt_xscom; 2551 2552 dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)"; 2553 device_class_set_parent_realize(dc, pnv_xive2_realize, 2554 &pxc->parent_realize); 2555 device_class_set_props(dc, pnv_xive2_properties); 2556 2557 xrc->get_eas = pnv_xive2_get_eas; 2558 xrc->get_pq = pnv_xive2_get_pq; 2559 xrc->set_pq = pnv_xive2_set_pq; 2560 xrc->get_end = pnv_xive2_get_end; 2561 xrc->write_end = pnv_xive2_write_end; 2562 xrc->get_nvp = pnv_xive2_get_nvp; 2563 xrc->write_nvp = pnv_xive2_write_nvp; 2564 xrc->get_nvgc = pnv_xive2_get_nvgc; 2565 xrc->write_nvgc = pnv_xive2_write_nvgc; 2566 xrc->get_config = pnv_xive2_get_config; 2567 xrc->get_block_id = pnv_xive2_get_block_id; 2568 2569 xnc->notify = pnv_xive2_notify; 2570 2571 xpc->match_nvt = pnv_xive2_match_nvt; 2572 xpc->get_config = pnv_xive2_presenter_get_config; 2573 xpc->broadcast = pnv_xive2_broadcast; 2574 }; 2575 2576 static const TypeInfo pnv_xive2_info = { 2577 .name = TYPE_PNV_XIVE2, 2578 .parent = TYPE_XIVE2_ROUTER, 2579 .instance_init = pnv_xive2_instance_init, 2580 .instance_size = sizeof(PnvXive2), 2581 .class_init = pnv_xive2_class_init, 2582 .class_size = sizeof(PnvXive2Class), 2583 .interfaces = (const InterfaceInfo[]) { 2584 { TYPE_PNV_XSCOM_INTERFACE }, 2585 { } 2586 } 2587 }; 2588 2589 static void pnv_xive2_register_types(void) 2590 { 2591 type_register_static(&pnv_xive2_info); 2592 } 2593 2594 type_init(pnv_xive2_register_types) 2595 2596 /* 2597 * If the table is direct, we can compute the number of PQ entries 2598 * provisioned by FW. 2599 */ 2600 static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive) 2601 { 2602 uint8_t blk = pnv_xive2_block_id(xive); 2603 uint64_t vsd = xive->vsds[VST_ESB][blk]; 2604 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); 2605 2606 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; 2607 } 2608 2609 /* 2610 * Compute the number of entries per indirect subpage. 2611 */ 2612 static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type) 2613 { 2614 uint8_t blk = pnv_xive2_block_id(xive); 2615 uint64_t vsd = xive->vsds[type][blk]; 2616 const XiveVstInfo *info = &vst_infos[type]; 2617 uint64_t vsd_addr; 2618 uint32_t page_shift; 2619 2620 /* For direct tables, fake a valid value */ 2621 if (!(VSD_INDIRECT & vsd)) { 2622 return 1; 2623 } 2624 2625 /* Get the page size of the indirect table. */ 2626 vsd_addr = vsd & VSD_ADDRESS_MASK; 2627 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); 2628 2629 if (!(vsd & VSD_ADDRESS_MASK)) { 2630 #ifdef XIVE2_DEBUG 2631 xive2_error(xive, "VST: invalid %s entry!?", info->name); 2632 #endif 2633 return 0; 2634 } 2635 2636 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 2637 2638 if (!pnv_xive2_vst_page_size_allowed(page_shift)) { 2639 xive2_error(xive, "VST: invalid %s page shift %d", info->name, 2640 page_shift); 2641 return 0; 2642 } 2643 2644 return (1ull << page_shift) / info->size; 2645 } 2646 2647 void pnv_xive2_pic_print_info(PnvXive2 *xive, GString *buf) 2648 { 2649 Xive2Router *xrtr = XIVE2_ROUTER(xive); 2650 uint8_t blk = pnv_xive2_block_id(xive); 2651 uint8_t chip_id = xive->chip->chip_id; 2652 uint32_t srcno0 = XIVE_EAS(blk, 0); 2653 uint32_t nr_esbs = pnv_xive2_nr_esbs(xive); 2654 Xive2Eas eas; 2655 Xive2End end; 2656 Xive2Nvp nvp; 2657 Xive2Nvgc nvgc; 2658 int i; 2659 uint64_t entries_per_subpage; 2660 2661 g_string_append_printf(buf, "XIVE[%x] Source %08x .. %08x\n", 2662 blk, srcno0, srcno0 + nr_esbs - 1); 2663 xive_source_pic_print_info(&xive->ipi_source, srcno0, buf); 2664 2665 g_string_append_printf(buf, "XIVE[%x] EAT %08x .. %08x\n", 2666 blk, srcno0, srcno0 + nr_esbs - 1); 2667 for (i = 0; i < nr_esbs; i++) { 2668 if (xive2_router_get_eas(xrtr, blk, i, &eas)) { 2669 break; 2670 } 2671 if (!xive2_eas_is_masked(&eas)) { 2672 xive2_eas_pic_print_info(&eas, i, buf); 2673 } 2674 } 2675 2676 g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n", 2677 chip_id, blk); 2678 i = 0; 2679 while (!xive2_router_get_end(xrtr, blk, i, &end)) { 2680 xive2_end_eas_pic_print_info(&end, i++, buf); 2681 } 2682 2683 g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk); 2684 i = 0; 2685 while (!xive2_router_get_end(xrtr, blk, i, &end)) { 2686 xive2_end_pic_print_info(&end, i++, buf); 2687 } 2688 2689 g_string_append_printf(buf, "XIVE[%x] #%d NVPT %08x .. %08x\n", 2690 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2691 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP); 2692 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2693 while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) { 2694 xive2_nvp_pic_print_info(&nvp, i++, buf); 2695 } 2696 } 2697 2698 g_string_append_printf(buf, "XIVE[%x] #%d NVGT %08x .. %08x\n", 2699 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2700 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVG); 2701 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2702 while (!xive2_router_get_nvgc(xrtr, false, blk, i, &nvgc)) { 2703 xive2_nvgc_pic_print_info(&nvgc, i++, buf); 2704 } 2705 } 2706 2707 g_string_append_printf(buf, "XIVE[%x] #%d NVCT %08x .. %08x\n", 2708 chip_id, blk, 0, XIVE2_NVP_COUNT - 1); 2709 entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVC); 2710 for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) { 2711 while (!xive2_router_get_nvgc(xrtr, true, blk, i, &nvgc)) { 2712 xive2_nvgc_pic_print_info(&nvgc, i++, buf); 2713 } 2714 } 2715 } 2716