xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision fc59d2d8)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 
28 #include <libfdt.h>
29 
30 #include "pnv_xive_regs.h"
31 
32 #undef XIVE_DEBUG
33 
34 /*
35  * Virtual structures table (VST)
36  */
37 #define SBE_PER_BYTE   4
38 
39 typedef struct XiveVstInfo {
40     const char *name;
41     uint32_t    size;
42     uint32_t    max_blocks;
43 } XiveVstInfo;
44 
45 static const XiveVstInfo vst_infos[] = {
46     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
47     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
48     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 
51     /*
52      *  Interrupt fifo backing store table (not modeled) :
53      *
54      * 0 - IPI,
55      * 1 - HWD,
56      * 2 - First escalate,
57      * 3 - Second escalate,
58      * 4 - Redistribution,
59      * 5 - IPI cascaded queue ?
60      */
61     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
62 };
63 
64 #define xive_error(xive, fmt, ...)                                      \
65     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
66                   (xive)->chip->chip_id, ## __VA_ARGS__);
67 
68 /*
69  * QEMU version of the GETFIELD/SETFIELD macros
70  *
71  * TODO: It might be better to use the existing extract64() and
72  * deposit64() but this means that all the register definitions will
73  * change and become incompatible with the ones found in skiboot.
74  *
75  * Keep it as it is for now until we find a common ground.
76  */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79     return (word & mask) >> ctz64(mask);
80 }
81 
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83                                 uint64_t value)
84 {
85     return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87 
88 /*
89  * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
90  * field overrides the hardwired chip ID in the Powerbus operations
91  * and for CAM compares
92  */
93 static uint8_t pnv_xive_block_id(PnvXive *xive)
94 {
95     uint8_t blk = xive->chip->chip_id;
96     uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
97 
98     if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
99         blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
100     }
101 
102     return blk;
103 }
104 
105 /*
106  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
107  * of the chips is good enough.
108  *
109  * TODO: Block scope support
110  */
111 static PnvXive *pnv_xive_get_remote(uint8_t blk)
112 {
113     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
114     int i;
115 
116     for (i = 0; i < pnv->num_chips; i++) {
117         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
118         PnvXive *xive = &chip9->xive;
119 
120         if (pnv_xive_block_id(xive) == blk) {
121             return xive;
122         }
123     }
124     return NULL;
125 }
126 
127 /*
128  * VST accessors for SBE, EAT, ENDT, NVT
129  *
130  * Indirect VST tables are arrays of VSDs pointing to a page (of same
131  * size). Each page is a direct VST table.
132  */
133 
134 #define XIVE_VSD_SIZE 8
135 
136 /* Indirect page size can be 4K, 64K, 2M, 16M. */
137 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
138 {
139      return page_shift == 12 || page_shift == 16 ||
140          page_shift == 21 || page_shift == 24;
141 }
142 
143 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
144                                          uint64_t vsd, uint32_t idx)
145 {
146     const XiveVstInfo *info = &vst_infos[type];
147     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
148     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
149     uint32_t idx_max;
150 
151     idx_max = vst_tsize / info->size - 1;
152     if (idx > idx_max) {
153 #ifdef XIVE_DEBUG
154         xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
155                    info->name, idx, idx_max);
156 #endif
157         return 0;
158     }
159 
160     return vst_addr + idx * info->size;
161 }
162 
163 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
164                                            uint64_t vsd, uint32_t idx)
165 {
166     const XiveVstInfo *info = &vst_infos[type];
167     uint64_t vsd_addr;
168     uint32_t vsd_idx;
169     uint32_t page_shift;
170     uint32_t vst_per_page;
171 
172     /* Get the page size of the indirect table. */
173     vsd_addr = vsd & VSD_ADDRESS_MASK;
174     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
175 
176     if (!(vsd & VSD_ADDRESS_MASK)) {
177 #ifdef XIVE_DEBUG
178         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
179 #endif
180         return 0;
181     }
182 
183     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
184 
185     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
186         xive_error(xive, "VST: invalid %s page shift %d", info->name,
187                    page_shift);
188         return 0;
189     }
190 
191     vst_per_page = (1ull << page_shift) / info->size;
192     vsd_idx = idx / vst_per_page;
193 
194     /* Load the VSD we are looking for, if not already done */
195     if (vsd_idx) {
196         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
197         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
198 
199         if (!(vsd & VSD_ADDRESS_MASK)) {
200 #ifdef XIVE_DEBUG
201             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
202 #endif
203             return 0;
204         }
205 
206         /*
207          * Check that the pages have a consistent size across the
208          * indirect table
209          */
210         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
211             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
212                        info->name, idx);
213             return 0;
214         }
215     }
216 
217     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
218 }
219 
220 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
221                                   uint32_t idx)
222 {
223     const XiveVstInfo *info = &vst_infos[type];
224     uint64_t vsd;
225 
226     if (blk >= info->max_blocks) {
227         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
228                    blk, info->name, idx);
229         return 0;
230     }
231 
232     vsd = xive->vsds[type][blk];
233 
234     /* Remote VST access */
235     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
236         xive = pnv_xive_get_remote(blk);
237 
238         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
239     }
240 
241     if (VSD_INDIRECT & vsd) {
242         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
243     }
244 
245     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
246 }
247 
248 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
249                              uint32_t idx, void *data)
250 {
251     const XiveVstInfo *info = &vst_infos[type];
252     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
253 
254     if (!addr) {
255         return -1;
256     }
257 
258     cpu_physical_memory_read(addr, data, info->size);
259     return 0;
260 }
261 
262 #define XIVE_VST_WORD_ALL -1
263 
264 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
265                               uint32_t idx, void *data, uint32_t word_number)
266 {
267     const XiveVstInfo *info = &vst_infos[type];
268     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
269 
270     if (!addr) {
271         return -1;
272     }
273 
274     if (word_number == XIVE_VST_WORD_ALL) {
275         cpu_physical_memory_write(addr, data, info->size);
276     } else {
277         cpu_physical_memory_write(addr + word_number * 4,
278                                   data + word_number * 4, 4);
279     }
280     return 0;
281 }
282 
283 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
284                             XiveEND *end)
285 {
286     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
287 }
288 
289 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
290                               XiveEND *end, uint8_t word_number)
291 {
292     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
293                               word_number);
294 }
295 
296 static int pnv_xive_end_update(PnvXive *xive)
297 {
298     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302     int i;
303     uint64_t eqc_watch[4];
304 
305     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
306         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
307     }
308 
309     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
310                               XIVE_VST_WORD_ALL);
311 }
312 
313 static void pnv_xive_end_cache_load(PnvXive *xive)
314 {
315     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
316                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
317     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
318                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319     uint64_t eqc_watch[4] = { 0 };
320     int i;
321 
322     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
323         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
324     }
325 
326     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
327         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
328     }
329 }
330 
331 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
332                             XiveNVT *nvt)
333 {
334     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
335 }
336 
337 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
338                               XiveNVT *nvt, uint8_t word_number)
339 {
340     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
341                               word_number);
342 }
343 
344 static int pnv_xive_nvt_update(PnvXive *xive)
345 {
346     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350     int i;
351     uint64_t vpc_watch[8];
352 
353     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
354         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
355     }
356 
357     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
358                               XIVE_VST_WORD_ALL);
359 }
360 
361 static void pnv_xive_nvt_cache_load(PnvXive *xive)
362 {
363     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
364                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
365     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
366                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367     uint64_t vpc_watch[8] = { 0 };
368     int i;
369 
370     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
371         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
372     }
373 
374     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
375         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
376     }
377 }
378 
379 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
380                             XiveEAS *eas)
381 {
382     PnvXive *xive = PNV_XIVE(xrtr);
383 
384     /*
385      * EAT lookups should be local to the IC
386      */
387     if (pnv_xive_block_id(xive) != blk) {
388         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389         return -1;
390     }
391 
392     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394 
395 /*
396  * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
397  * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
398  * second register covers cores 16-23 (normal) or 8-11 (fused).
399  */
400 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
401 {
402     int pir = ppc_cpu_pir(cpu);
403     uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
404     uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
405     uint32_t bit = pir & 0x3f;
406 
407     return xive->regs[reg >> 3] & PPC_BIT(bit);
408 }
409 
410 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
411                               uint8_t nvt_blk, uint32_t nvt_idx,
412                               bool cam_ignore, uint8_t priority,
413                               uint32_t logic_serv, XiveTCTXMatch *match)
414 {
415     PnvXive *xive = PNV_XIVE(xptr);
416     PnvChip *chip = xive->chip;
417     int count = 0;
418     int i, j;
419 
420     for (i = 0; i < chip->nr_cores; i++) {
421         PnvCore *pc = chip->cores[i];
422         CPUCore *cc = CPU_CORE(pc);
423 
424         for (j = 0; j < cc->nr_threads; j++) {
425             PowerPCCPU *cpu = pc->threads[j];
426             XiveTCTX *tctx;
427             int ring;
428 
429             if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
430                 continue;
431             }
432 
433             tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
434 
435             /*
436              * Check the thread context CAM lines and record matches.
437              */
438             ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
439                                              nvt_idx, cam_ignore, logic_serv);
440             /*
441              * Save the context and follow on to catch duplicates, that we
442              * don't support yet.
443              */
444             if (ring != -1) {
445                 if (match->tctx) {
446                     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447                                   "thread context NVT %x/%x\n",
448                                   nvt_blk, nvt_idx);
449                     return -1;
450                 }
451 
452                 match->ring = ring;
453                 match->tctx = tctx;
454                 count++;
455             }
456         }
457     }
458 
459     return count;
460 }
461 
462 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
463 {
464     return pnv_xive_block_id(PNV_XIVE(xrtr));
465 }
466 
467 /*
468  * The TIMA MMIO space is shared among the chips and to identify the
469  * chip from which the access is being done, we extract the chip id
470  * from the PIR.
471  */
472 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
473 {
474     int pir = ppc_cpu_pir(cpu);
475     PnvChip *chip;
476     PnvXive *xive;
477 
478     chip = pnv_get_chip(PNV9_PIR2CHIP(pir));
479     assert(chip);
480     xive = &PNV9_CHIP(chip)->xive;
481 
482     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
483         xive_error(xive, "IC: CPU %x is not enabled", pir);
484     }
485     return xive;
486 }
487 
488 /*
489  * The internal sources (IPIs) of the interrupt controller have no
490  * knowledge of the XIVE chip on which they reside. Encode the block
491  * id in the source interrupt number before forwarding the source
492  * event notification to the Router. This is required on a multichip
493  * system.
494  */
495 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
496 {
497     PnvXive *xive = PNV_XIVE(xn);
498     uint8_t blk = pnv_xive_block_id(xive);
499 
500     xive_router_notify(xn, XIVE_EAS(blk, srcno));
501 }
502 
503 /*
504  * XIVE helpers
505  */
506 
507 static uint64_t pnv_xive_vc_size(PnvXive *xive)
508 {
509     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
510 }
511 
512 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
513 {
514     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
515 }
516 
517 static uint64_t pnv_xive_pc_size(PnvXive *xive)
518 {
519     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
520 }
521 
522 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
523 {
524     uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
525     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
526 
527     return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
528 }
529 
530 /*
531  * Compute the number of entries per indirect subpage.
532  */
533 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
534 {
535     uint8_t blk = pnv_xive_block_id(xive);
536     uint64_t vsd = xive->vsds[type][blk];
537     const XiveVstInfo *info = &vst_infos[type];
538     uint64_t vsd_addr;
539     uint32_t page_shift;
540 
541     /* For direct tables, fake a valid value */
542     if (!(VSD_INDIRECT & vsd)) {
543         return 1;
544     }
545 
546     /* Get the page size of the indirect table. */
547     vsd_addr = vsd & VSD_ADDRESS_MASK;
548     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
549 
550     if (!(vsd & VSD_ADDRESS_MASK)) {
551 #ifdef XIVE_DEBUG
552         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
553 #endif
554         return 0;
555     }
556 
557     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
558 
559     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
560         xive_error(xive, "VST: invalid %s page shift %d", info->name,
561                    page_shift);
562         return 0;
563     }
564 
565     return (1ull << page_shift) / info->size;
566 }
567 
568 /*
569  * EDT Table
570  *
571  * The Virtualization Controller MMIO region containing the IPI ESB
572  * pages and END ESB pages is sub-divided into "sets" which map
573  * portions of the VC region to the different ESB pages. It is
574  * configured at runtime through the EDT "Domain Table" to let the
575  * firmware decide how to split the VC address space between IPI ESB
576  * pages and END ESB pages.
577  */
578 
579 /*
580  * Computes the overall size of the IPI or the END ESB pages
581  */
582 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
583 {
584     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
585     uint64_t size = 0;
586     int i;
587 
588     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
589         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
590 
591         if (edt_type == type) {
592             size += edt_size;
593         }
594     }
595 
596     return size;
597 }
598 
599 /*
600  * Maps an offset of the VC region in the IPI or END region using the
601  * layout defined by the EDT "Domaine Table"
602  */
603 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
604                                               uint64_t type)
605 {
606     int i;
607     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
608     uint64_t edt_offset = vc_offset;
609 
610     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
611         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
612 
613         if (edt_type != type) {
614             edt_offset -= edt_size;
615         }
616     }
617 
618     return edt_offset;
619 }
620 
621 static void pnv_xive_edt_resize(PnvXive *xive)
622 {
623     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
624     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
625 
626     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
627     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
628 
629     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
630     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
631 }
632 
633 /*
634  * XIVE Table configuration. Only EDT is supported.
635  */
636 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
637 {
638     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
639     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
640     uint64_t *xive_table;
641     uint8_t max_index;
642 
643     switch (tsel) {
644     case CQ_TAR_TSEL_BLK:
645         max_index = ARRAY_SIZE(xive->blk);
646         xive_table = xive->blk;
647         break;
648     case CQ_TAR_TSEL_MIG:
649         max_index = ARRAY_SIZE(xive->mig);
650         xive_table = xive->mig;
651         break;
652     case CQ_TAR_TSEL_EDT:
653         max_index = ARRAY_SIZE(xive->edt);
654         xive_table = xive->edt;
655         break;
656     case CQ_TAR_TSEL_VDT:
657         max_index = ARRAY_SIZE(xive->vdt);
658         xive_table = xive->vdt;
659         break;
660     default:
661         xive_error(xive, "IC: invalid table %d", (int) tsel);
662         return -1;
663     }
664 
665     if (tsel_index >= max_index) {
666         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
667         return -1;
668     }
669 
670     xive_table[tsel_index] = val;
671 
672     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
673         xive->regs[CQ_TAR >> 3] =
674             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
675     }
676 
677     /*
678      * EDT configuration is complete. Resize the MMIO windows exposing
679      * the IPI and the END ESBs in the VC region.
680      */
681     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
682         pnv_xive_edt_resize(xive);
683     }
684 
685     return 0;
686 }
687 
688 /*
689  * Virtual Structure Tables (VST) configuration
690  */
691 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
692                                        uint8_t blk, uint64_t vsd)
693 {
694     XiveENDSource *end_xsrc = &xive->end_source;
695     XiveSource *xsrc = &xive->ipi_source;
696     const XiveVstInfo *info = &vst_infos[type];
697     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
698     uint64_t vst_tsize = 1ull << page_shift;
699     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
700 
701     /* Basic checks */
702 
703     if (VSD_INDIRECT & vsd) {
704         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
705             xive_error(xive, "VST: %s indirect tables are not enabled",
706                        info->name);
707             return;
708         }
709 
710         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
711             xive_error(xive, "VST: invalid %s page shift %d", info->name,
712                        page_shift);
713             return;
714         }
715     }
716 
717     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
718         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
719                    " page shift %d", info->name, vst_addr, page_shift);
720         return;
721     }
722 
723     /* Record the table configuration (in SRAM on HW) */
724     xive->vsds[type][blk] = vsd;
725 
726     /* Now tune the models with the configuration provided by the FW */
727 
728     switch (type) {
729     case VST_TSEL_IVT:  /* Nothing to be done */
730         break;
731 
732     case VST_TSEL_EQDT:
733         /*
734          * Backing store pages for the END.
735          *
736          * If the table is direct, we can compute the number of PQ
737          * entries provisioned by FW (such as skiboot) and resize the
738          * END ESB window accordingly.
739          */
740         if (!(VSD_INDIRECT & vsd)) {
741             memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
742                                    * (1ull << xsrc->esb_shift));
743         }
744         memory_region_add_subregion(&xive->end_edt_mmio, 0,
745                                     &end_xsrc->esb_mmio);
746         break;
747 
748     case VST_TSEL_SBE:
749         /*
750          * Backing store pages for the source PQ bits. The model does
751          * not use these PQ bits backed in RAM because the XiveSource
752          * model has its own.
753          *
754          * If the table is direct, we can compute the number of PQ
755          * entries provisioned by FW (such as skiboot) and resize the
756          * ESB window accordingly.
757          */
758         if (!(VSD_INDIRECT & vsd)) {
759             memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
760                                    * (1ull << xsrc->esb_shift));
761         }
762         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
763         break;
764 
765     case VST_TSEL_VPDT: /* Not modeled */
766     case VST_TSEL_IRQ:  /* Not modeled */
767         /*
768          * These tables contains the backing store pages for the
769          * interrupt fifos of the VC sub-engine in case of overflow.
770          */
771         break;
772 
773     default:
774         g_assert_not_reached();
775     }
776 }
777 
778 /*
779  * Both PC and VC sub-engines are configured as each use the Virtual
780  * Structure Tables : SBE, EAS, END and NVT.
781  */
782 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
783 {
784     uint8_t mode = GETFIELD(VSD_MODE, vsd);
785     uint8_t type = GETFIELD(VST_TABLE_SELECT,
786                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
787     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
788                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
789     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
790 
791     if (type > VST_TSEL_IRQ) {
792         xive_error(xive, "VST: invalid table type %d", type);
793         return;
794     }
795 
796     if (blk >= vst_infos[type].max_blocks) {
797         xive_error(xive, "VST: invalid block id %d for"
798                       " %s table", blk, vst_infos[type].name);
799         return;
800     }
801 
802     /*
803      * Only take the VC sub-engine configuration into account because
804      * the XiveRouter model combines both VC and PC sub-engines
805      */
806     if (pc_engine) {
807         return;
808     }
809 
810     if (!vst_addr) {
811         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
812         return;
813     }
814 
815     switch (mode) {
816     case VSD_MODE_FORWARD:
817         xive->vsds[type][blk] = vsd;
818         break;
819 
820     case VSD_MODE_EXCLUSIVE:
821         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
822         break;
823 
824     default:
825         xive_error(xive, "VST: unsupported table mode %d", mode);
826         return;
827     }
828 }
829 
830 /*
831  * Interrupt controller MMIO region. The layout is compatible between
832  * 4K and 64K pages :
833  *
834  * Page 0           sub-engine BARs
835  *  0x000 - 0x3FF   IC registers
836  *  0x400 - 0x7FF   PC registers
837  *  0x800 - 0xFFF   VC registers
838  *
839  * Page 1           Notify page (writes only)
840  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
841  *  0x800 - 0xFFF   forwards and syncs
842  *
843  * Page 2           LSI Trigger page (writes only) (not modeled)
844  * Page 3           LSI SB EOI page (reads only) (not modeled)
845  *
846  * Page 4-7         indirect TIMA
847  */
848 
849 /*
850  * IC - registers MMIO
851  */
852 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
853                                   uint64_t val, unsigned size)
854 {
855     PnvXive *xive = PNV_XIVE(opaque);
856     MemoryRegion *sysmem = get_system_memory();
857     uint32_t reg = offset >> 3;
858     bool is_chip0 = xive->chip->chip_id == 0;
859 
860     switch (offset) {
861 
862     /*
863      * XIVE CQ (PowerBus bridge) settings
864      */
865     case CQ_MSGSND:     /* msgsnd for doorbells */
866     case CQ_FIRMASK_OR: /* FIR error reporting */
867         break;
868     case CQ_PBI_CTL:
869         if (val & CQ_PBI_PC_64K) {
870             xive->pc_shift = 16;
871         }
872         if (val & CQ_PBI_VC_64K) {
873             xive->vc_shift = 16;
874         }
875         break;
876     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
877         /*
878          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
879          */
880         break;
881 
882     /*
883      * XIVE Virtualization Controller settings
884      */
885     case VC_GLOBAL_CONFIG:
886         break;
887 
888     /*
889      * XIVE Presenter Controller settings
890      */
891     case PC_GLOBAL_CONFIG:
892         /*
893          * PC_GCONF_CHIPID_OVR
894          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
895          */
896         break;
897     case PC_TCTXT_CFG:
898         /*
899          * TODO: block group support
900          */
901         break;
902     case PC_TCTXT_TRACK:
903         /*
904          * PC_TCTXT_TRACK_EN:
905          *   enable block tracking and exchange of block ownership
906          *   information between Interrupt controllers
907          */
908         break;
909 
910     /*
911      * Misc settings
912      */
913     case VC_SBC_CONFIG: /* Store EOI configuration */
914         /*
915          * Configure store EOI if required by firwmare (skiboot has removed
916          * support recently though)
917          */
918         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
919             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
920         }
921         break;
922 
923     case VC_EQC_CONFIG: /* TODO: silent escalation */
924     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
925         break;
926 
927     /*
928      * XIVE BAR settings (XSCOM only)
929      */
930     case CQ_RST_CTL:
931         /* bit4: resets all BAR registers */
932         break;
933 
934     case CQ_IC_BAR: /* IC BAR. 8 pages */
935         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
936         if (!(val & CQ_IC_BAR_VALID)) {
937             xive->ic_base = 0;
938             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
939                 memory_region_del_subregion(&xive->ic_mmio,
940                                             &xive->ic_reg_mmio);
941                 memory_region_del_subregion(&xive->ic_mmio,
942                                             &xive->ic_notify_mmio);
943                 memory_region_del_subregion(&xive->ic_mmio,
944                                             &xive->ic_lsi_mmio);
945                 memory_region_del_subregion(&xive->ic_mmio,
946                                             &xive->tm_indirect_mmio);
947 
948                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
949             }
950         } else {
951             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
952             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
953                 memory_region_add_subregion(sysmem, xive->ic_base,
954                                             &xive->ic_mmio);
955 
956                 memory_region_add_subregion(&xive->ic_mmio,  0,
957                                             &xive->ic_reg_mmio);
958                 memory_region_add_subregion(&xive->ic_mmio,
959                                             1ul << xive->ic_shift,
960                                             &xive->ic_notify_mmio);
961                 memory_region_add_subregion(&xive->ic_mmio,
962                                             2ul << xive->ic_shift,
963                                             &xive->ic_lsi_mmio);
964                 memory_region_add_subregion(&xive->ic_mmio,
965                                             4ull << xive->ic_shift,
966                                             &xive->tm_indirect_mmio);
967             }
968         }
969         break;
970 
971     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
972     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
973         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
974         if (!(val & CQ_TM_BAR_VALID)) {
975             xive->tm_base = 0;
976             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
977                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
978             }
979         } else {
980             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
981             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
982                 memory_region_add_subregion(sysmem, xive->tm_base,
983                                             &xive->tm_mmio);
984             }
985         }
986         break;
987 
988     case CQ_PC_BARM:
989         xive->regs[reg] = val;
990         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
991         break;
992     case CQ_PC_BAR: /* From 32M to 512G */
993         if (!(val & CQ_PC_BAR_VALID)) {
994             xive->pc_base = 0;
995             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
996                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
997             }
998         } else {
999             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
1000             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
1001                 memory_region_add_subregion(sysmem, xive->pc_base,
1002                                             &xive->pc_mmio);
1003             }
1004         }
1005         break;
1006 
1007     case CQ_VC_BARM:
1008         xive->regs[reg] = val;
1009         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1010         break;
1011     case CQ_VC_BAR: /* From 64M to 4TB */
1012         if (!(val & CQ_VC_BAR_VALID)) {
1013             xive->vc_base = 0;
1014             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1015                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1016             }
1017         } else {
1018             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1019             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1020                 memory_region_add_subregion(sysmem, xive->vc_base,
1021                                             &xive->vc_mmio);
1022             }
1023         }
1024         break;
1025 
1026     /*
1027      * XIVE Table settings.
1028      */
1029     case CQ_TAR: /* Table Address */
1030         break;
1031     case CQ_TDR: /* Table Data */
1032         pnv_xive_table_set_data(xive, val);
1033         break;
1034 
1035     /*
1036      * XIVE VC & PC Virtual Structure Table settings
1037      */
1038     case VC_VSD_TABLE_ADDR:
1039     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1040         break;
1041     case VC_VSD_TABLE_DATA: /* Virtual table setting */
1042     case PC_VSD_TABLE_DATA:
1043         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1044         break;
1045 
1046     /*
1047      * Interrupt fifo overflow in memory backing store (Not modeled)
1048      */
1049     case VC_IRQ_CONFIG_IPI:
1050     case VC_IRQ_CONFIG_HW:
1051     case VC_IRQ_CONFIG_CASCADE1:
1052     case VC_IRQ_CONFIG_CASCADE2:
1053     case VC_IRQ_CONFIG_REDIST:
1054     case VC_IRQ_CONFIG_IPI_CASC:
1055         break;
1056 
1057     /*
1058      * XIVE hardware thread enablement
1059      */
1060     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1061     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1062         break;
1063 
1064     case PC_THREAD_EN_REG0_SET:
1065         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1066         break;
1067     case PC_THREAD_EN_REG1_SET:
1068         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1069         break;
1070     case PC_THREAD_EN_REG0_CLR:
1071         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1072         break;
1073     case PC_THREAD_EN_REG1_CLR:
1074         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1075         break;
1076 
1077     /*
1078      * Indirect TIMA access set up. Defines the PIR of the HW thread
1079      * to use.
1080      */
1081     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1082         break;
1083 
1084     /*
1085      * XIVE PC & VC cache updates for EAS, NVT and END
1086      */
1087     case VC_IVC_SCRUB_MASK:
1088     case VC_IVC_SCRUB_TRIG:
1089         break;
1090 
1091     case VC_EQC_CWATCH_SPEC:
1092         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1093         break;
1094     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1095         break;
1096     case VC_EQC_CWATCH_DAT0:
1097         /* writing to DATA0 triggers the cache write */
1098         xive->regs[reg] = val;
1099         pnv_xive_end_update(xive);
1100         break;
1101     case VC_EQC_SCRUB_MASK:
1102     case VC_EQC_SCRUB_TRIG:
1103         /*
1104          * The scrubbing registers flush the cache in RAM and can also
1105          * invalidate.
1106          */
1107         break;
1108 
1109     case PC_VPC_CWATCH_SPEC:
1110         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1111         break;
1112     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1113         break;
1114     case PC_VPC_CWATCH_DAT0:
1115         /* writing to DATA0 triggers the cache write */
1116         xive->regs[reg] = val;
1117         pnv_xive_nvt_update(xive);
1118         break;
1119     case PC_VPC_SCRUB_MASK:
1120     case PC_VPC_SCRUB_TRIG:
1121         /*
1122          * The scrubbing registers flush the cache in RAM and can also
1123          * invalidate.
1124          */
1125         break;
1126 
1127 
1128     /*
1129      * XIVE PC & VC cache invalidation
1130      */
1131     case PC_AT_KILL:
1132         break;
1133     case VC_AT_MACRO_KILL:
1134         break;
1135     case PC_AT_KILL_MASK:
1136     case VC_AT_MACRO_KILL_MASK:
1137         break;
1138 
1139     default:
1140         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1141         return;
1142     }
1143 
1144     xive->regs[reg] = val;
1145 }
1146 
1147 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1148 {
1149     PnvXive *xive = PNV_XIVE(opaque);
1150     uint64_t val = 0;
1151     uint32_t reg = offset >> 3;
1152 
1153     switch (offset) {
1154     case CQ_CFG_PB_GEN:
1155     case CQ_IC_BAR:
1156     case CQ_TM1_BAR:
1157     case CQ_TM2_BAR:
1158     case CQ_PC_BAR:
1159     case CQ_PC_BARM:
1160     case CQ_VC_BAR:
1161     case CQ_VC_BARM:
1162     case CQ_TAR:
1163     case CQ_TDR:
1164     case CQ_PBI_CTL:
1165 
1166     case PC_TCTXT_CFG:
1167     case PC_TCTXT_TRACK:
1168     case PC_TCTXT_INDIR0:
1169     case PC_TCTXT_INDIR1:
1170     case PC_TCTXT_INDIR2:
1171     case PC_TCTXT_INDIR3:
1172     case PC_GLOBAL_CONFIG:
1173 
1174     case PC_VPC_SCRUB_MASK:
1175 
1176     case VC_GLOBAL_CONFIG:
1177     case VC_AIB_TX_ORDER_TAG2:
1178 
1179     case VC_IRQ_CONFIG_IPI:
1180     case VC_IRQ_CONFIG_HW:
1181     case VC_IRQ_CONFIG_CASCADE1:
1182     case VC_IRQ_CONFIG_CASCADE2:
1183     case VC_IRQ_CONFIG_REDIST:
1184     case VC_IRQ_CONFIG_IPI_CASC:
1185 
1186     case VC_EQC_SCRUB_MASK:
1187     case VC_IVC_SCRUB_MASK:
1188     case VC_SBC_CONFIG:
1189     case VC_AT_MACRO_KILL_MASK:
1190     case VC_VSD_TABLE_ADDR:
1191     case PC_VSD_TABLE_ADDR:
1192     case VC_VSD_TABLE_DATA:
1193     case PC_VSD_TABLE_DATA:
1194     case PC_THREAD_EN_REG0:
1195     case PC_THREAD_EN_REG1:
1196         val = xive->regs[reg];
1197         break;
1198 
1199     /*
1200      * XIVE hardware thread enablement
1201      */
1202     case PC_THREAD_EN_REG0_SET:
1203     case PC_THREAD_EN_REG0_CLR:
1204         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1205         break;
1206     case PC_THREAD_EN_REG1_SET:
1207     case PC_THREAD_EN_REG1_CLR:
1208         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1209         break;
1210 
1211     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1212         val = 0xffffff0000000000;
1213         break;
1214 
1215     /*
1216      * XIVE PC & VC cache updates for EAS, NVT and END
1217      */
1218     case VC_EQC_CWATCH_SPEC:
1219         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1220         val = xive->regs[reg];
1221         break;
1222     case VC_EQC_CWATCH_DAT0:
1223         /*
1224          * Load DATA registers from cache with data requested by the
1225          * SPEC register
1226          */
1227         pnv_xive_end_cache_load(xive);
1228         val = xive->regs[reg];
1229         break;
1230     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1231         val = xive->regs[reg];
1232         break;
1233 
1234     case PC_VPC_CWATCH_SPEC:
1235         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1236         val = xive->regs[reg];
1237         break;
1238     case PC_VPC_CWATCH_DAT0:
1239         /*
1240          * Load DATA registers from cache with data requested by the
1241          * SPEC register
1242          */
1243         pnv_xive_nvt_cache_load(xive);
1244         val = xive->regs[reg];
1245         break;
1246     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1247         val = xive->regs[reg];
1248         break;
1249 
1250     case PC_VPC_SCRUB_TRIG:
1251     case VC_IVC_SCRUB_TRIG:
1252     case VC_EQC_SCRUB_TRIG:
1253         xive->regs[reg] &= ~VC_SCRUB_VALID;
1254         val = xive->regs[reg];
1255         break;
1256 
1257     /*
1258      * XIVE PC & VC cache invalidation
1259      */
1260     case PC_AT_KILL:
1261         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1262         val = xive->regs[reg];
1263         break;
1264     case VC_AT_MACRO_KILL:
1265         xive->regs[reg] &= ~VC_KILL_VALID;
1266         val = xive->regs[reg];
1267         break;
1268 
1269     /*
1270      * XIVE synchronisation
1271      */
1272     case VC_EQC_CONFIG:
1273         val = VC_EQC_SYNC_MASK;
1274         break;
1275 
1276     default:
1277         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1278     }
1279 
1280     return val;
1281 }
1282 
1283 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1284     .read = pnv_xive_ic_reg_read,
1285     .write = pnv_xive_ic_reg_write,
1286     .endianness = DEVICE_BIG_ENDIAN,
1287     .valid = {
1288         .min_access_size = 8,
1289         .max_access_size = 8,
1290     },
1291     .impl = {
1292         .min_access_size = 8,
1293         .max_access_size = 8,
1294     },
1295 };
1296 
1297 /*
1298  * IC - Notify MMIO port page (write only)
1299  */
1300 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1301 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1302 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1303 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1304 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1305 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1306 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1307 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1308 
1309 /* VC synchronisation */
1310 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1311 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1312 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1313 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1314 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1315 
1316 /* PC synchronisation */
1317 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1318 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1319 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1320 
1321 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1322 {
1323     uint8_t blk;
1324     uint32_t idx;
1325 
1326     if (val & XIVE_TRIGGER_END) {
1327         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1328                    addr, val);
1329         return;
1330     }
1331 
1332     /*
1333      * Forward the source event notification directly to the Router.
1334      * The source interrupt number should already be correctly encoded
1335      * with the chip block id by the sending device (PHB, PSI).
1336      */
1337     blk = XIVE_EAS_BLOCK(val);
1338     idx = XIVE_EAS_INDEX(val);
1339 
1340     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1341 }
1342 
1343 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1344                                      unsigned size)
1345 {
1346     PnvXive *xive = PNV_XIVE(opaque);
1347 
1348     /* VC: HW triggers */
1349     switch (addr) {
1350     case 0x000 ... 0x7FF:
1351         pnv_xive_ic_hw_trigger(opaque, addr, val);
1352         break;
1353 
1354     /* VC: Forwarded IRQs */
1355     case PNV_XIVE_FORWARD_IPI:
1356     case PNV_XIVE_FORWARD_HW:
1357     case PNV_XIVE_FORWARD_OS_ESC:
1358     case PNV_XIVE_FORWARD_HW_ESC:
1359     case PNV_XIVE_FORWARD_REDIS:
1360         /* TODO: forwarded IRQs. Should be like HW triggers */
1361         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1362                    addr, val);
1363         break;
1364 
1365     /* VC syncs */
1366     case PNV_XIVE_SYNC_IPI:
1367     case PNV_XIVE_SYNC_HW:
1368     case PNV_XIVE_SYNC_OS_ESC:
1369     case PNV_XIVE_SYNC_HW_ESC:
1370     case PNV_XIVE_SYNC_REDIS:
1371         break;
1372 
1373     /* PC syncs */
1374     case PNV_XIVE_SYNC_PULL:
1375     case PNV_XIVE_SYNC_PUSH:
1376     case PNV_XIVE_SYNC_VPC:
1377         break;
1378 
1379     default:
1380         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1381     }
1382 }
1383 
1384 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1385                                         unsigned size)
1386 {
1387     PnvXive *xive = PNV_XIVE(opaque);
1388 
1389     /* loads are invalid */
1390     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1391     return -1;
1392 }
1393 
1394 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1395     .read = pnv_xive_ic_notify_read,
1396     .write = pnv_xive_ic_notify_write,
1397     .endianness = DEVICE_BIG_ENDIAN,
1398     .valid = {
1399         .min_access_size = 8,
1400         .max_access_size = 8,
1401     },
1402     .impl = {
1403         .min_access_size = 8,
1404         .max_access_size = 8,
1405     },
1406 };
1407 
1408 /*
1409  * IC - LSI MMIO handlers (not modeled)
1410  */
1411 
1412 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1413                               uint64_t val, unsigned size)
1414 {
1415     PnvXive *xive = PNV_XIVE(opaque);
1416 
1417     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1418 }
1419 
1420 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1421 {
1422     PnvXive *xive = PNV_XIVE(opaque);
1423 
1424     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1425     return -1;
1426 }
1427 
1428 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1429     .read = pnv_xive_ic_lsi_read,
1430     .write = pnv_xive_ic_lsi_write,
1431     .endianness = DEVICE_BIG_ENDIAN,
1432     .valid = {
1433         .min_access_size = 8,
1434         .max_access_size = 8,
1435     },
1436     .impl = {
1437         .min_access_size = 8,
1438         .max_access_size = 8,
1439     },
1440 };
1441 
1442 /*
1443  * IC - Indirect TIMA MMIO handlers
1444  */
1445 
1446 /*
1447  * When the TIMA is accessed from the indirect page, the thread id of
1448  * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1449  * use. This is used for resets and for debug purpose also.
1450  */
1451 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1452 {
1453     PnvChip *chip = xive->chip;
1454     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1455     PowerPCCPU *cpu = NULL;
1456     int pir;
1457 
1458     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1459         xive_error(xive, "IC: no indirect TIMA access in progress");
1460         return NULL;
1461     }
1462 
1463     pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1464     cpu = pnv_chip_find_cpu(chip, pir);
1465     if (!cpu) {
1466         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1467         return NULL;
1468     }
1469 
1470     /* Check that HW thread is XIVE enabled */
1471     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1472         xive_error(xive, "IC: CPU %x is not enabled", pir);
1473     }
1474 
1475     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1476 }
1477 
1478 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1479                                    uint64_t value, unsigned size)
1480 {
1481     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1482 
1483     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1484 }
1485 
1486 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1487                                       unsigned size)
1488 {
1489     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1490 
1491     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1492 }
1493 
1494 static const MemoryRegionOps xive_tm_indirect_ops = {
1495     .read = xive_tm_indirect_read,
1496     .write = xive_tm_indirect_write,
1497     .endianness = DEVICE_BIG_ENDIAN,
1498     .valid = {
1499         .min_access_size = 1,
1500         .max_access_size = 8,
1501     },
1502     .impl = {
1503         .min_access_size = 1,
1504         .max_access_size = 8,
1505     },
1506 };
1507 
1508 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1509                               uint64_t value, unsigned size)
1510 {
1511     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1512     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1513     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1514 
1515     xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1516 }
1517 
1518 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1519 {
1520     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1521     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1522     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1523 
1524     return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1525 }
1526 
1527 const MemoryRegionOps pnv_xive_tm_ops = {
1528     .read = pnv_xive_tm_read,
1529     .write = pnv_xive_tm_write,
1530     .endianness = DEVICE_BIG_ENDIAN,
1531     .valid = {
1532         .min_access_size = 1,
1533         .max_access_size = 8,
1534     },
1535     .impl = {
1536         .min_access_size = 1,
1537         .max_access_size = 8,
1538     },
1539 };
1540 
1541 /*
1542  * Interrupt controller XSCOM region.
1543  */
1544 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1545 {
1546     switch (addr >> 3) {
1547     case X_VC_EQC_CONFIG:
1548         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1549         return VC_EQC_SYNC_MASK;
1550     default:
1551         return pnv_xive_ic_reg_read(opaque, addr, size);
1552     }
1553 }
1554 
1555 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1556                                 uint64_t val, unsigned size)
1557 {
1558     pnv_xive_ic_reg_write(opaque, addr, val, size);
1559 }
1560 
1561 static const MemoryRegionOps pnv_xive_xscom_ops = {
1562     .read = pnv_xive_xscom_read,
1563     .write = pnv_xive_xscom_write,
1564     .endianness = DEVICE_BIG_ENDIAN,
1565     .valid = {
1566         .min_access_size = 8,
1567         .max_access_size = 8,
1568     },
1569     .impl = {
1570         .min_access_size = 8,
1571         .max_access_size = 8,
1572     }
1573 };
1574 
1575 /*
1576  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1577  */
1578 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1579                                  unsigned size)
1580 {
1581     PnvXive *xive = PNV_XIVE(opaque);
1582     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1583     uint64_t edt_type = 0;
1584     uint64_t edt_offset;
1585     MemTxResult result;
1586     AddressSpace *edt_as = NULL;
1587     uint64_t ret = -1;
1588 
1589     if (edt_index < XIVE_TABLE_EDT_MAX) {
1590         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1591     }
1592 
1593     switch (edt_type) {
1594     case CQ_TDR_EDT_IPI:
1595         edt_as = &xive->ipi_as;
1596         break;
1597     case CQ_TDR_EDT_EQ:
1598         edt_as = &xive->end_as;
1599         break;
1600     default:
1601         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1602         return -1;
1603     }
1604 
1605     /* Remap the offset for the targeted address space */
1606     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1607 
1608     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1609                             &result);
1610 
1611     if (result != MEMTX_OK) {
1612         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1613                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1614                    offset, edt_offset);
1615         return -1;
1616     }
1617 
1618     return ret;
1619 }
1620 
1621 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1622                               uint64_t val, unsigned size)
1623 {
1624     PnvXive *xive = PNV_XIVE(opaque);
1625     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1626     uint64_t edt_type = 0;
1627     uint64_t edt_offset;
1628     MemTxResult result;
1629     AddressSpace *edt_as = NULL;
1630 
1631     if (edt_index < XIVE_TABLE_EDT_MAX) {
1632         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1633     }
1634 
1635     switch (edt_type) {
1636     case CQ_TDR_EDT_IPI:
1637         edt_as = &xive->ipi_as;
1638         break;
1639     case CQ_TDR_EDT_EQ:
1640         edt_as = &xive->end_as;
1641         break;
1642     default:
1643         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1644                    offset);
1645         return;
1646     }
1647 
1648     /* Remap the offset for the targeted address space */
1649     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1650 
1651     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1652     if (result != MEMTX_OK) {
1653         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1654     }
1655 }
1656 
1657 static const MemoryRegionOps pnv_xive_vc_ops = {
1658     .read = pnv_xive_vc_read,
1659     .write = pnv_xive_vc_write,
1660     .endianness = DEVICE_BIG_ENDIAN,
1661     .valid = {
1662         .min_access_size = 8,
1663         .max_access_size = 8,
1664     },
1665     .impl = {
1666         .min_access_size = 8,
1667         .max_access_size = 8,
1668     },
1669 };
1670 
1671 /*
1672  * Presenter Controller MMIO region. The Virtualization Controller
1673  * updates the IPB in the NVT table when required. Not modeled.
1674  */
1675 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1676                                  unsigned size)
1677 {
1678     PnvXive *xive = PNV_XIVE(opaque);
1679 
1680     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1681     return -1;
1682 }
1683 
1684 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1685                               uint64_t value, unsigned size)
1686 {
1687     PnvXive *xive = PNV_XIVE(opaque);
1688 
1689     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1690 }
1691 
1692 static const MemoryRegionOps pnv_xive_pc_ops = {
1693     .read = pnv_xive_pc_read,
1694     .write = pnv_xive_pc_write,
1695     .endianness = DEVICE_BIG_ENDIAN,
1696     .valid = {
1697         .min_access_size = 8,
1698         .max_access_size = 8,
1699     },
1700     .impl = {
1701         .min_access_size = 8,
1702         .max_access_size = 8,
1703     },
1704 };
1705 
1706 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1707                                     Monitor *mon)
1708 {
1709     uint8_t  eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1710     uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1711 
1712     if (!xive_nvt_is_valid(nvt)) {
1713         return;
1714     }
1715 
1716     monitor_printf(mon, "  %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1717                    eq_blk, eq_idx,
1718                    xive_get_field32(NVT_W4_IPB, nvt->w4));
1719 }
1720 
1721 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1722 {
1723     XiveRouter *xrtr = XIVE_ROUTER(xive);
1724     uint8_t blk = pnv_xive_block_id(xive);
1725     uint8_t chip_id = xive->chip->chip_id;
1726     uint32_t srcno0 = XIVE_EAS(blk, 0);
1727     uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1728     XiveEAS eas;
1729     XiveEND end;
1730     XiveNVT nvt;
1731     int i;
1732     uint64_t xive_nvt_per_subpage;
1733 
1734     monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1735                    srcno0, srcno0 + nr_ipis - 1);
1736     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1737 
1738     monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1739                    srcno0, srcno0 + nr_ipis - 1);
1740     for (i = 0; i < nr_ipis; i++) {
1741         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1742             break;
1743         }
1744         if (!xive_eas_is_masked(&eas)) {
1745             xive_eas_pic_print_info(&eas, i, mon);
1746         }
1747     }
1748 
1749     monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1750     i = 0;
1751     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1752         xive_end_pic_print_info(&end, i++, mon);
1753     }
1754 
1755     monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1756     i = 0;
1757     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1758         xive_end_eas_pic_print_info(&end, i++, mon);
1759     }
1760 
1761     monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1762                    0, XIVE_NVT_COUNT - 1);
1763     xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1764     for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1765         while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1766             xive_nvt_pic_print_info(&nvt, i++, mon);
1767         }
1768     }
1769 }
1770 
1771 static void pnv_xive_reset(void *dev)
1772 {
1773     PnvXive *xive = PNV_XIVE(dev);
1774     XiveSource *xsrc = &xive->ipi_source;
1775     XiveENDSource *end_xsrc = &xive->end_source;
1776 
1777     /* Default page size (Should be changed at runtime to 64k) */
1778     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1779 
1780     /* Clear subregions */
1781     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1782         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1783     }
1784 
1785     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1786         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1787     }
1788 
1789     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1790         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1791     }
1792 
1793     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1794         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1795     }
1796 }
1797 
1798 static void pnv_xive_init(Object *obj)
1799 {
1800     PnvXive *xive = PNV_XIVE(obj);
1801 
1802     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1803                             sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1804                             &error_abort, NULL);
1805     object_initialize_child(obj, "end_source", &xive->end_source,
1806                             sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1807                             &error_abort, NULL);
1808 }
1809 
1810 /*
1811  *  Maximum number of IRQs and ENDs supported by HW
1812  */
1813 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1814 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1815 
1816 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1817 {
1818     PnvXive *xive = PNV_XIVE(dev);
1819     XiveSource *xsrc = &xive->ipi_source;
1820     XiveENDSource *end_xsrc = &xive->end_source;
1821     Error *local_err = NULL;
1822 
1823     assert(xive->chip);
1824 
1825     /*
1826      * The XiveSource and XiveENDSource objects are realized with the
1827      * maximum allowed HW configuration. The ESB MMIO regions will be
1828      * resized dynamically when the controller is configured by the FW
1829      * to limit accesses to resources not provisioned.
1830      */
1831     object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1832                             &error_fatal);
1833     object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1834                              &error_abort);
1835     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1836     if (local_err) {
1837         error_propagate(errp, local_err);
1838         return;
1839     }
1840 
1841     object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1842                             &error_fatal);
1843     object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1844                              &error_abort);
1845     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1846     if (local_err) {
1847         error_propagate(errp, local_err);
1848         return;
1849     }
1850 
1851     /* Default page size. Generally changed at runtime to 64k */
1852     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1853 
1854     /* XSCOM region, used for initial configuration of the BARs */
1855     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1856                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1857 
1858     /* Interrupt controller MMIO regions */
1859     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1860                        PNV9_XIVE_IC_SIZE);
1861 
1862     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1863                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1864     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1865                           &pnv_xive_ic_notify_ops,
1866                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1867 
1868     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1869     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1870                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1871 
1872     /* Thread Interrupt Management Area (Indirect) */
1873     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1874                           &xive_tm_indirect_ops,
1875                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1876     /*
1877      * Overall Virtualization Controller MMIO region containing the
1878      * IPI ESB pages and END ESB pages. The layout is defined by the
1879      * EDT "Domain table" and the accesses are dispatched using
1880      * address spaces for each.
1881      */
1882     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1883                           "xive-vc", PNV9_XIVE_VC_SIZE);
1884 
1885     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1886                        PNV9_XIVE_VC_SIZE);
1887     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1888     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1889                        PNV9_XIVE_VC_SIZE);
1890     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1891 
1892     /*
1893      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1894      * VC region. Their size is configured by the FW in the EDT table.
1895      */
1896     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1897     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1898 
1899     /* Presenter Controller MMIO region (not modeled) */
1900     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1901                           "xive-pc", PNV9_XIVE_PC_SIZE);
1902 
1903     /* Thread Interrupt Management Area (Direct) */
1904     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1905                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1906 
1907     qemu_register_reset(pnv_xive_reset, dev);
1908 }
1909 
1910 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1911                              int xscom_offset)
1912 {
1913     const char compat[] = "ibm,power9-xive-x";
1914     char *name;
1915     int offset;
1916     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1917     uint32_t reg[] = {
1918         cpu_to_be32(lpc_pcba),
1919         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1920     };
1921 
1922     name = g_strdup_printf("xive@%x", lpc_pcba);
1923     offset = fdt_add_subnode(fdt, xscom_offset, name);
1924     _FDT(offset);
1925     g_free(name);
1926 
1927     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1928     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1929                       sizeof(compat))));
1930     return 0;
1931 }
1932 
1933 static Property pnv_xive_properties[] = {
1934     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1935     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1936     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1937     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1938     /* The PnvChip id identifies the XIVE interrupt controller. */
1939     DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1940     DEFINE_PROP_END_OF_LIST(),
1941 };
1942 
1943 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1944 {
1945     DeviceClass *dc = DEVICE_CLASS(klass);
1946     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1947     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1948     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1949     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1950 
1951     xdc->dt_xscom = pnv_xive_dt_xscom;
1952 
1953     dc->desc = "PowerNV XIVE Interrupt Controller";
1954     dc->realize = pnv_xive_realize;
1955     dc->props = pnv_xive_properties;
1956 
1957     xrc->get_eas = pnv_xive_get_eas;
1958     xrc->get_end = pnv_xive_get_end;
1959     xrc->write_end = pnv_xive_write_end;
1960     xrc->get_nvt = pnv_xive_get_nvt;
1961     xrc->write_nvt = pnv_xive_write_nvt;
1962     xrc->get_block_id = pnv_xive_get_block_id;
1963 
1964     xnc->notify = pnv_xive_notify;
1965     xpc->match_nvt  = pnv_xive_match_nvt;
1966 };
1967 
1968 static const TypeInfo pnv_xive_info = {
1969     .name          = TYPE_PNV_XIVE,
1970     .parent        = TYPE_XIVE_ROUTER,
1971     .instance_init = pnv_xive_init,
1972     .instance_size = sizeof(PnvXive),
1973     .class_init    = pnv_xive_class_init,
1974     .interfaces    = (InterfaceInfo[]) {
1975         { TYPE_PNV_XSCOM_INTERFACE },
1976         { }
1977     }
1978 };
1979 
1980 static void pnv_xive_register_types(void)
1981 {
1982     type_register_static(&pnv_xive_info);
1983 }
1984 
1985 type_init(pnv_xive_register_types)
1986