xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision f3635813)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 
28 #include <libfdt.h>
29 
30 #include "pnv_xive_regs.h"
31 
32 #define XIVE_DEBUG
33 
34 /*
35  * Virtual structures table (VST)
36  */
37 #define SBE_PER_BYTE   4
38 
39 typedef struct XiveVstInfo {
40     const char *name;
41     uint32_t    size;
42     uint32_t    max_blocks;
43 } XiveVstInfo;
44 
45 static const XiveVstInfo vst_infos[] = {
46     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
47     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
48     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 
51     /*
52      *  Interrupt fifo backing store table (not modeled) :
53      *
54      * 0 - IPI,
55      * 1 - HWD,
56      * 2 - First escalate,
57      * 3 - Second escalate,
58      * 4 - Redistribution,
59      * 5 - IPI cascaded queue ?
60      */
61     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
62 };
63 
64 #define xive_error(xive, fmt, ...)                                      \
65     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
66                   (xive)->chip->chip_id, ## __VA_ARGS__);
67 
68 /*
69  * QEMU version of the GETFIELD/SETFIELD macros
70  *
71  * TODO: It might be better to use the existing extract64() and
72  * deposit64() but this means that all the register definitions will
73  * change and become incompatible with the ones found in skiboot.
74  *
75  * Keep it as it is for now until we find a common ground.
76  */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79     return (word & mask) >> ctz64(mask);
80 }
81 
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83                                 uint64_t value)
84 {
85     return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87 
88 /*
89  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
90  * of the chips is good enough.
91  *
92  * TODO: Block scope support
93  */
94 static PnvXive *pnv_xive_get_ic(uint8_t blk)
95 {
96     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
97     int i;
98 
99     for (i = 0; i < pnv->num_chips; i++) {
100         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
101         PnvXive *xive = &chip9->xive;
102 
103         if (xive->chip->chip_id == blk) {
104             return xive;
105         }
106     }
107     return NULL;
108 }
109 
110 /*
111  * VST accessors for SBE, EAT, ENDT, NVT
112  *
113  * Indirect VST tables are arrays of VSDs pointing to a page (of same
114  * size). Each page is a direct VST table.
115  */
116 
117 #define XIVE_VSD_SIZE 8
118 
119 /* Indirect page size can be 4K, 64K, 2M, 16M. */
120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
121 {
122      return page_shift == 12 || page_shift == 16 ||
123          page_shift == 21 || page_shift == 24;
124 }
125 
126 static uint64_t pnv_xive_vst_size(uint64_t vsd)
127 {
128     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
129 
130     /*
131      * Read the first descriptor to get the page size of the indirect
132      * table.
133      */
134     if (VSD_INDIRECT & vsd) {
135         uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
136         uint32_t page_shift;
137 
138         vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
139         page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
140 
141         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
142             return 0;
143         }
144 
145         return nr_pages * (1ull << page_shift);
146     }
147 
148     return vst_tsize;
149 }
150 
151 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
152                                          uint64_t vsd, uint32_t idx)
153 {
154     const XiveVstInfo *info = &vst_infos[type];
155     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
156 
157     return vst_addr + idx * info->size;
158 }
159 
160 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
161                                            uint64_t vsd, uint32_t idx)
162 {
163     const XiveVstInfo *info = &vst_infos[type];
164     uint64_t vsd_addr;
165     uint32_t vsd_idx;
166     uint32_t page_shift;
167     uint32_t vst_per_page;
168 
169     /* Get the page size of the indirect table. */
170     vsd_addr = vsd & VSD_ADDRESS_MASK;
171     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
172 
173     if (!(vsd & VSD_ADDRESS_MASK)) {
174         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
175         return 0;
176     }
177 
178     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
179 
180     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
181         xive_error(xive, "VST: invalid %s page shift %d", info->name,
182                    page_shift);
183         return 0;
184     }
185 
186     vst_per_page = (1ull << page_shift) / info->size;
187     vsd_idx = idx / vst_per_page;
188 
189     /* Load the VSD we are looking for, if not already done */
190     if (vsd_idx) {
191         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
192         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
193 
194         if (!(vsd & VSD_ADDRESS_MASK)) {
195             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
196             return 0;
197         }
198 
199         /*
200          * Check that the pages have a consistent size across the
201          * indirect table
202          */
203         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
204             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
205                        info->name, idx);
206             return 0;
207         }
208     }
209 
210     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
211 }
212 
213 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
214                                   uint32_t idx)
215 {
216     const XiveVstInfo *info = &vst_infos[type];
217     uint64_t vsd;
218     uint32_t idx_max;
219 
220     if (blk >= info->max_blocks) {
221         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
222                    blk, info->name, idx);
223         return 0;
224     }
225 
226     vsd = xive->vsds[type][blk];
227 
228     /* Remote VST access */
229     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
230         xive = pnv_xive_get_ic(blk);
231 
232         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
233     }
234 
235     idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
236     if (idx > idx_max) {
237 #ifdef XIVE_DEBUG
238         xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
239                    info->name, blk, idx, idx_max);
240 #endif
241         return 0;
242     }
243 
244     if (VSD_INDIRECT & vsd) {
245         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
246     }
247 
248     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
249 }
250 
251 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
252                              uint32_t idx, void *data)
253 {
254     const XiveVstInfo *info = &vst_infos[type];
255     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
256 
257     if (!addr) {
258         return -1;
259     }
260 
261     cpu_physical_memory_read(addr, data, info->size);
262     return 0;
263 }
264 
265 #define XIVE_VST_WORD_ALL -1
266 
267 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
268                               uint32_t idx, void *data, uint32_t word_number)
269 {
270     const XiveVstInfo *info = &vst_infos[type];
271     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
272 
273     if (!addr) {
274         return -1;
275     }
276 
277     if (word_number == XIVE_VST_WORD_ALL) {
278         cpu_physical_memory_write(addr, data, info->size);
279     } else {
280         cpu_physical_memory_write(addr + word_number * 4,
281                                   data + word_number * 4, 4);
282     }
283     return 0;
284 }
285 
286 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
287                             XiveEND *end)
288 {
289     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
290 }
291 
292 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
293                               XiveEND *end, uint8_t word_number)
294 {
295     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
296                               word_number);
297 }
298 
299 static int pnv_xive_end_update(PnvXive *xive)
300 {
301     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
302                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
304                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
305     int i;
306     uint64_t eqc_watch[4];
307 
308     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
309         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
310     }
311 
312     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
313                               XIVE_VST_WORD_ALL);
314 }
315 
316 static void pnv_xive_end_cache_load(PnvXive *xive)
317 {
318     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
319                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
320     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
321                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
322     uint64_t eqc_watch[4] = { 0 };
323     int i;
324 
325     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
326         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
327     }
328 
329     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
330         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
331     }
332 }
333 
334 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
335                             XiveNVT *nvt)
336 {
337     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
338 }
339 
340 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
341                               XiveNVT *nvt, uint8_t word_number)
342 {
343     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
344                               word_number);
345 }
346 
347 static int pnv_xive_nvt_update(PnvXive *xive)
348 {
349     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
350                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
352                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
353     int i;
354     uint64_t vpc_watch[8];
355 
356     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
357         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
358     }
359 
360     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
361                               XIVE_VST_WORD_ALL);
362 }
363 
364 static void pnv_xive_nvt_cache_load(PnvXive *xive)
365 {
366     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
367                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
368     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
369                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
370     uint64_t vpc_watch[8] = { 0 };
371     int i;
372 
373     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
374         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
375     }
376 
377     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
378         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
379     }
380 }
381 
382 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
383                             XiveEAS *eas)
384 {
385     PnvXive *xive = PNV_XIVE(xrtr);
386 
387     if (pnv_xive_get_ic(blk) != xive) {
388         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389         return -1;
390     }
391 
392     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394 
395 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
396 {
397     PowerPCCPU *cpu = POWERPC_CPU(cs);
398     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
399     PnvXive *xive = NULL;
400     CPUPPCState *env = &cpu->env;
401     int pir = env->spr_cb[SPR_PIR].default_value;
402 
403     /*
404      * Perform an extra check on the HW thread enablement.
405      *
406      * The TIMA is shared among the chips and to identify the chip
407      * from which the access is being done, we extract the chip id
408      * from the PIR.
409      */
410     xive = pnv_xive_get_ic((pir >> 8) & 0xf);
411     if (!xive) {
412         return NULL;
413     }
414 
415     if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
416         xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
417     }
418 
419     return tctx;
420 }
421 
422 /*
423  * The internal sources (IPIs) of the interrupt controller have no
424  * knowledge of the XIVE chip on which they reside. Encode the block
425  * id in the source interrupt number before forwarding the source
426  * event notification to the Router. This is required on a multichip
427  * system.
428  */
429 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
430 {
431     PnvXive *xive = PNV_XIVE(xn);
432     uint8_t blk = xive->chip->chip_id;
433 
434     xive_router_notify(xn, XIVE_EAS(blk, srcno));
435 }
436 
437 /*
438  * XIVE helpers
439  */
440 
441 static uint64_t pnv_xive_vc_size(PnvXive *xive)
442 {
443     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
444 }
445 
446 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
447 {
448     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
449 }
450 
451 static uint64_t pnv_xive_pc_size(PnvXive *xive)
452 {
453     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
454 }
455 
456 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
457 {
458     uint8_t blk = xive->chip->chip_id;
459 
460     return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
461 }
462 
463 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
464 {
465     uint8_t blk = xive->chip->chip_id;
466 
467     return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
468         / vst_infos[VST_TSEL_EQDT].size;
469 }
470 
471 /*
472  * EDT Table
473  *
474  * The Virtualization Controller MMIO region containing the IPI ESB
475  * pages and END ESB pages is sub-divided into "sets" which map
476  * portions of the VC region to the different ESB pages. It is
477  * configured at runtime through the EDT "Domain Table" to let the
478  * firmware decide how to split the VC address space between IPI ESB
479  * pages and END ESB pages.
480  */
481 
482 /*
483  * Computes the overall size of the IPI or the END ESB pages
484  */
485 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
486 {
487     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
488     uint64_t size = 0;
489     int i;
490 
491     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
492         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
493 
494         if (edt_type == type) {
495             size += edt_size;
496         }
497     }
498 
499     return size;
500 }
501 
502 /*
503  * Maps an offset of the VC region in the IPI or END region using the
504  * layout defined by the EDT "Domaine Table"
505  */
506 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
507                                               uint64_t type)
508 {
509     int i;
510     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
511     uint64_t edt_offset = vc_offset;
512 
513     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
514         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
515 
516         if (edt_type != type) {
517             edt_offset -= edt_size;
518         }
519     }
520 
521     return edt_offset;
522 }
523 
524 static void pnv_xive_edt_resize(PnvXive *xive)
525 {
526     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
527     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
528 
529     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
530     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
531 
532     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
533     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
534 }
535 
536 /*
537  * XIVE Table configuration. Only EDT is supported.
538  */
539 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
540 {
541     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
542     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
543     uint64_t *xive_table;
544     uint8_t max_index;
545 
546     switch (tsel) {
547     case CQ_TAR_TSEL_BLK:
548         max_index = ARRAY_SIZE(xive->blk);
549         xive_table = xive->blk;
550         break;
551     case CQ_TAR_TSEL_MIG:
552         max_index = ARRAY_SIZE(xive->mig);
553         xive_table = xive->mig;
554         break;
555     case CQ_TAR_TSEL_EDT:
556         max_index = ARRAY_SIZE(xive->edt);
557         xive_table = xive->edt;
558         break;
559     case CQ_TAR_TSEL_VDT:
560         max_index = ARRAY_SIZE(xive->vdt);
561         xive_table = xive->vdt;
562         break;
563     default:
564         xive_error(xive, "IC: invalid table %d", (int) tsel);
565         return -1;
566     }
567 
568     if (tsel_index >= max_index) {
569         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
570         return -1;
571     }
572 
573     xive_table[tsel_index] = val;
574 
575     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
576         xive->regs[CQ_TAR >> 3] =
577             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
578     }
579 
580     /*
581      * EDT configuration is complete. Resize the MMIO windows exposing
582      * the IPI and the END ESBs in the VC region.
583      */
584     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
585         pnv_xive_edt_resize(xive);
586     }
587 
588     return 0;
589 }
590 
591 /*
592  * Virtual Structure Tables (VST) configuration
593  */
594 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
595                                        uint8_t blk, uint64_t vsd)
596 {
597     XiveENDSource *end_xsrc = &xive->end_source;
598     XiveSource *xsrc = &xive->ipi_source;
599     const XiveVstInfo *info = &vst_infos[type];
600     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
601     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
602 
603     /* Basic checks */
604 
605     if (VSD_INDIRECT & vsd) {
606         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
607             xive_error(xive, "VST: %s indirect tables are not enabled",
608                        info->name);
609             return;
610         }
611 
612         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
613             xive_error(xive, "VST: invalid %s page shift %d", info->name,
614                        page_shift);
615             return;
616         }
617     }
618 
619     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
620         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
621                    " page shift %d", info->name, vst_addr, page_shift);
622         return;
623     }
624 
625     /* Record the table configuration (in SRAM on HW) */
626     xive->vsds[type][blk] = vsd;
627 
628     /* Now tune the models with the configuration provided by the FW */
629 
630     switch (type) {
631     case VST_TSEL_IVT:  /* Nothing to be done */
632         break;
633 
634     case VST_TSEL_EQDT:
635         /*
636          * Backing store pages for the END. Compute the number of ENDs
637          * provisioned by FW and resize the END ESB window accordingly.
638          */
639         memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
640                                (1ull << (end_xsrc->esb_shift + 1)));
641         memory_region_add_subregion(&xive->end_edt_mmio, 0,
642                                     &end_xsrc->esb_mmio);
643         break;
644 
645     case VST_TSEL_SBE:
646         /*
647          * Backing store pages for the source PQ bits. The model does
648          * not use these PQ bits backed in RAM because the XiveSource
649          * model has its own. Compute the number of IRQs provisioned
650          * by FW and resize the IPI ESB window accordingly.
651          */
652         memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
653                                (1ull << xsrc->esb_shift));
654         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
655         break;
656 
657     case VST_TSEL_VPDT: /* Not modeled */
658     case VST_TSEL_IRQ:  /* Not modeled */
659         /*
660          * These tables contains the backing store pages for the
661          * interrupt fifos of the VC sub-engine in case of overflow.
662          */
663         break;
664 
665     default:
666         g_assert_not_reached();
667     }
668 }
669 
670 /*
671  * Both PC and VC sub-engines are configured as each use the Virtual
672  * Structure Tables : SBE, EAS, END and NVT.
673  */
674 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
675 {
676     uint8_t mode = GETFIELD(VSD_MODE, vsd);
677     uint8_t type = GETFIELD(VST_TABLE_SELECT,
678                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
679     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
680                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
681     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
682 
683     if (type > VST_TSEL_IRQ) {
684         xive_error(xive, "VST: invalid table type %d", type);
685         return;
686     }
687 
688     if (blk >= vst_infos[type].max_blocks) {
689         xive_error(xive, "VST: invalid block id %d for"
690                       " %s table", blk, vst_infos[type].name);
691         return;
692     }
693 
694     /*
695      * Only take the VC sub-engine configuration into account because
696      * the XiveRouter model combines both VC and PC sub-engines
697      */
698     if (pc_engine) {
699         return;
700     }
701 
702     if (!vst_addr) {
703         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
704         return;
705     }
706 
707     switch (mode) {
708     case VSD_MODE_FORWARD:
709         xive->vsds[type][blk] = vsd;
710         break;
711 
712     case VSD_MODE_EXCLUSIVE:
713         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
714         break;
715 
716     default:
717         xive_error(xive, "VST: unsupported table mode %d", mode);
718         return;
719     }
720 }
721 
722 /*
723  * Interrupt controller MMIO region. The layout is compatible between
724  * 4K and 64K pages :
725  *
726  * Page 0           sub-engine BARs
727  *  0x000 - 0x3FF   IC registers
728  *  0x400 - 0x7FF   PC registers
729  *  0x800 - 0xFFF   VC registers
730  *
731  * Page 1           Notify page (writes only)
732  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
733  *  0x800 - 0xFFF   forwards and syncs
734  *
735  * Page 2           LSI Trigger page (writes only) (not modeled)
736  * Page 3           LSI SB EOI page (reads only) (not modeled)
737  *
738  * Page 4-7         indirect TIMA
739  */
740 
741 /*
742  * IC - registers MMIO
743  */
744 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
745                                   uint64_t val, unsigned size)
746 {
747     PnvXive *xive = PNV_XIVE(opaque);
748     MemoryRegion *sysmem = get_system_memory();
749     uint32_t reg = offset >> 3;
750     bool is_chip0 = xive->chip->chip_id == 0;
751 
752     switch (offset) {
753 
754     /*
755      * XIVE CQ (PowerBus bridge) settings
756      */
757     case CQ_MSGSND:     /* msgsnd for doorbells */
758     case CQ_FIRMASK_OR: /* FIR error reporting */
759         break;
760     case CQ_PBI_CTL:
761         if (val & CQ_PBI_PC_64K) {
762             xive->pc_shift = 16;
763         }
764         if (val & CQ_PBI_VC_64K) {
765             xive->vc_shift = 16;
766         }
767         break;
768     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
769         /*
770          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
771          */
772         break;
773 
774     /*
775      * XIVE Virtualization Controller settings
776      */
777     case VC_GLOBAL_CONFIG:
778         break;
779 
780     /*
781      * XIVE Presenter Controller settings
782      */
783     case PC_GLOBAL_CONFIG:
784         /*
785          * PC_GCONF_CHIPID_OVR
786          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
787          */
788         break;
789     case PC_TCTXT_CFG:
790         /*
791          * TODO: block group support
792          *
793          * PC_TCTXT_CFG_BLKGRP_EN
794          * PC_TCTXT_CFG_HARD_CHIPID_BLK :
795          *   Moves the chipid into block field for hardwired CAM compares.
796          *   Block offset value is adjusted to 0b0..01 & ThrdId
797          *
798          *   Will require changes in xive_presenter_tctx_match(). I am
799          *   not sure how to handle that yet.
800          */
801 
802         /* Overrides hardwired chip ID with the chip ID field */
803         if (val & PC_TCTXT_CHIPID_OVERRIDE) {
804             xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
805         }
806         break;
807     case PC_TCTXT_TRACK:
808         /*
809          * PC_TCTXT_TRACK_EN:
810          *   enable block tracking and exchange of block ownership
811          *   information between Interrupt controllers
812          */
813         break;
814 
815     /*
816      * Misc settings
817      */
818     case VC_SBC_CONFIG: /* Store EOI configuration */
819         /*
820          * Configure store EOI if required by firwmare (skiboot has removed
821          * support recently though)
822          */
823         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
824             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
825         }
826         break;
827 
828     case VC_EQC_CONFIG: /* TODO: silent escalation */
829     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
830         break;
831 
832     /*
833      * XIVE BAR settings (XSCOM only)
834      */
835     case CQ_RST_CTL:
836         /* bit4: resets all BAR registers */
837         break;
838 
839     case CQ_IC_BAR: /* IC BAR. 8 pages */
840         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
841         if (!(val & CQ_IC_BAR_VALID)) {
842             xive->ic_base = 0;
843             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
844                 memory_region_del_subregion(&xive->ic_mmio,
845                                             &xive->ic_reg_mmio);
846                 memory_region_del_subregion(&xive->ic_mmio,
847                                             &xive->ic_notify_mmio);
848                 memory_region_del_subregion(&xive->ic_mmio,
849                                             &xive->ic_lsi_mmio);
850                 memory_region_del_subregion(&xive->ic_mmio,
851                                             &xive->tm_indirect_mmio);
852 
853                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
854             }
855         } else {
856             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
857             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
858                 memory_region_add_subregion(sysmem, xive->ic_base,
859                                             &xive->ic_mmio);
860 
861                 memory_region_add_subregion(&xive->ic_mmio,  0,
862                                             &xive->ic_reg_mmio);
863                 memory_region_add_subregion(&xive->ic_mmio,
864                                             1ul << xive->ic_shift,
865                                             &xive->ic_notify_mmio);
866                 memory_region_add_subregion(&xive->ic_mmio,
867                                             2ul << xive->ic_shift,
868                                             &xive->ic_lsi_mmio);
869                 memory_region_add_subregion(&xive->ic_mmio,
870                                             4ull << xive->ic_shift,
871                                             &xive->tm_indirect_mmio);
872             }
873         }
874         break;
875 
876     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
877     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
878         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
879         if (!(val & CQ_TM_BAR_VALID)) {
880             xive->tm_base = 0;
881             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
882                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
883             }
884         } else {
885             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
886             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
887                 memory_region_add_subregion(sysmem, xive->tm_base,
888                                             &xive->tm_mmio);
889             }
890         }
891         break;
892 
893     case CQ_PC_BARM:
894         xive->regs[reg] = val;
895         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
896         break;
897     case CQ_PC_BAR: /* From 32M to 512G */
898         if (!(val & CQ_PC_BAR_VALID)) {
899             xive->pc_base = 0;
900             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
901                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
902             }
903         } else {
904             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
905             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
906                 memory_region_add_subregion(sysmem, xive->pc_base,
907                                             &xive->pc_mmio);
908             }
909         }
910         break;
911 
912     case CQ_VC_BARM:
913         xive->regs[reg] = val;
914         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
915         break;
916     case CQ_VC_BAR: /* From 64M to 4TB */
917         if (!(val & CQ_VC_BAR_VALID)) {
918             xive->vc_base = 0;
919             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
920                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
921             }
922         } else {
923             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
924             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
925                 memory_region_add_subregion(sysmem, xive->vc_base,
926                                             &xive->vc_mmio);
927             }
928         }
929         break;
930 
931     /*
932      * XIVE Table settings.
933      */
934     case CQ_TAR: /* Table Address */
935         break;
936     case CQ_TDR: /* Table Data */
937         pnv_xive_table_set_data(xive, val);
938         break;
939 
940     /*
941      * XIVE VC & PC Virtual Structure Table settings
942      */
943     case VC_VSD_TABLE_ADDR:
944     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
945         break;
946     case VC_VSD_TABLE_DATA: /* Virtual table setting */
947     case PC_VSD_TABLE_DATA:
948         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
949         break;
950 
951     /*
952      * Interrupt fifo overflow in memory backing store (Not modeled)
953      */
954     case VC_IRQ_CONFIG_IPI:
955     case VC_IRQ_CONFIG_HW:
956     case VC_IRQ_CONFIG_CASCADE1:
957     case VC_IRQ_CONFIG_CASCADE2:
958     case VC_IRQ_CONFIG_REDIST:
959     case VC_IRQ_CONFIG_IPI_CASC:
960         break;
961 
962     /*
963      * XIVE hardware thread enablement
964      */
965     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
966     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
967         break;
968 
969     case PC_THREAD_EN_REG0_SET:
970         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
971         break;
972     case PC_THREAD_EN_REG1_SET:
973         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
974         break;
975     case PC_THREAD_EN_REG0_CLR:
976         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
977         break;
978     case PC_THREAD_EN_REG1_CLR:
979         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
980         break;
981 
982     /*
983      * Indirect TIMA access set up. Defines the PIR of the HW thread
984      * to use.
985      */
986     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
987         break;
988 
989     /*
990      * XIVE PC & VC cache updates for EAS, NVT and END
991      */
992     case VC_IVC_SCRUB_MASK:
993     case VC_IVC_SCRUB_TRIG:
994         break;
995 
996     case VC_EQC_CWATCH_SPEC:
997         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
998         break;
999     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1000         break;
1001     case VC_EQC_CWATCH_DAT0:
1002         /* writing to DATA0 triggers the cache write */
1003         xive->regs[reg] = val;
1004         pnv_xive_end_update(xive);
1005         break;
1006     case VC_EQC_SCRUB_MASK:
1007     case VC_EQC_SCRUB_TRIG:
1008         /*
1009          * The scrubbing registers flush the cache in RAM and can also
1010          * invalidate.
1011          */
1012         break;
1013 
1014     case PC_VPC_CWATCH_SPEC:
1015         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1016         break;
1017     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1018         break;
1019     case PC_VPC_CWATCH_DAT0:
1020         /* writing to DATA0 triggers the cache write */
1021         xive->regs[reg] = val;
1022         pnv_xive_nvt_update(xive);
1023         break;
1024     case PC_VPC_SCRUB_MASK:
1025     case PC_VPC_SCRUB_TRIG:
1026         /*
1027          * The scrubbing registers flush the cache in RAM and can also
1028          * invalidate.
1029          */
1030         break;
1031 
1032 
1033     /*
1034      * XIVE PC & VC cache invalidation
1035      */
1036     case PC_AT_KILL:
1037         break;
1038     case VC_AT_MACRO_KILL:
1039         break;
1040     case PC_AT_KILL_MASK:
1041     case VC_AT_MACRO_KILL_MASK:
1042         break;
1043 
1044     default:
1045         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1046         return;
1047     }
1048 
1049     xive->regs[reg] = val;
1050 }
1051 
1052 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1053 {
1054     PnvXive *xive = PNV_XIVE(opaque);
1055     uint64_t val = 0;
1056     uint32_t reg = offset >> 3;
1057 
1058     switch (offset) {
1059     case CQ_CFG_PB_GEN:
1060     case CQ_IC_BAR:
1061     case CQ_TM1_BAR:
1062     case CQ_TM2_BAR:
1063     case CQ_PC_BAR:
1064     case CQ_PC_BARM:
1065     case CQ_VC_BAR:
1066     case CQ_VC_BARM:
1067     case CQ_TAR:
1068     case CQ_TDR:
1069     case CQ_PBI_CTL:
1070 
1071     case PC_TCTXT_CFG:
1072     case PC_TCTXT_TRACK:
1073     case PC_TCTXT_INDIR0:
1074     case PC_TCTXT_INDIR1:
1075     case PC_TCTXT_INDIR2:
1076     case PC_TCTXT_INDIR3:
1077     case PC_GLOBAL_CONFIG:
1078 
1079     case PC_VPC_SCRUB_MASK:
1080 
1081     case VC_GLOBAL_CONFIG:
1082     case VC_AIB_TX_ORDER_TAG2:
1083 
1084     case VC_IRQ_CONFIG_IPI:
1085     case VC_IRQ_CONFIG_HW:
1086     case VC_IRQ_CONFIG_CASCADE1:
1087     case VC_IRQ_CONFIG_CASCADE2:
1088     case VC_IRQ_CONFIG_REDIST:
1089     case VC_IRQ_CONFIG_IPI_CASC:
1090 
1091     case VC_EQC_SCRUB_MASK:
1092     case VC_IVC_SCRUB_MASK:
1093     case VC_SBC_CONFIG:
1094     case VC_AT_MACRO_KILL_MASK:
1095     case VC_VSD_TABLE_ADDR:
1096     case PC_VSD_TABLE_ADDR:
1097     case VC_VSD_TABLE_DATA:
1098     case PC_VSD_TABLE_DATA:
1099     case PC_THREAD_EN_REG0:
1100     case PC_THREAD_EN_REG1:
1101         val = xive->regs[reg];
1102         break;
1103 
1104     /*
1105      * XIVE hardware thread enablement
1106      */
1107     case PC_THREAD_EN_REG0_SET:
1108     case PC_THREAD_EN_REG0_CLR:
1109         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1110         break;
1111     case PC_THREAD_EN_REG1_SET:
1112     case PC_THREAD_EN_REG1_CLR:
1113         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1114         break;
1115 
1116     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1117         val = 0xffffff0000000000;
1118         break;
1119 
1120     /*
1121      * XIVE PC & VC cache updates for EAS, NVT and END
1122      */
1123     case VC_EQC_CWATCH_SPEC:
1124         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1125         val = xive->regs[reg];
1126         break;
1127     case VC_EQC_CWATCH_DAT0:
1128         /*
1129          * Load DATA registers from cache with data requested by the
1130          * SPEC register
1131          */
1132         pnv_xive_end_cache_load(xive);
1133         val = xive->regs[reg];
1134         break;
1135     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1136         val = xive->regs[reg];
1137         break;
1138 
1139     case PC_VPC_CWATCH_SPEC:
1140         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1141         val = xive->regs[reg];
1142         break;
1143     case PC_VPC_CWATCH_DAT0:
1144         /*
1145          * Load DATA registers from cache with data requested by the
1146          * SPEC register
1147          */
1148         pnv_xive_nvt_cache_load(xive);
1149         val = xive->regs[reg];
1150         break;
1151     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1152         val = xive->regs[reg];
1153         break;
1154 
1155     case PC_VPC_SCRUB_TRIG:
1156     case VC_IVC_SCRUB_TRIG:
1157     case VC_EQC_SCRUB_TRIG:
1158         xive->regs[reg] &= ~VC_SCRUB_VALID;
1159         val = xive->regs[reg];
1160         break;
1161 
1162     /*
1163      * XIVE PC & VC cache invalidation
1164      */
1165     case PC_AT_KILL:
1166         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1167         val = xive->regs[reg];
1168         break;
1169     case VC_AT_MACRO_KILL:
1170         xive->regs[reg] &= ~VC_KILL_VALID;
1171         val = xive->regs[reg];
1172         break;
1173 
1174     /*
1175      * XIVE synchronisation
1176      */
1177     case VC_EQC_CONFIG:
1178         val = VC_EQC_SYNC_MASK;
1179         break;
1180 
1181     default:
1182         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1183     }
1184 
1185     return val;
1186 }
1187 
1188 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1189     .read = pnv_xive_ic_reg_read,
1190     .write = pnv_xive_ic_reg_write,
1191     .endianness = DEVICE_BIG_ENDIAN,
1192     .valid = {
1193         .min_access_size = 8,
1194         .max_access_size = 8,
1195     },
1196     .impl = {
1197         .min_access_size = 8,
1198         .max_access_size = 8,
1199     },
1200 };
1201 
1202 /*
1203  * IC - Notify MMIO port page (write only)
1204  */
1205 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1206 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1207 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1208 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1209 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1210 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1211 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1212 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1213 
1214 /* VC synchronisation */
1215 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1216 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1217 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1218 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1219 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1220 
1221 /* PC synchronisation */
1222 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1223 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1224 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1225 
1226 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1227 {
1228     uint8_t blk;
1229     uint32_t idx;
1230 
1231     if (val & XIVE_TRIGGER_END) {
1232         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1233                    addr, val);
1234         return;
1235     }
1236 
1237     /*
1238      * Forward the source event notification directly to the Router.
1239      * The source interrupt number should already be correctly encoded
1240      * with the chip block id by the sending device (PHB, PSI).
1241      */
1242     blk = XIVE_EAS_BLOCK(val);
1243     idx = XIVE_EAS_INDEX(val);
1244 
1245     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1246 }
1247 
1248 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1249                                      unsigned size)
1250 {
1251     PnvXive *xive = PNV_XIVE(opaque);
1252 
1253     /* VC: HW triggers */
1254     switch (addr) {
1255     case 0x000 ... 0x7FF:
1256         pnv_xive_ic_hw_trigger(opaque, addr, val);
1257         break;
1258 
1259     /* VC: Forwarded IRQs */
1260     case PNV_XIVE_FORWARD_IPI:
1261     case PNV_XIVE_FORWARD_HW:
1262     case PNV_XIVE_FORWARD_OS_ESC:
1263     case PNV_XIVE_FORWARD_HW_ESC:
1264     case PNV_XIVE_FORWARD_REDIS:
1265         /* TODO: forwarded IRQs. Should be like HW triggers */
1266         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1267                    addr, val);
1268         break;
1269 
1270     /* VC syncs */
1271     case PNV_XIVE_SYNC_IPI:
1272     case PNV_XIVE_SYNC_HW:
1273     case PNV_XIVE_SYNC_OS_ESC:
1274     case PNV_XIVE_SYNC_HW_ESC:
1275     case PNV_XIVE_SYNC_REDIS:
1276         break;
1277 
1278     /* PC syncs */
1279     case PNV_XIVE_SYNC_PULL:
1280     case PNV_XIVE_SYNC_PUSH:
1281     case PNV_XIVE_SYNC_VPC:
1282         break;
1283 
1284     default:
1285         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1286     }
1287 }
1288 
1289 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1290                                         unsigned size)
1291 {
1292     PnvXive *xive = PNV_XIVE(opaque);
1293 
1294     /* loads are invalid */
1295     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1296     return -1;
1297 }
1298 
1299 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1300     .read = pnv_xive_ic_notify_read,
1301     .write = pnv_xive_ic_notify_write,
1302     .endianness = DEVICE_BIG_ENDIAN,
1303     .valid = {
1304         .min_access_size = 8,
1305         .max_access_size = 8,
1306     },
1307     .impl = {
1308         .min_access_size = 8,
1309         .max_access_size = 8,
1310     },
1311 };
1312 
1313 /*
1314  * IC - LSI MMIO handlers (not modeled)
1315  */
1316 
1317 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1318                               uint64_t val, unsigned size)
1319 {
1320     PnvXive *xive = PNV_XIVE(opaque);
1321 
1322     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1323 }
1324 
1325 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1326 {
1327     PnvXive *xive = PNV_XIVE(opaque);
1328 
1329     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1330     return -1;
1331 }
1332 
1333 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1334     .read = pnv_xive_ic_lsi_read,
1335     .write = pnv_xive_ic_lsi_write,
1336     .endianness = DEVICE_BIG_ENDIAN,
1337     .valid = {
1338         .min_access_size = 8,
1339         .max_access_size = 8,
1340     },
1341     .impl = {
1342         .min_access_size = 8,
1343         .max_access_size = 8,
1344     },
1345 };
1346 
1347 /*
1348  * IC - Indirect TIMA MMIO handlers
1349  */
1350 
1351 /*
1352  * When the TIMA is accessed from the indirect page, the thread id
1353  * (PIR) has to be configured in the IC registers before. This is used
1354  * for resets and for debug purpose also.
1355  */
1356 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1357 {
1358     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1359     PowerPCCPU *cpu = NULL;
1360     int pir;
1361 
1362     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1363         xive_error(xive, "IC: no indirect TIMA access in progress");
1364         return NULL;
1365     }
1366 
1367     pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1368     cpu = ppc_get_vcpu_by_pir(pir);
1369     if (!cpu) {
1370         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1371         return NULL;
1372     }
1373 
1374     /* Check that HW thread is XIVE enabled */
1375     if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1376         xive_error(xive, "IC: CPU %x is not enabled", pir);
1377     }
1378 
1379     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1380 }
1381 
1382 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1383                                    uint64_t value, unsigned size)
1384 {
1385     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1386 
1387     xive_tctx_tm_write(tctx, offset, value, size);
1388 }
1389 
1390 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1391                                       unsigned size)
1392 {
1393     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1394 
1395     return xive_tctx_tm_read(tctx, offset, size);
1396 }
1397 
1398 static const MemoryRegionOps xive_tm_indirect_ops = {
1399     .read = xive_tm_indirect_read,
1400     .write = xive_tm_indirect_write,
1401     .endianness = DEVICE_BIG_ENDIAN,
1402     .valid = {
1403         .min_access_size = 1,
1404         .max_access_size = 8,
1405     },
1406     .impl = {
1407         .min_access_size = 1,
1408         .max_access_size = 8,
1409     },
1410 };
1411 
1412 /*
1413  * Interrupt controller XSCOM region.
1414  */
1415 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1416 {
1417     switch (addr >> 3) {
1418     case X_VC_EQC_CONFIG:
1419         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1420         return VC_EQC_SYNC_MASK;
1421     default:
1422         return pnv_xive_ic_reg_read(opaque, addr, size);
1423     }
1424 }
1425 
1426 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1427                                 uint64_t val, unsigned size)
1428 {
1429     pnv_xive_ic_reg_write(opaque, addr, val, size);
1430 }
1431 
1432 static const MemoryRegionOps pnv_xive_xscom_ops = {
1433     .read = pnv_xive_xscom_read,
1434     .write = pnv_xive_xscom_write,
1435     .endianness = DEVICE_BIG_ENDIAN,
1436     .valid = {
1437         .min_access_size = 8,
1438         .max_access_size = 8,
1439     },
1440     .impl = {
1441         .min_access_size = 8,
1442         .max_access_size = 8,
1443     }
1444 };
1445 
1446 /*
1447  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1448  */
1449 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1450                                  unsigned size)
1451 {
1452     PnvXive *xive = PNV_XIVE(opaque);
1453     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1454     uint64_t edt_type = 0;
1455     uint64_t edt_offset;
1456     MemTxResult result;
1457     AddressSpace *edt_as = NULL;
1458     uint64_t ret = -1;
1459 
1460     if (edt_index < XIVE_TABLE_EDT_MAX) {
1461         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1462     }
1463 
1464     switch (edt_type) {
1465     case CQ_TDR_EDT_IPI:
1466         edt_as = &xive->ipi_as;
1467         break;
1468     case CQ_TDR_EDT_EQ:
1469         edt_as = &xive->end_as;
1470         break;
1471     default:
1472         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1473         return -1;
1474     }
1475 
1476     /* Remap the offset for the targeted address space */
1477     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1478 
1479     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1480                             &result);
1481 
1482     if (result != MEMTX_OK) {
1483         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1484                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1485                    offset, edt_offset);
1486         return -1;
1487     }
1488 
1489     return ret;
1490 }
1491 
1492 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1493                               uint64_t val, unsigned size)
1494 {
1495     PnvXive *xive = PNV_XIVE(opaque);
1496     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1497     uint64_t edt_type = 0;
1498     uint64_t edt_offset;
1499     MemTxResult result;
1500     AddressSpace *edt_as = NULL;
1501 
1502     if (edt_index < XIVE_TABLE_EDT_MAX) {
1503         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1504     }
1505 
1506     switch (edt_type) {
1507     case CQ_TDR_EDT_IPI:
1508         edt_as = &xive->ipi_as;
1509         break;
1510     case CQ_TDR_EDT_EQ:
1511         edt_as = &xive->end_as;
1512         break;
1513     default:
1514         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1515                    offset);
1516         return;
1517     }
1518 
1519     /* Remap the offset for the targeted address space */
1520     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1521 
1522     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1523     if (result != MEMTX_OK) {
1524         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1525     }
1526 }
1527 
1528 static const MemoryRegionOps pnv_xive_vc_ops = {
1529     .read = pnv_xive_vc_read,
1530     .write = pnv_xive_vc_write,
1531     .endianness = DEVICE_BIG_ENDIAN,
1532     .valid = {
1533         .min_access_size = 8,
1534         .max_access_size = 8,
1535     },
1536     .impl = {
1537         .min_access_size = 8,
1538         .max_access_size = 8,
1539     },
1540 };
1541 
1542 /*
1543  * Presenter Controller MMIO region. The Virtualization Controller
1544  * updates the IPB in the NVT table when required. Not modeled.
1545  */
1546 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1547                                  unsigned size)
1548 {
1549     PnvXive *xive = PNV_XIVE(opaque);
1550 
1551     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1552     return -1;
1553 }
1554 
1555 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1556                               uint64_t value, unsigned size)
1557 {
1558     PnvXive *xive = PNV_XIVE(opaque);
1559 
1560     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1561 }
1562 
1563 static const MemoryRegionOps pnv_xive_pc_ops = {
1564     .read = pnv_xive_pc_read,
1565     .write = pnv_xive_pc_write,
1566     .endianness = DEVICE_BIG_ENDIAN,
1567     .valid = {
1568         .min_access_size = 8,
1569         .max_access_size = 8,
1570     },
1571     .impl = {
1572         .min_access_size = 8,
1573         .max_access_size = 8,
1574     },
1575 };
1576 
1577 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1578 {
1579     XiveRouter *xrtr = XIVE_ROUTER(xive);
1580     uint8_t blk = xive->chip->chip_id;
1581     uint32_t srcno0 = XIVE_EAS(blk, 0);
1582     uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1583     uint32_t nr_ends = pnv_xive_nr_ends(xive);
1584     XiveEAS eas;
1585     XiveEND end;
1586     int i;
1587 
1588     monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1589                    srcno0 + nr_ipis - 1);
1590     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1591 
1592     monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1593                    srcno0 + nr_ipis - 1);
1594     for (i = 0; i < nr_ipis; i++) {
1595         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1596             break;
1597         }
1598         if (!xive_eas_is_masked(&eas)) {
1599             xive_eas_pic_print_info(&eas, i, mon);
1600         }
1601     }
1602 
1603     monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1604     for (i = 0; i < nr_ends; i++) {
1605         if (xive_router_get_end(xrtr, blk, i, &end)) {
1606             break;
1607         }
1608         xive_end_pic_print_info(&end, i, mon);
1609     }
1610 
1611     monitor_printf(mon, "XIVE[%x] END Escalation %08x .. %08x\n", blk, 0,
1612                    nr_ends - 1);
1613     for (i = 0; i < nr_ends; i++) {
1614         if (xive_router_get_end(xrtr, blk, i, &end)) {
1615             break;
1616         }
1617         xive_end_eas_pic_print_info(&end, i, mon);
1618     }
1619 }
1620 
1621 static void pnv_xive_reset(void *dev)
1622 {
1623     PnvXive *xive = PNV_XIVE(dev);
1624     XiveSource *xsrc = &xive->ipi_source;
1625     XiveENDSource *end_xsrc = &xive->end_source;
1626 
1627     /*
1628      * Use the PnvChip id to identify the XIVE interrupt controller.
1629      * It can be overriden by configuration at runtime.
1630      */
1631     xive->tctx_chipid = xive->chip->chip_id;
1632 
1633     /* Default page size (Should be changed at runtime to 64k) */
1634     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1635 
1636     /* Clear subregions */
1637     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1638         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1639     }
1640 
1641     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1642         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1643     }
1644 
1645     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1646         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1647     }
1648 
1649     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1650         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1651     }
1652 }
1653 
1654 static void pnv_xive_init(Object *obj)
1655 {
1656     PnvXive *xive = PNV_XIVE(obj);
1657 
1658     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1659                             sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1660                             &error_abort, NULL);
1661     object_initialize_child(obj, "end_source", &xive->end_source,
1662                             sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1663                             &error_abort, NULL);
1664 }
1665 
1666 /*
1667  *  Maximum number of IRQs and ENDs supported by HW
1668  */
1669 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1670 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1671 
1672 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1673 {
1674     PnvXive *xive = PNV_XIVE(dev);
1675     XiveSource *xsrc = &xive->ipi_source;
1676     XiveENDSource *end_xsrc = &xive->end_source;
1677     Error *local_err = NULL;
1678     Object *obj;
1679 
1680     obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1681     if (!obj) {
1682         error_propagate(errp, local_err);
1683         error_prepend(errp, "required link 'chip' not found: ");
1684         return;
1685     }
1686 
1687     /* The PnvChip id identifies the XIVE interrupt controller. */
1688     xive->chip = PNV_CHIP(obj);
1689 
1690     /*
1691      * The XiveSource and XiveENDSource objects are realized with the
1692      * maximum allowed HW configuration. The ESB MMIO regions will be
1693      * resized dynamically when the controller is configured by the FW
1694      * to limit accesses to resources not provisioned.
1695      */
1696     object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1697                             &error_fatal);
1698     object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
1699                                    &error_fatal);
1700     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1701     if (local_err) {
1702         error_propagate(errp, local_err);
1703         return;
1704     }
1705 
1706     object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1707                             &error_fatal);
1708     object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1709                                    &error_fatal);
1710     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1711     if (local_err) {
1712         error_propagate(errp, local_err);
1713         return;
1714     }
1715 
1716     /* Default page size. Generally changed at runtime to 64k */
1717     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1718 
1719     /* XSCOM region, used for initial configuration of the BARs */
1720     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1721                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1722 
1723     /* Interrupt controller MMIO regions */
1724     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1725                        PNV9_XIVE_IC_SIZE);
1726 
1727     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1728                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1729     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1730                           &pnv_xive_ic_notify_ops,
1731                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1732 
1733     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1734     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1735                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1736 
1737     /* Thread Interrupt Management Area (Indirect) */
1738     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1739                           &xive_tm_indirect_ops,
1740                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1741     /*
1742      * Overall Virtualization Controller MMIO region containing the
1743      * IPI ESB pages and END ESB pages. The layout is defined by the
1744      * EDT "Domain table" and the accesses are dispatched using
1745      * address spaces for each.
1746      */
1747     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1748                           "xive-vc", PNV9_XIVE_VC_SIZE);
1749 
1750     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1751                        PNV9_XIVE_VC_SIZE);
1752     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1753     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1754                        PNV9_XIVE_VC_SIZE);
1755     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1756 
1757     /*
1758      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1759      * VC region. Their size is configured by the FW in the EDT table.
1760      */
1761     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1762     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1763 
1764     /* Presenter Controller MMIO region (not modeled) */
1765     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1766                           "xive-pc", PNV9_XIVE_PC_SIZE);
1767 
1768     /* Thread Interrupt Management Area (Direct) */
1769     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1770                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1771 
1772     qemu_register_reset(pnv_xive_reset, dev);
1773 }
1774 
1775 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1776                              int xscom_offset)
1777 {
1778     const char compat[] = "ibm,power9-xive-x";
1779     char *name;
1780     int offset;
1781     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1782     uint32_t reg[] = {
1783         cpu_to_be32(lpc_pcba),
1784         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1785     };
1786 
1787     name = g_strdup_printf("xive@%x", lpc_pcba);
1788     offset = fdt_add_subnode(fdt, xscom_offset, name);
1789     _FDT(offset);
1790     g_free(name);
1791 
1792     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1793     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1794                       sizeof(compat))));
1795     return 0;
1796 }
1797 
1798 static Property pnv_xive_properties[] = {
1799     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1800     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1801     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1802     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1803     DEFINE_PROP_END_OF_LIST(),
1804 };
1805 
1806 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1807 {
1808     DeviceClass *dc = DEVICE_CLASS(klass);
1809     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1810     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1811     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1812 
1813     xdc->dt_xscom = pnv_xive_dt_xscom;
1814 
1815     dc->desc = "PowerNV XIVE Interrupt Controller";
1816     dc->realize = pnv_xive_realize;
1817     dc->props = pnv_xive_properties;
1818 
1819     xrc->get_eas = pnv_xive_get_eas;
1820     xrc->get_end = pnv_xive_get_end;
1821     xrc->write_end = pnv_xive_write_end;
1822     xrc->get_nvt = pnv_xive_get_nvt;
1823     xrc->write_nvt = pnv_xive_write_nvt;
1824     xrc->get_tctx = pnv_xive_get_tctx;
1825 
1826     xnc->notify = pnv_xive_notify;
1827 };
1828 
1829 static const TypeInfo pnv_xive_info = {
1830     .name          = TYPE_PNV_XIVE,
1831     .parent        = TYPE_XIVE_ROUTER,
1832     .instance_init = pnv_xive_init,
1833     .instance_size = sizeof(PnvXive),
1834     .class_init    = pnv_xive_class_init,
1835     .interfaces    = (InterfaceInfo[]) {
1836         { TYPE_PNV_XSCOM_INTERFACE },
1837         { }
1838     }
1839 };
1840 
1841 static void pnv_xive_register_types(void)
1842 {
1843     type_register_static(&pnv_xive_info);
1844 }
1845 
1846 type_init(pnv_xive_register_types)
1847