xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision f22f56dd483b27f8c4463dbb310029dd9161bb04)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 
28 #include <libfdt.h>
29 
30 #include "pnv_xive_regs.h"
31 
32 #undef XIVE_DEBUG
33 
34 /*
35  * Virtual structures table (VST)
36  */
37 #define SBE_PER_BYTE   4
38 
39 typedef struct XiveVstInfo {
40     const char *name;
41     uint32_t    size;
42     uint32_t    max_blocks;
43 } XiveVstInfo;
44 
45 static const XiveVstInfo vst_infos[] = {
46     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
47     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
48     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 
51     /*
52      *  Interrupt fifo backing store table (not modeled) :
53      *
54      * 0 - IPI,
55      * 1 - HWD,
56      * 2 - First escalate,
57      * 3 - Second escalate,
58      * 4 - Redistribution,
59      * 5 - IPI cascaded queue ?
60      */
61     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
62 };
63 
64 #define xive_error(xive, fmt, ...)                                      \
65     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
66                   (xive)->chip->chip_id, ## __VA_ARGS__);
67 
68 /*
69  * QEMU version of the GETFIELD/SETFIELD macros
70  *
71  * TODO: It might be better to use the existing extract64() and
72  * deposit64() but this means that all the register definitions will
73  * change and become incompatible with the ones found in skiboot.
74  *
75  * Keep it as it is for now until we find a common ground.
76  */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79     return (word & mask) >> ctz64(mask);
80 }
81 
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83                                 uint64_t value)
84 {
85     return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87 
88 /*
89  * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
90  * field overrides the hardwired chip ID in the Powerbus operations
91  * and for CAM compares
92  */
93 static uint8_t pnv_xive_block_id(PnvXive *xive)
94 {
95     uint8_t blk = xive->chip->chip_id;
96     uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
97 
98     if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
99         blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
100     }
101 
102     return blk;
103 }
104 
105 /*
106  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
107  * of the chips is good enough.
108  *
109  * TODO: Block scope support
110  */
111 static PnvXive *pnv_xive_get_remote(uint8_t blk)
112 {
113     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
114     int i;
115 
116     for (i = 0; i < pnv->num_chips; i++) {
117         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
118         PnvXive *xive = &chip9->xive;
119 
120         if (pnv_xive_block_id(xive) == blk) {
121             return xive;
122         }
123     }
124     return NULL;
125 }
126 
127 /*
128  * VST accessors for SBE, EAT, ENDT, NVT
129  *
130  * Indirect VST tables are arrays of VSDs pointing to a page (of same
131  * size). Each page is a direct VST table.
132  */
133 
134 #define XIVE_VSD_SIZE 8
135 
136 /* Indirect page size can be 4K, 64K, 2M, 16M. */
137 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
138 {
139      return page_shift == 12 || page_shift == 16 ||
140          page_shift == 21 || page_shift == 24;
141 }
142 
143 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
144                                          uint64_t vsd, uint32_t idx)
145 {
146     const XiveVstInfo *info = &vst_infos[type];
147     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
148     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
149     uint32_t idx_max;
150 
151     idx_max = vst_tsize / info->size - 1;
152     if (idx > idx_max) {
153 #ifdef XIVE_DEBUG
154         xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
155                    info->name, idx, idx_max);
156 #endif
157         return 0;
158     }
159 
160     return vst_addr + idx * info->size;
161 }
162 
163 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
164                                            uint64_t vsd, uint32_t idx)
165 {
166     const XiveVstInfo *info = &vst_infos[type];
167     uint64_t vsd_addr;
168     uint32_t vsd_idx;
169     uint32_t page_shift;
170     uint32_t vst_per_page;
171 
172     /* Get the page size of the indirect table. */
173     vsd_addr = vsd & VSD_ADDRESS_MASK;
174     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
175 
176     if (!(vsd & VSD_ADDRESS_MASK)) {
177 #ifdef XIVE_DEBUG
178         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
179 #endif
180         return 0;
181     }
182 
183     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
184 
185     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
186         xive_error(xive, "VST: invalid %s page shift %d", info->name,
187                    page_shift);
188         return 0;
189     }
190 
191     vst_per_page = (1ull << page_shift) / info->size;
192     vsd_idx = idx / vst_per_page;
193 
194     /* Load the VSD we are looking for, if not already done */
195     if (vsd_idx) {
196         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
197         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
198 
199         if (!(vsd & VSD_ADDRESS_MASK)) {
200 #ifdef XIVE_DEBUG
201             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
202 #endif
203             return 0;
204         }
205 
206         /*
207          * Check that the pages have a consistent size across the
208          * indirect table
209          */
210         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
211             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
212                        info->name, idx);
213             return 0;
214         }
215     }
216 
217     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
218 }
219 
220 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
221                                   uint32_t idx)
222 {
223     const XiveVstInfo *info = &vst_infos[type];
224     uint64_t vsd;
225 
226     if (blk >= info->max_blocks) {
227         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
228                    blk, info->name, idx);
229         return 0;
230     }
231 
232     vsd = xive->vsds[type][blk];
233 
234     /* Remote VST access */
235     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
236         xive = pnv_xive_get_remote(blk);
237 
238         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
239     }
240 
241     if (VSD_INDIRECT & vsd) {
242         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
243     }
244 
245     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
246 }
247 
248 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
249                              uint32_t idx, void *data)
250 {
251     const XiveVstInfo *info = &vst_infos[type];
252     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
253 
254     if (!addr) {
255         return -1;
256     }
257 
258     cpu_physical_memory_read(addr, data, info->size);
259     return 0;
260 }
261 
262 #define XIVE_VST_WORD_ALL -1
263 
264 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
265                               uint32_t idx, void *data, uint32_t word_number)
266 {
267     const XiveVstInfo *info = &vst_infos[type];
268     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
269 
270     if (!addr) {
271         return -1;
272     }
273 
274     if (word_number == XIVE_VST_WORD_ALL) {
275         cpu_physical_memory_write(addr, data, info->size);
276     } else {
277         cpu_physical_memory_write(addr + word_number * 4,
278                                   data + word_number * 4, 4);
279     }
280     return 0;
281 }
282 
283 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
284                             XiveEND *end)
285 {
286     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
287 }
288 
289 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
290                               XiveEND *end, uint8_t word_number)
291 {
292     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
293                               word_number);
294 }
295 
296 static int pnv_xive_end_update(PnvXive *xive)
297 {
298     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302     int i;
303     uint64_t eqc_watch[4];
304 
305     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
306         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
307     }
308 
309     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
310                               XIVE_VST_WORD_ALL);
311 }
312 
313 static void pnv_xive_end_cache_load(PnvXive *xive)
314 {
315     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
316                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
317     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
318                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319     uint64_t eqc_watch[4] = { 0 };
320     int i;
321 
322     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
323         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
324     }
325 
326     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
327         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
328     }
329 }
330 
331 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
332                             XiveNVT *nvt)
333 {
334     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
335 }
336 
337 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
338                               XiveNVT *nvt, uint8_t word_number)
339 {
340     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
341                               word_number);
342 }
343 
344 static int pnv_xive_nvt_update(PnvXive *xive)
345 {
346     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350     int i;
351     uint64_t vpc_watch[8];
352 
353     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
354         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
355     }
356 
357     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
358                               XIVE_VST_WORD_ALL);
359 }
360 
361 static void pnv_xive_nvt_cache_load(PnvXive *xive)
362 {
363     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
364                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
365     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
366                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367     uint64_t vpc_watch[8] = { 0 };
368     int i;
369 
370     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
371         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
372     }
373 
374     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
375         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
376     }
377 }
378 
379 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
380                             XiveEAS *eas)
381 {
382     PnvXive *xive = PNV_XIVE(xrtr);
383 
384     /*
385      * EAT lookups should be local to the IC
386      */
387     if (pnv_xive_block_id(xive) != blk) {
388         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389         return -1;
390     }
391 
392     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394 
395 /*
396  * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
397  * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
398  * second register covers cores 16-23 (normal) or 8-11 (fused).
399  */
400 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
401 {
402     int pir = ppc_cpu_pir(cpu);
403     uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
404     uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
405     uint32_t bit = pir & 0x3f;
406 
407     return xive->regs[reg >> 3] & PPC_BIT(bit);
408 }
409 
410 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
411                               uint8_t nvt_blk, uint32_t nvt_idx,
412                               bool cam_ignore, uint8_t priority,
413                               uint32_t logic_serv, XiveTCTXMatch *match)
414 {
415     PnvXive *xive = PNV_XIVE(xptr);
416     PnvChip *chip = xive->chip;
417     int count = 0;
418     int i, j;
419 
420     for (i = 0; i < chip->nr_cores; i++) {
421         PnvCore *pc = chip->cores[i];
422         CPUCore *cc = CPU_CORE(pc);
423 
424         for (j = 0; j < cc->nr_threads; j++) {
425             PowerPCCPU *cpu = pc->threads[j];
426             XiveTCTX *tctx;
427             int ring;
428 
429             if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
430                 continue;
431             }
432 
433             tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
434 
435             /*
436              * Check the thread context CAM lines and record matches.
437              */
438             ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
439                                              nvt_idx, cam_ignore, logic_serv);
440             /*
441              * Save the context and follow on to catch duplicates, that we
442              * don't support yet.
443              */
444             if (ring != -1) {
445                 if (match->tctx) {
446                     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447                                   "thread context NVT %x/%x\n",
448                                   nvt_blk, nvt_idx);
449                     return -1;
450                 }
451 
452                 match->ring = ring;
453                 match->tctx = tctx;
454                 count++;
455             }
456         }
457     }
458 
459     return count;
460 }
461 
462 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
463 {
464     return pnv_xive_block_id(PNV_XIVE(xrtr));
465 }
466 
467 /*
468  * The TIMA MMIO space is shared among the chips and to identify the
469  * chip from which the access is being done, we extract the chip id
470  * from the PIR.
471  */
472 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
473 {
474     int pir = ppc_cpu_pir(cpu);
475     PnvChip *chip;
476     PnvXive *xive;
477 
478     chip = pnv_get_chip(PNV9_PIR2CHIP(pir));
479     assert(chip);
480     xive = &PNV9_CHIP(chip)->xive;
481 
482     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
483         xive_error(xive, "IC: CPU %x is not enabled", pir);
484     }
485     return xive;
486 }
487 
488 /*
489  * The internal sources (IPIs) of the interrupt controller have no
490  * knowledge of the XIVE chip on which they reside. Encode the block
491  * id in the source interrupt number before forwarding the source
492  * event notification to the Router. This is required on a multichip
493  * system.
494  */
495 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
496 {
497     PnvXive *xive = PNV_XIVE(xn);
498     uint8_t blk = pnv_xive_block_id(xive);
499 
500     xive_router_notify(xn, XIVE_EAS(blk, srcno));
501 }
502 
503 /*
504  * XIVE helpers
505  */
506 
507 static uint64_t pnv_xive_vc_size(PnvXive *xive)
508 {
509     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
510 }
511 
512 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
513 {
514     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
515 }
516 
517 static uint64_t pnv_xive_pc_size(PnvXive *xive)
518 {
519     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
520 }
521 
522 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
523 {
524     uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
525     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
526 
527     return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
528 }
529 
530 /*
531  * EDT Table
532  *
533  * The Virtualization Controller MMIO region containing the IPI ESB
534  * pages and END ESB pages is sub-divided into "sets" which map
535  * portions of the VC region to the different ESB pages. It is
536  * configured at runtime through the EDT "Domain Table" to let the
537  * firmware decide how to split the VC address space between IPI ESB
538  * pages and END ESB pages.
539  */
540 
541 /*
542  * Computes the overall size of the IPI or the END ESB pages
543  */
544 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
545 {
546     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
547     uint64_t size = 0;
548     int i;
549 
550     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
551         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
552 
553         if (edt_type == type) {
554             size += edt_size;
555         }
556     }
557 
558     return size;
559 }
560 
561 /*
562  * Maps an offset of the VC region in the IPI or END region using the
563  * layout defined by the EDT "Domaine Table"
564  */
565 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
566                                               uint64_t type)
567 {
568     int i;
569     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
570     uint64_t edt_offset = vc_offset;
571 
572     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
573         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
574 
575         if (edt_type != type) {
576             edt_offset -= edt_size;
577         }
578     }
579 
580     return edt_offset;
581 }
582 
583 static void pnv_xive_edt_resize(PnvXive *xive)
584 {
585     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
586     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
587 
588     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
589     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
590 
591     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
592     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
593 }
594 
595 /*
596  * XIVE Table configuration. Only EDT is supported.
597  */
598 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
599 {
600     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
601     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
602     uint64_t *xive_table;
603     uint8_t max_index;
604 
605     switch (tsel) {
606     case CQ_TAR_TSEL_BLK:
607         max_index = ARRAY_SIZE(xive->blk);
608         xive_table = xive->blk;
609         break;
610     case CQ_TAR_TSEL_MIG:
611         max_index = ARRAY_SIZE(xive->mig);
612         xive_table = xive->mig;
613         break;
614     case CQ_TAR_TSEL_EDT:
615         max_index = ARRAY_SIZE(xive->edt);
616         xive_table = xive->edt;
617         break;
618     case CQ_TAR_TSEL_VDT:
619         max_index = ARRAY_SIZE(xive->vdt);
620         xive_table = xive->vdt;
621         break;
622     default:
623         xive_error(xive, "IC: invalid table %d", (int) tsel);
624         return -1;
625     }
626 
627     if (tsel_index >= max_index) {
628         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
629         return -1;
630     }
631 
632     xive_table[tsel_index] = val;
633 
634     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
635         xive->regs[CQ_TAR >> 3] =
636             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
637     }
638 
639     /*
640      * EDT configuration is complete. Resize the MMIO windows exposing
641      * the IPI and the END ESBs in the VC region.
642      */
643     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
644         pnv_xive_edt_resize(xive);
645     }
646 
647     return 0;
648 }
649 
650 /*
651  * Virtual Structure Tables (VST) configuration
652  */
653 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
654                                        uint8_t blk, uint64_t vsd)
655 {
656     XiveENDSource *end_xsrc = &xive->end_source;
657     XiveSource *xsrc = &xive->ipi_source;
658     const XiveVstInfo *info = &vst_infos[type];
659     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
660     uint64_t vst_tsize = 1ull << page_shift;
661     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
662 
663     /* Basic checks */
664 
665     if (VSD_INDIRECT & vsd) {
666         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
667             xive_error(xive, "VST: %s indirect tables are not enabled",
668                        info->name);
669             return;
670         }
671 
672         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
673             xive_error(xive, "VST: invalid %s page shift %d", info->name,
674                        page_shift);
675             return;
676         }
677     }
678 
679     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
680         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
681                    " page shift %d", info->name, vst_addr, page_shift);
682         return;
683     }
684 
685     /* Record the table configuration (in SRAM on HW) */
686     xive->vsds[type][blk] = vsd;
687 
688     /* Now tune the models with the configuration provided by the FW */
689 
690     switch (type) {
691     case VST_TSEL_IVT:  /* Nothing to be done */
692         break;
693 
694     case VST_TSEL_EQDT:
695         /*
696          * Backing store pages for the END.
697          *
698          * If the table is direct, we can compute the number of PQ
699          * entries provisioned by FW (such as skiboot) and resize the
700          * END ESB window accordingly.
701          */
702         if (!(VSD_INDIRECT & vsd)) {
703             memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
704                                    * (1ull << xsrc->esb_shift));
705         }
706         memory_region_add_subregion(&xive->end_edt_mmio, 0,
707                                     &end_xsrc->esb_mmio);
708         break;
709 
710     case VST_TSEL_SBE:
711         /*
712          * Backing store pages for the source PQ bits. The model does
713          * not use these PQ bits backed in RAM because the XiveSource
714          * model has its own.
715          *
716          * If the table is direct, we can compute the number of PQ
717          * entries provisioned by FW (such as skiboot) and resize the
718          * ESB window accordingly.
719          */
720         if (!(VSD_INDIRECT & vsd)) {
721             memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
722                                    * (1ull << xsrc->esb_shift));
723         }
724         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
725         break;
726 
727     case VST_TSEL_VPDT: /* Not modeled */
728     case VST_TSEL_IRQ:  /* Not modeled */
729         /*
730          * These tables contains the backing store pages for the
731          * interrupt fifos of the VC sub-engine in case of overflow.
732          */
733         break;
734 
735     default:
736         g_assert_not_reached();
737     }
738 }
739 
740 /*
741  * Both PC and VC sub-engines are configured as each use the Virtual
742  * Structure Tables : SBE, EAS, END and NVT.
743  */
744 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
745 {
746     uint8_t mode = GETFIELD(VSD_MODE, vsd);
747     uint8_t type = GETFIELD(VST_TABLE_SELECT,
748                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
749     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
750                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
751     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
752 
753     if (type > VST_TSEL_IRQ) {
754         xive_error(xive, "VST: invalid table type %d", type);
755         return;
756     }
757 
758     if (blk >= vst_infos[type].max_blocks) {
759         xive_error(xive, "VST: invalid block id %d for"
760                       " %s table", blk, vst_infos[type].name);
761         return;
762     }
763 
764     /*
765      * Only take the VC sub-engine configuration into account because
766      * the XiveRouter model combines both VC and PC sub-engines
767      */
768     if (pc_engine) {
769         return;
770     }
771 
772     if (!vst_addr) {
773         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
774         return;
775     }
776 
777     switch (mode) {
778     case VSD_MODE_FORWARD:
779         xive->vsds[type][blk] = vsd;
780         break;
781 
782     case VSD_MODE_EXCLUSIVE:
783         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
784         break;
785 
786     default:
787         xive_error(xive, "VST: unsupported table mode %d", mode);
788         return;
789     }
790 }
791 
792 /*
793  * Interrupt controller MMIO region. The layout is compatible between
794  * 4K and 64K pages :
795  *
796  * Page 0           sub-engine BARs
797  *  0x000 - 0x3FF   IC registers
798  *  0x400 - 0x7FF   PC registers
799  *  0x800 - 0xFFF   VC registers
800  *
801  * Page 1           Notify page (writes only)
802  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
803  *  0x800 - 0xFFF   forwards and syncs
804  *
805  * Page 2           LSI Trigger page (writes only) (not modeled)
806  * Page 3           LSI SB EOI page (reads only) (not modeled)
807  *
808  * Page 4-7         indirect TIMA
809  */
810 
811 /*
812  * IC - registers MMIO
813  */
814 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
815                                   uint64_t val, unsigned size)
816 {
817     PnvXive *xive = PNV_XIVE(opaque);
818     MemoryRegion *sysmem = get_system_memory();
819     uint32_t reg = offset >> 3;
820     bool is_chip0 = xive->chip->chip_id == 0;
821 
822     switch (offset) {
823 
824     /*
825      * XIVE CQ (PowerBus bridge) settings
826      */
827     case CQ_MSGSND:     /* msgsnd for doorbells */
828     case CQ_FIRMASK_OR: /* FIR error reporting */
829         break;
830     case CQ_PBI_CTL:
831         if (val & CQ_PBI_PC_64K) {
832             xive->pc_shift = 16;
833         }
834         if (val & CQ_PBI_VC_64K) {
835             xive->vc_shift = 16;
836         }
837         break;
838     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
839         /*
840          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
841          */
842         break;
843 
844     /*
845      * XIVE Virtualization Controller settings
846      */
847     case VC_GLOBAL_CONFIG:
848         break;
849 
850     /*
851      * XIVE Presenter Controller settings
852      */
853     case PC_GLOBAL_CONFIG:
854         /*
855          * PC_GCONF_CHIPID_OVR
856          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
857          */
858         break;
859     case PC_TCTXT_CFG:
860         /*
861          * TODO: block group support
862          */
863         break;
864     case PC_TCTXT_TRACK:
865         /*
866          * PC_TCTXT_TRACK_EN:
867          *   enable block tracking and exchange of block ownership
868          *   information between Interrupt controllers
869          */
870         break;
871 
872     /*
873      * Misc settings
874      */
875     case VC_SBC_CONFIG: /* Store EOI configuration */
876         /*
877          * Configure store EOI if required by firwmare (skiboot has removed
878          * support recently though)
879          */
880         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
881             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
882         }
883         break;
884 
885     case VC_EQC_CONFIG: /* TODO: silent escalation */
886     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
887         break;
888 
889     /*
890      * XIVE BAR settings (XSCOM only)
891      */
892     case CQ_RST_CTL:
893         /* bit4: resets all BAR registers */
894         break;
895 
896     case CQ_IC_BAR: /* IC BAR. 8 pages */
897         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
898         if (!(val & CQ_IC_BAR_VALID)) {
899             xive->ic_base = 0;
900             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
901                 memory_region_del_subregion(&xive->ic_mmio,
902                                             &xive->ic_reg_mmio);
903                 memory_region_del_subregion(&xive->ic_mmio,
904                                             &xive->ic_notify_mmio);
905                 memory_region_del_subregion(&xive->ic_mmio,
906                                             &xive->ic_lsi_mmio);
907                 memory_region_del_subregion(&xive->ic_mmio,
908                                             &xive->tm_indirect_mmio);
909 
910                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
911             }
912         } else {
913             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
914             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
915                 memory_region_add_subregion(sysmem, xive->ic_base,
916                                             &xive->ic_mmio);
917 
918                 memory_region_add_subregion(&xive->ic_mmio,  0,
919                                             &xive->ic_reg_mmio);
920                 memory_region_add_subregion(&xive->ic_mmio,
921                                             1ul << xive->ic_shift,
922                                             &xive->ic_notify_mmio);
923                 memory_region_add_subregion(&xive->ic_mmio,
924                                             2ul << xive->ic_shift,
925                                             &xive->ic_lsi_mmio);
926                 memory_region_add_subregion(&xive->ic_mmio,
927                                             4ull << xive->ic_shift,
928                                             &xive->tm_indirect_mmio);
929             }
930         }
931         break;
932 
933     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
934     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
935         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
936         if (!(val & CQ_TM_BAR_VALID)) {
937             xive->tm_base = 0;
938             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
939                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
940             }
941         } else {
942             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
943             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
944                 memory_region_add_subregion(sysmem, xive->tm_base,
945                                             &xive->tm_mmio);
946             }
947         }
948         break;
949 
950     case CQ_PC_BARM:
951         xive->regs[reg] = val;
952         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
953         break;
954     case CQ_PC_BAR: /* From 32M to 512G */
955         if (!(val & CQ_PC_BAR_VALID)) {
956             xive->pc_base = 0;
957             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
958                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
959             }
960         } else {
961             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
962             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
963                 memory_region_add_subregion(sysmem, xive->pc_base,
964                                             &xive->pc_mmio);
965             }
966         }
967         break;
968 
969     case CQ_VC_BARM:
970         xive->regs[reg] = val;
971         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
972         break;
973     case CQ_VC_BAR: /* From 64M to 4TB */
974         if (!(val & CQ_VC_BAR_VALID)) {
975             xive->vc_base = 0;
976             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
977                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
978             }
979         } else {
980             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
981             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
982                 memory_region_add_subregion(sysmem, xive->vc_base,
983                                             &xive->vc_mmio);
984             }
985         }
986         break;
987 
988     /*
989      * XIVE Table settings.
990      */
991     case CQ_TAR: /* Table Address */
992         break;
993     case CQ_TDR: /* Table Data */
994         pnv_xive_table_set_data(xive, val);
995         break;
996 
997     /*
998      * XIVE VC & PC Virtual Structure Table settings
999      */
1000     case VC_VSD_TABLE_ADDR:
1001     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1002         break;
1003     case VC_VSD_TABLE_DATA: /* Virtual table setting */
1004     case PC_VSD_TABLE_DATA:
1005         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1006         break;
1007 
1008     /*
1009      * Interrupt fifo overflow in memory backing store (Not modeled)
1010      */
1011     case VC_IRQ_CONFIG_IPI:
1012     case VC_IRQ_CONFIG_HW:
1013     case VC_IRQ_CONFIG_CASCADE1:
1014     case VC_IRQ_CONFIG_CASCADE2:
1015     case VC_IRQ_CONFIG_REDIST:
1016     case VC_IRQ_CONFIG_IPI_CASC:
1017         break;
1018 
1019     /*
1020      * XIVE hardware thread enablement
1021      */
1022     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1023     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1024         break;
1025 
1026     case PC_THREAD_EN_REG0_SET:
1027         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1028         break;
1029     case PC_THREAD_EN_REG1_SET:
1030         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1031         break;
1032     case PC_THREAD_EN_REG0_CLR:
1033         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1034         break;
1035     case PC_THREAD_EN_REG1_CLR:
1036         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1037         break;
1038 
1039     /*
1040      * Indirect TIMA access set up. Defines the PIR of the HW thread
1041      * to use.
1042      */
1043     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1044         break;
1045 
1046     /*
1047      * XIVE PC & VC cache updates for EAS, NVT and END
1048      */
1049     case VC_IVC_SCRUB_MASK:
1050     case VC_IVC_SCRUB_TRIG:
1051         break;
1052 
1053     case VC_EQC_CWATCH_SPEC:
1054         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1055         break;
1056     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1057         break;
1058     case VC_EQC_CWATCH_DAT0:
1059         /* writing to DATA0 triggers the cache write */
1060         xive->regs[reg] = val;
1061         pnv_xive_end_update(xive);
1062         break;
1063     case VC_EQC_SCRUB_MASK:
1064     case VC_EQC_SCRUB_TRIG:
1065         /*
1066          * The scrubbing registers flush the cache in RAM and can also
1067          * invalidate.
1068          */
1069         break;
1070 
1071     case PC_VPC_CWATCH_SPEC:
1072         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1073         break;
1074     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1075         break;
1076     case PC_VPC_CWATCH_DAT0:
1077         /* writing to DATA0 triggers the cache write */
1078         xive->regs[reg] = val;
1079         pnv_xive_nvt_update(xive);
1080         break;
1081     case PC_VPC_SCRUB_MASK:
1082     case PC_VPC_SCRUB_TRIG:
1083         /*
1084          * The scrubbing registers flush the cache in RAM and can also
1085          * invalidate.
1086          */
1087         break;
1088 
1089 
1090     /*
1091      * XIVE PC & VC cache invalidation
1092      */
1093     case PC_AT_KILL:
1094         break;
1095     case VC_AT_MACRO_KILL:
1096         break;
1097     case PC_AT_KILL_MASK:
1098     case VC_AT_MACRO_KILL_MASK:
1099         break;
1100 
1101     default:
1102         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1103         return;
1104     }
1105 
1106     xive->regs[reg] = val;
1107 }
1108 
1109 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1110 {
1111     PnvXive *xive = PNV_XIVE(opaque);
1112     uint64_t val = 0;
1113     uint32_t reg = offset >> 3;
1114 
1115     switch (offset) {
1116     case CQ_CFG_PB_GEN:
1117     case CQ_IC_BAR:
1118     case CQ_TM1_BAR:
1119     case CQ_TM2_BAR:
1120     case CQ_PC_BAR:
1121     case CQ_PC_BARM:
1122     case CQ_VC_BAR:
1123     case CQ_VC_BARM:
1124     case CQ_TAR:
1125     case CQ_TDR:
1126     case CQ_PBI_CTL:
1127 
1128     case PC_TCTXT_CFG:
1129     case PC_TCTXT_TRACK:
1130     case PC_TCTXT_INDIR0:
1131     case PC_TCTXT_INDIR1:
1132     case PC_TCTXT_INDIR2:
1133     case PC_TCTXT_INDIR3:
1134     case PC_GLOBAL_CONFIG:
1135 
1136     case PC_VPC_SCRUB_MASK:
1137 
1138     case VC_GLOBAL_CONFIG:
1139     case VC_AIB_TX_ORDER_TAG2:
1140 
1141     case VC_IRQ_CONFIG_IPI:
1142     case VC_IRQ_CONFIG_HW:
1143     case VC_IRQ_CONFIG_CASCADE1:
1144     case VC_IRQ_CONFIG_CASCADE2:
1145     case VC_IRQ_CONFIG_REDIST:
1146     case VC_IRQ_CONFIG_IPI_CASC:
1147 
1148     case VC_EQC_SCRUB_MASK:
1149     case VC_IVC_SCRUB_MASK:
1150     case VC_SBC_CONFIG:
1151     case VC_AT_MACRO_KILL_MASK:
1152     case VC_VSD_TABLE_ADDR:
1153     case PC_VSD_TABLE_ADDR:
1154     case VC_VSD_TABLE_DATA:
1155     case PC_VSD_TABLE_DATA:
1156     case PC_THREAD_EN_REG0:
1157     case PC_THREAD_EN_REG1:
1158         val = xive->regs[reg];
1159         break;
1160 
1161     /*
1162      * XIVE hardware thread enablement
1163      */
1164     case PC_THREAD_EN_REG0_SET:
1165     case PC_THREAD_EN_REG0_CLR:
1166         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1167         break;
1168     case PC_THREAD_EN_REG1_SET:
1169     case PC_THREAD_EN_REG1_CLR:
1170         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1171         break;
1172 
1173     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1174         val = 0xffffff0000000000;
1175         break;
1176 
1177     /*
1178      * XIVE PC & VC cache updates for EAS, NVT and END
1179      */
1180     case VC_EQC_CWATCH_SPEC:
1181         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1182         val = xive->regs[reg];
1183         break;
1184     case VC_EQC_CWATCH_DAT0:
1185         /*
1186          * Load DATA registers from cache with data requested by the
1187          * SPEC register
1188          */
1189         pnv_xive_end_cache_load(xive);
1190         val = xive->regs[reg];
1191         break;
1192     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1193         val = xive->regs[reg];
1194         break;
1195 
1196     case PC_VPC_CWATCH_SPEC:
1197         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1198         val = xive->regs[reg];
1199         break;
1200     case PC_VPC_CWATCH_DAT0:
1201         /*
1202          * Load DATA registers from cache with data requested by the
1203          * SPEC register
1204          */
1205         pnv_xive_nvt_cache_load(xive);
1206         val = xive->regs[reg];
1207         break;
1208     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1209         val = xive->regs[reg];
1210         break;
1211 
1212     case PC_VPC_SCRUB_TRIG:
1213     case VC_IVC_SCRUB_TRIG:
1214     case VC_EQC_SCRUB_TRIG:
1215         xive->regs[reg] &= ~VC_SCRUB_VALID;
1216         val = xive->regs[reg];
1217         break;
1218 
1219     /*
1220      * XIVE PC & VC cache invalidation
1221      */
1222     case PC_AT_KILL:
1223         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1224         val = xive->regs[reg];
1225         break;
1226     case VC_AT_MACRO_KILL:
1227         xive->regs[reg] &= ~VC_KILL_VALID;
1228         val = xive->regs[reg];
1229         break;
1230 
1231     /*
1232      * XIVE synchronisation
1233      */
1234     case VC_EQC_CONFIG:
1235         val = VC_EQC_SYNC_MASK;
1236         break;
1237 
1238     default:
1239         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1240     }
1241 
1242     return val;
1243 }
1244 
1245 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1246     .read = pnv_xive_ic_reg_read,
1247     .write = pnv_xive_ic_reg_write,
1248     .endianness = DEVICE_BIG_ENDIAN,
1249     .valid = {
1250         .min_access_size = 8,
1251         .max_access_size = 8,
1252     },
1253     .impl = {
1254         .min_access_size = 8,
1255         .max_access_size = 8,
1256     },
1257 };
1258 
1259 /*
1260  * IC - Notify MMIO port page (write only)
1261  */
1262 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1263 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1264 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1265 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1266 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1267 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1268 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1269 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1270 
1271 /* VC synchronisation */
1272 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1273 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1274 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1275 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1276 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1277 
1278 /* PC synchronisation */
1279 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1280 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1281 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1282 
1283 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1284 {
1285     uint8_t blk;
1286     uint32_t idx;
1287 
1288     if (val & XIVE_TRIGGER_END) {
1289         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1290                    addr, val);
1291         return;
1292     }
1293 
1294     /*
1295      * Forward the source event notification directly to the Router.
1296      * The source interrupt number should already be correctly encoded
1297      * with the chip block id by the sending device (PHB, PSI).
1298      */
1299     blk = XIVE_EAS_BLOCK(val);
1300     idx = XIVE_EAS_INDEX(val);
1301 
1302     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1303 }
1304 
1305 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1306                                      unsigned size)
1307 {
1308     PnvXive *xive = PNV_XIVE(opaque);
1309 
1310     /* VC: HW triggers */
1311     switch (addr) {
1312     case 0x000 ... 0x7FF:
1313         pnv_xive_ic_hw_trigger(opaque, addr, val);
1314         break;
1315 
1316     /* VC: Forwarded IRQs */
1317     case PNV_XIVE_FORWARD_IPI:
1318     case PNV_XIVE_FORWARD_HW:
1319     case PNV_XIVE_FORWARD_OS_ESC:
1320     case PNV_XIVE_FORWARD_HW_ESC:
1321     case PNV_XIVE_FORWARD_REDIS:
1322         /* TODO: forwarded IRQs. Should be like HW triggers */
1323         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1324                    addr, val);
1325         break;
1326 
1327     /* VC syncs */
1328     case PNV_XIVE_SYNC_IPI:
1329     case PNV_XIVE_SYNC_HW:
1330     case PNV_XIVE_SYNC_OS_ESC:
1331     case PNV_XIVE_SYNC_HW_ESC:
1332     case PNV_XIVE_SYNC_REDIS:
1333         break;
1334 
1335     /* PC syncs */
1336     case PNV_XIVE_SYNC_PULL:
1337     case PNV_XIVE_SYNC_PUSH:
1338     case PNV_XIVE_SYNC_VPC:
1339         break;
1340 
1341     default:
1342         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1343     }
1344 }
1345 
1346 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1347                                         unsigned size)
1348 {
1349     PnvXive *xive = PNV_XIVE(opaque);
1350 
1351     /* loads are invalid */
1352     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1353     return -1;
1354 }
1355 
1356 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1357     .read = pnv_xive_ic_notify_read,
1358     .write = pnv_xive_ic_notify_write,
1359     .endianness = DEVICE_BIG_ENDIAN,
1360     .valid = {
1361         .min_access_size = 8,
1362         .max_access_size = 8,
1363     },
1364     .impl = {
1365         .min_access_size = 8,
1366         .max_access_size = 8,
1367     },
1368 };
1369 
1370 /*
1371  * IC - LSI MMIO handlers (not modeled)
1372  */
1373 
1374 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1375                               uint64_t val, unsigned size)
1376 {
1377     PnvXive *xive = PNV_XIVE(opaque);
1378 
1379     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1380 }
1381 
1382 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1383 {
1384     PnvXive *xive = PNV_XIVE(opaque);
1385 
1386     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1387     return -1;
1388 }
1389 
1390 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1391     .read = pnv_xive_ic_lsi_read,
1392     .write = pnv_xive_ic_lsi_write,
1393     .endianness = DEVICE_BIG_ENDIAN,
1394     .valid = {
1395         .min_access_size = 8,
1396         .max_access_size = 8,
1397     },
1398     .impl = {
1399         .min_access_size = 8,
1400         .max_access_size = 8,
1401     },
1402 };
1403 
1404 /*
1405  * IC - Indirect TIMA MMIO handlers
1406  */
1407 
1408 /*
1409  * When the TIMA is accessed from the indirect page, the thread id of
1410  * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1411  * use. This is used for resets and for debug purpose also.
1412  */
1413 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1414 {
1415     PnvChip *chip = xive->chip;
1416     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1417     PowerPCCPU *cpu = NULL;
1418     int pir;
1419 
1420     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1421         xive_error(xive, "IC: no indirect TIMA access in progress");
1422         return NULL;
1423     }
1424 
1425     pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1426     cpu = pnv_chip_find_cpu(chip, pir);
1427     if (!cpu) {
1428         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1429         return NULL;
1430     }
1431 
1432     /* Check that HW thread is XIVE enabled */
1433     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1434         xive_error(xive, "IC: CPU %x is not enabled", pir);
1435     }
1436 
1437     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1438 }
1439 
1440 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1441                                    uint64_t value, unsigned size)
1442 {
1443     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1444 
1445     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1446 }
1447 
1448 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1449                                       unsigned size)
1450 {
1451     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1452 
1453     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1454 }
1455 
1456 static const MemoryRegionOps xive_tm_indirect_ops = {
1457     .read = xive_tm_indirect_read,
1458     .write = xive_tm_indirect_write,
1459     .endianness = DEVICE_BIG_ENDIAN,
1460     .valid = {
1461         .min_access_size = 1,
1462         .max_access_size = 8,
1463     },
1464     .impl = {
1465         .min_access_size = 1,
1466         .max_access_size = 8,
1467     },
1468 };
1469 
1470 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1471                               uint64_t value, unsigned size)
1472 {
1473     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1474     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1475     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1476 
1477     xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1478 }
1479 
1480 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1481 {
1482     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1483     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1484     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1485 
1486     return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1487 }
1488 
1489 const MemoryRegionOps pnv_xive_tm_ops = {
1490     .read = pnv_xive_tm_read,
1491     .write = pnv_xive_tm_write,
1492     .endianness = DEVICE_BIG_ENDIAN,
1493     .valid = {
1494         .min_access_size = 1,
1495         .max_access_size = 8,
1496     },
1497     .impl = {
1498         .min_access_size = 1,
1499         .max_access_size = 8,
1500     },
1501 };
1502 
1503 /*
1504  * Interrupt controller XSCOM region.
1505  */
1506 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1507 {
1508     switch (addr >> 3) {
1509     case X_VC_EQC_CONFIG:
1510         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1511         return VC_EQC_SYNC_MASK;
1512     default:
1513         return pnv_xive_ic_reg_read(opaque, addr, size);
1514     }
1515 }
1516 
1517 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1518                                 uint64_t val, unsigned size)
1519 {
1520     pnv_xive_ic_reg_write(opaque, addr, val, size);
1521 }
1522 
1523 static const MemoryRegionOps pnv_xive_xscom_ops = {
1524     .read = pnv_xive_xscom_read,
1525     .write = pnv_xive_xscom_write,
1526     .endianness = DEVICE_BIG_ENDIAN,
1527     .valid = {
1528         .min_access_size = 8,
1529         .max_access_size = 8,
1530     },
1531     .impl = {
1532         .min_access_size = 8,
1533         .max_access_size = 8,
1534     }
1535 };
1536 
1537 /*
1538  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1539  */
1540 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1541                                  unsigned size)
1542 {
1543     PnvXive *xive = PNV_XIVE(opaque);
1544     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1545     uint64_t edt_type = 0;
1546     uint64_t edt_offset;
1547     MemTxResult result;
1548     AddressSpace *edt_as = NULL;
1549     uint64_t ret = -1;
1550 
1551     if (edt_index < XIVE_TABLE_EDT_MAX) {
1552         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1553     }
1554 
1555     switch (edt_type) {
1556     case CQ_TDR_EDT_IPI:
1557         edt_as = &xive->ipi_as;
1558         break;
1559     case CQ_TDR_EDT_EQ:
1560         edt_as = &xive->end_as;
1561         break;
1562     default:
1563         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1564         return -1;
1565     }
1566 
1567     /* Remap the offset for the targeted address space */
1568     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1569 
1570     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1571                             &result);
1572 
1573     if (result != MEMTX_OK) {
1574         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1575                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1576                    offset, edt_offset);
1577         return -1;
1578     }
1579 
1580     return ret;
1581 }
1582 
1583 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1584                               uint64_t val, unsigned size)
1585 {
1586     PnvXive *xive = PNV_XIVE(opaque);
1587     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1588     uint64_t edt_type = 0;
1589     uint64_t edt_offset;
1590     MemTxResult result;
1591     AddressSpace *edt_as = NULL;
1592 
1593     if (edt_index < XIVE_TABLE_EDT_MAX) {
1594         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1595     }
1596 
1597     switch (edt_type) {
1598     case CQ_TDR_EDT_IPI:
1599         edt_as = &xive->ipi_as;
1600         break;
1601     case CQ_TDR_EDT_EQ:
1602         edt_as = &xive->end_as;
1603         break;
1604     default:
1605         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1606                    offset);
1607         return;
1608     }
1609 
1610     /* Remap the offset for the targeted address space */
1611     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1612 
1613     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1614     if (result != MEMTX_OK) {
1615         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1616     }
1617 }
1618 
1619 static const MemoryRegionOps pnv_xive_vc_ops = {
1620     .read = pnv_xive_vc_read,
1621     .write = pnv_xive_vc_write,
1622     .endianness = DEVICE_BIG_ENDIAN,
1623     .valid = {
1624         .min_access_size = 8,
1625         .max_access_size = 8,
1626     },
1627     .impl = {
1628         .min_access_size = 8,
1629         .max_access_size = 8,
1630     },
1631 };
1632 
1633 /*
1634  * Presenter Controller MMIO region. The Virtualization Controller
1635  * updates the IPB in the NVT table when required. Not modeled.
1636  */
1637 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1638                                  unsigned size)
1639 {
1640     PnvXive *xive = PNV_XIVE(opaque);
1641 
1642     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1643     return -1;
1644 }
1645 
1646 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1647                               uint64_t value, unsigned size)
1648 {
1649     PnvXive *xive = PNV_XIVE(opaque);
1650 
1651     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1652 }
1653 
1654 static const MemoryRegionOps pnv_xive_pc_ops = {
1655     .read = pnv_xive_pc_read,
1656     .write = pnv_xive_pc_write,
1657     .endianness = DEVICE_BIG_ENDIAN,
1658     .valid = {
1659         .min_access_size = 8,
1660         .max_access_size = 8,
1661     },
1662     .impl = {
1663         .min_access_size = 8,
1664         .max_access_size = 8,
1665     },
1666 };
1667 
1668 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1669 {
1670     XiveRouter *xrtr = XIVE_ROUTER(xive);
1671     uint8_t blk = pnv_xive_block_id(xive);
1672     uint8_t chip_id = xive->chip->chip_id;
1673     uint32_t srcno0 = XIVE_EAS(blk, 0);
1674     uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1675     XiveEAS eas;
1676     XiveEND end;
1677     int i;
1678 
1679     monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1680                    srcno0, srcno0 + nr_ipis - 1);
1681     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1682 
1683     monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1684                    srcno0, srcno0 + nr_ipis - 1);
1685     for (i = 0; i < nr_ipis; i++) {
1686         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1687             break;
1688         }
1689         if (!xive_eas_is_masked(&eas)) {
1690             xive_eas_pic_print_info(&eas, i, mon);
1691         }
1692     }
1693 
1694     monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1695     i = 0;
1696     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1697         xive_end_pic_print_info(&end, i++, mon);
1698     }
1699 
1700     monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1701     i = 0;
1702     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1703         xive_end_eas_pic_print_info(&end, i++, mon);
1704     }
1705 }
1706 
1707 static void pnv_xive_reset(void *dev)
1708 {
1709     PnvXive *xive = PNV_XIVE(dev);
1710     XiveSource *xsrc = &xive->ipi_source;
1711     XiveENDSource *end_xsrc = &xive->end_source;
1712 
1713     /* Default page size (Should be changed at runtime to 64k) */
1714     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1715 
1716     /* Clear subregions */
1717     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1718         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1719     }
1720 
1721     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1722         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1723     }
1724 
1725     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1726         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1727     }
1728 
1729     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1730         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1731     }
1732 }
1733 
1734 static void pnv_xive_init(Object *obj)
1735 {
1736     PnvXive *xive = PNV_XIVE(obj);
1737 
1738     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1739                             sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1740                             &error_abort, NULL);
1741     object_initialize_child(obj, "end_source", &xive->end_source,
1742                             sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1743                             &error_abort, NULL);
1744 }
1745 
1746 /*
1747  *  Maximum number of IRQs and ENDs supported by HW
1748  */
1749 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1750 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1751 
1752 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1753 {
1754     PnvXive *xive = PNV_XIVE(dev);
1755     XiveSource *xsrc = &xive->ipi_source;
1756     XiveENDSource *end_xsrc = &xive->end_source;
1757     Error *local_err = NULL;
1758 
1759     assert(xive->chip);
1760 
1761     /*
1762      * The XiveSource and XiveENDSource objects are realized with the
1763      * maximum allowed HW configuration. The ESB MMIO regions will be
1764      * resized dynamically when the controller is configured by the FW
1765      * to limit accesses to resources not provisioned.
1766      */
1767     object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1768                             &error_fatal);
1769     object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1770                              &error_abort);
1771     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1772     if (local_err) {
1773         error_propagate(errp, local_err);
1774         return;
1775     }
1776 
1777     object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1778                             &error_fatal);
1779     object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1780                              &error_abort);
1781     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1782     if (local_err) {
1783         error_propagate(errp, local_err);
1784         return;
1785     }
1786 
1787     /* Default page size. Generally changed at runtime to 64k */
1788     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1789 
1790     /* XSCOM region, used for initial configuration of the BARs */
1791     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1792                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1793 
1794     /* Interrupt controller MMIO regions */
1795     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1796                        PNV9_XIVE_IC_SIZE);
1797 
1798     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1799                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1800     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1801                           &pnv_xive_ic_notify_ops,
1802                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1803 
1804     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1805     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1806                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1807 
1808     /* Thread Interrupt Management Area (Indirect) */
1809     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1810                           &xive_tm_indirect_ops,
1811                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1812     /*
1813      * Overall Virtualization Controller MMIO region containing the
1814      * IPI ESB pages and END ESB pages. The layout is defined by the
1815      * EDT "Domain table" and the accesses are dispatched using
1816      * address spaces for each.
1817      */
1818     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1819                           "xive-vc", PNV9_XIVE_VC_SIZE);
1820 
1821     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1822                        PNV9_XIVE_VC_SIZE);
1823     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1824     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1825                        PNV9_XIVE_VC_SIZE);
1826     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1827 
1828     /*
1829      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1830      * VC region. Their size is configured by the FW in the EDT table.
1831      */
1832     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1833     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1834 
1835     /* Presenter Controller MMIO region (not modeled) */
1836     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1837                           "xive-pc", PNV9_XIVE_PC_SIZE);
1838 
1839     /* Thread Interrupt Management Area (Direct) */
1840     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1841                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1842 
1843     qemu_register_reset(pnv_xive_reset, dev);
1844 }
1845 
1846 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1847                              int xscom_offset)
1848 {
1849     const char compat[] = "ibm,power9-xive-x";
1850     char *name;
1851     int offset;
1852     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1853     uint32_t reg[] = {
1854         cpu_to_be32(lpc_pcba),
1855         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1856     };
1857 
1858     name = g_strdup_printf("xive@%x", lpc_pcba);
1859     offset = fdt_add_subnode(fdt, xscom_offset, name);
1860     _FDT(offset);
1861     g_free(name);
1862 
1863     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1864     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1865                       sizeof(compat))));
1866     return 0;
1867 }
1868 
1869 static Property pnv_xive_properties[] = {
1870     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1871     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1872     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1873     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1874     /* The PnvChip id identifies the XIVE interrupt controller. */
1875     DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1876     DEFINE_PROP_END_OF_LIST(),
1877 };
1878 
1879 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1880 {
1881     DeviceClass *dc = DEVICE_CLASS(klass);
1882     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1883     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1884     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1885     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1886 
1887     xdc->dt_xscom = pnv_xive_dt_xscom;
1888 
1889     dc->desc = "PowerNV XIVE Interrupt Controller";
1890     dc->realize = pnv_xive_realize;
1891     dc->props = pnv_xive_properties;
1892 
1893     xrc->get_eas = pnv_xive_get_eas;
1894     xrc->get_end = pnv_xive_get_end;
1895     xrc->write_end = pnv_xive_write_end;
1896     xrc->get_nvt = pnv_xive_get_nvt;
1897     xrc->write_nvt = pnv_xive_write_nvt;
1898     xrc->get_block_id = pnv_xive_get_block_id;
1899 
1900     xnc->notify = pnv_xive_notify;
1901     xpc->match_nvt  = pnv_xive_match_nvt;
1902 };
1903 
1904 static const TypeInfo pnv_xive_info = {
1905     .name          = TYPE_PNV_XIVE,
1906     .parent        = TYPE_XIVE_ROUTER,
1907     .instance_init = pnv_xive_init,
1908     .instance_size = sizeof(PnvXive),
1909     .class_init    = pnv_xive_class_init,
1910     .interfaces    = (InterfaceInfo[]) {
1911         { TYPE_PNV_XSCOM_INTERFACE },
1912         { }
1913     }
1914 };
1915 
1916 static void pnv_xive_register_types(void)
1917 {
1918     type_register_static(&pnv_xive_info);
1919 }
1920 
1921 type_init(pnv_xive_register_types)
1922