1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "monitor/monitor.h" 19 #include "hw/ppc/fdt.h" 20 #include "hw/ppc/pnv.h" 21 #include "hw/ppc/pnv_core.h" 22 #include "hw/ppc/pnv_xscom.h" 23 #include "hw/ppc/pnv_xive.h" 24 #include "hw/ppc/xive_regs.h" 25 #include "hw/qdev-properties.h" 26 #include "hw/ppc/ppc.h" 27 28 #include <libfdt.h> 29 30 #include "pnv_xive_regs.h" 31 32 #define XIVE_DEBUG 33 34 /* 35 * Virtual structures table (VST) 36 */ 37 #define SBE_PER_BYTE 4 38 39 typedef struct XiveVstInfo { 40 const char *name; 41 uint32_t size; 42 uint32_t max_blocks; 43 } XiveVstInfo; 44 45 static const XiveVstInfo vst_infos[] = { 46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 }, 47 [VST_TSEL_SBE] = { "SBE", 1, 16 }, 48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 }, 49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 }, 50 51 /* 52 * Interrupt fifo backing store table (not modeled) : 53 * 54 * 0 - IPI, 55 * 1 - HWD, 56 * 2 - First escalate, 57 * 3 - Second escalate, 58 * 4 - Redistribution, 59 * 5 - IPI cascaded queue ? 60 */ 61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 }, 62 }; 63 64 #define xive_error(xive, fmt, ...) \ 65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ 66 (xive)->chip->chip_id, ## __VA_ARGS__); 67 68 /* 69 * QEMU version of the GETFIELD/SETFIELD macros 70 * 71 * TODO: It might be better to use the existing extract64() and 72 * deposit64() but this means that all the register definitions will 73 * change and become incompatible with the ones found in skiboot. 74 * 75 * Keep it as it is for now until we find a common ground. 76 */ 77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word) 78 { 79 return (word & mask) >> ctz64(mask); 80 } 81 82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word, 83 uint64_t value) 84 { 85 return (word & ~mask) | ((value << ctz64(mask)) & mask); 86 } 87 88 /* 89 * Remote access to controllers. HW uses MMIOs. For now, a simple scan 90 * of the chips is good enough. 91 * 92 * TODO: Block scope support 93 */ 94 static PnvXive *pnv_xive_get_ic(uint8_t blk) 95 { 96 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 97 int i; 98 99 for (i = 0; i < pnv->num_chips; i++) { 100 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 101 PnvXive *xive = &chip9->xive; 102 103 if (xive->chip->chip_id == blk) { 104 return xive; 105 } 106 } 107 return NULL; 108 } 109 110 /* 111 * VST accessors for SBE, EAT, ENDT, NVT 112 * 113 * Indirect VST tables are arrays of VSDs pointing to a page (of same 114 * size). Each page is a direct VST table. 115 */ 116 117 #define XIVE_VSD_SIZE 8 118 119 /* Indirect page size can be 4K, 64K, 2M, 16M. */ 120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift) 121 { 122 return page_shift == 12 || page_shift == 16 || 123 page_shift == 21 || page_shift == 24; 124 } 125 126 static uint64_t pnv_xive_vst_size(uint64_t vsd) 127 { 128 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); 129 130 /* 131 * Read the first descriptor to get the page size of the indirect 132 * table. 133 */ 134 if (VSD_INDIRECT & vsd) { 135 uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE; 136 uint32_t page_shift; 137 138 vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK); 139 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 140 141 if (!pnv_xive_vst_page_size_allowed(page_shift)) { 142 return 0; 143 } 144 145 return nr_pages * (1ull << page_shift); 146 } 147 148 return vst_tsize; 149 } 150 151 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type, 152 uint64_t vsd, uint32_t idx) 153 { 154 const XiveVstInfo *info = &vst_infos[type]; 155 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 156 157 return vst_addr + idx * info->size; 158 } 159 160 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type, 161 uint64_t vsd, uint32_t idx) 162 { 163 const XiveVstInfo *info = &vst_infos[type]; 164 uint64_t vsd_addr; 165 uint32_t vsd_idx; 166 uint32_t page_shift; 167 uint32_t vst_per_page; 168 169 /* Get the page size of the indirect table. */ 170 vsd_addr = vsd & VSD_ADDRESS_MASK; 171 vsd = ldq_be_dma(&address_space_memory, vsd_addr); 172 173 if (!(vsd & VSD_ADDRESS_MASK)) { 174 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 175 return 0; 176 } 177 178 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 179 180 if (!pnv_xive_vst_page_size_allowed(page_shift)) { 181 xive_error(xive, "VST: invalid %s page shift %d", info->name, 182 page_shift); 183 return 0; 184 } 185 186 vst_per_page = (1ull << page_shift) / info->size; 187 vsd_idx = idx / vst_per_page; 188 189 /* Load the VSD we are looking for, if not already done */ 190 if (vsd_idx) { 191 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; 192 vsd = ldq_be_dma(&address_space_memory, vsd_addr); 193 194 if (!(vsd & VSD_ADDRESS_MASK)) { 195 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); 196 return 0; 197 } 198 199 /* 200 * Check that the pages have a consistent size across the 201 * indirect table 202 */ 203 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { 204 xive_error(xive, "VST: %s entry %x indirect page size differ !?", 205 info->name, idx); 206 return 0; 207 } 208 } 209 210 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); 211 } 212 213 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk, 214 uint32_t idx) 215 { 216 const XiveVstInfo *info = &vst_infos[type]; 217 uint64_t vsd; 218 uint32_t idx_max; 219 220 if (blk >= info->max_blocks) { 221 xive_error(xive, "VST: invalid block id %d for VST %s %d !?", 222 blk, info->name, idx); 223 return 0; 224 } 225 226 vsd = xive->vsds[type][blk]; 227 228 /* Remote VST access */ 229 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { 230 xive = pnv_xive_get_ic(blk); 231 232 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0; 233 } 234 235 idx_max = pnv_xive_vst_size(vsd) / info->size - 1; 236 if (idx > idx_max) { 237 #ifdef XIVE_DEBUG 238 xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?", 239 info->name, blk, idx, idx_max); 240 #endif 241 return 0; 242 } 243 244 if (VSD_INDIRECT & vsd) { 245 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx); 246 } 247 248 return pnv_xive_vst_addr_direct(xive, type, vsd, idx); 249 } 250 251 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk, 252 uint32_t idx, void *data) 253 { 254 const XiveVstInfo *info = &vst_infos[type]; 255 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); 256 257 if (!addr) { 258 return -1; 259 } 260 261 cpu_physical_memory_read(addr, data, info->size); 262 return 0; 263 } 264 265 #define XIVE_VST_WORD_ALL -1 266 267 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk, 268 uint32_t idx, void *data, uint32_t word_number) 269 { 270 const XiveVstInfo *info = &vst_infos[type]; 271 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); 272 273 if (!addr) { 274 return -1; 275 } 276 277 if (word_number == XIVE_VST_WORD_ALL) { 278 cpu_physical_memory_write(addr, data, info->size); 279 } else { 280 cpu_physical_memory_write(addr + word_number * 4, 281 data + word_number * 4, 4); 282 } 283 return 0; 284 } 285 286 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, 287 XiveEND *end) 288 { 289 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end); 290 } 291 292 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, 293 XiveEND *end, uint8_t word_number) 294 { 295 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end, 296 word_number); 297 } 298 299 static int pnv_xive_end_update(PnvXive *xive) 300 { 301 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, 302 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); 303 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, 304 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); 305 int i; 306 uint64_t eqc_watch[4]; 307 308 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { 309 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]); 310 } 311 312 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch, 313 XIVE_VST_WORD_ALL); 314 } 315 316 static void pnv_xive_end_cache_load(PnvXive *xive) 317 { 318 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, 319 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); 320 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, 321 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); 322 uint64_t eqc_watch[4] = { 0 }; 323 int i; 324 325 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) { 326 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx); 327 } 328 329 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { 330 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]); 331 } 332 } 333 334 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, 335 XiveNVT *nvt) 336 { 337 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt); 338 } 339 340 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, 341 XiveNVT *nvt, uint8_t word_number) 342 { 343 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt, 344 word_number); 345 } 346 347 static int pnv_xive_nvt_update(PnvXive *xive) 348 { 349 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, 350 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); 351 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, 352 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); 353 int i; 354 uint64_t vpc_watch[8]; 355 356 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { 357 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]); 358 } 359 360 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch, 361 XIVE_VST_WORD_ALL); 362 } 363 364 static void pnv_xive_nvt_cache_load(PnvXive *xive) 365 { 366 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, 367 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); 368 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, 369 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); 370 uint64_t vpc_watch[8] = { 0 }; 371 int i; 372 373 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) { 374 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx); 375 } 376 377 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { 378 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]); 379 } 380 } 381 382 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx, 383 XiveEAS *eas) 384 { 385 PnvXive *xive = PNV_XIVE(xrtr); 386 387 if (pnv_xive_get_ic(blk) != xive) { 388 xive_error(xive, "VST: EAS %x is remote !?", XIVE_SRCNO(blk, idx)); 389 return -1; 390 } 391 392 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas); 393 } 394 395 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs) 396 { 397 PowerPCCPU *cpu = POWERPC_CPU(cs); 398 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); 399 PnvXive *xive = NULL; 400 CPUPPCState *env = &cpu->env; 401 int pir = env->spr_cb[SPR_PIR].default_value; 402 403 /* 404 * Perform an extra check on the HW thread enablement. 405 * 406 * The TIMA is shared among the chips and to identify the chip 407 * from which the access is being done, we extract the chip id 408 * from the PIR. 409 */ 410 xive = pnv_xive_get_ic((pir >> 8) & 0xf); 411 if (!xive) { 412 return NULL; 413 } 414 415 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) { 416 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir); 417 } 418 419 return tctx; 420 } 421 422 /* 423 * The internal sources (IPIs) of the interrupt controller have no 424 * knowledge of the XIVE chip on which they reside. Encode the block 425 * id in the source interrupt number before forwarding the source 426 * event notification to the Router. This is required on a multichip 427 * system. 428 */ 429 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno) 430 { 431 PnvXive *xive = PNV_XIVE(xn); 432 uint8_t blk = xive->chip->chip_id; 433 434 xive_router_notify(xn, XIVE_SRCNO(blk, srcno)); 435 } 436 437 /* 438 * XIVE helpers 439 */ 440 441 static uint64_t pnv_xive_vc_size(PnvXive *xive) 442 { 443 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK; 444 } 445 446 static uint64_t pnv_xive_edt_shift(PnvXive *xive) 447 { 448 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX); 449 } 450 451 static uint64_t pnv_xive_pc_size(PnvXive *xive) 452 { 453 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK; 454 } 455 456 static uint32_t pnv_xive_nr_ipis(PnvXive *xive) 457 { 458 uint8_t blk = xive->chip->chip_id; 459 460 return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE; 461 } 462 463 static uint32_t pnv_xive_nr_ends(PnvXive *xive) 464 { 465 uint8_t blk = xive->chip->chip_id; 466 467 return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk]) 468 / vst_infos[VST_TSEL_EQDT].size; 469 } 470 471 /* 472 * EDT Table 473 * 474 * The Virtualization Controller MMIO region containing the IPI ESB 475 * pages and END ESB pages is sub-divided into "sets" which map 476 * portions of the VC region to the different ESB pages. It is 477 * configured at runtime through the EDT "Domain Table" to let the 478 * firmware decide how to split the VC address space between IPI ESB 479 * pages and END ESB pages. 480 */ 481 482 /* 483 * Computes the overall size of the IPI or the END ESB pages 484 */ 485 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type) 486 { 487 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); 488 uint64_t size = 0; 489 int i; 490 491 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) { 492 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); 493 494 if (edt_type == type) { 495 size += edt_size; 496 } 497 } 498 499 return size; 500 } 501 502 /* 503 * Maps an offset of the VC region in the IPI or END region using the 504 * layout defined by the EDT "Domaine Table" 505 */ 506 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset, 507 uint64_t type) 508 { 509 int i; 510 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); 511 uint64_t edt_offset = vc_offset; 512 513 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) { 514 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); 515 516 if (edt_type != type) { 517 edt_offset -= edt_size; 518 } 519 } 520 521 return edt_offset; 522 } 523 524 static void pnv_xive_edt_resize(PnvXive *xive) 525 { 526 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI); 527 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ); 528 529 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size); 530 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio); 531 532 memory_region_set_size(&xive->end_edt_mmio, end_edt_size); 533 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio); 534 } 535 536 /* 537 * XIVE Table configuration. Only EDT is supported. 538 */ 539 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val) 540 { 541 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL; 542 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]); 543 uint64_t *xive_table; 544 uint8_t max_index; 545 546 switch (tsel) { 547 case CQ_TAR_TSEL_BLK: 548 max_index = ARRAY_SIZE(xive->blk); 549 xive_table = xive->blk; 550 break; 551 case CQ_TAR_TSEL_MIG: 552 max_index = ARRAY_SIZE(xive->mig); 553 xive_table = xive->mig; 554 break; 555 case CQ_TAR_TSEL_EDT: 556 max_index = ARRAY_SIZE(xive->edt); 557 xive_table = xive->edt; 558 break; 559 case CQ_TAR_TSEL_VDT: 560 max_index = ARRAY_SIZE(xive->vdt); 561 xive_table = xive->vdt; 562 break; 563 default: 564 xive_error(xive, "IC: invalid table %d", (int) tsel); 565 return -1; 566 } 567 568 if (tsel_index >= max_index) { 569 xive_error(xive, "IC: invalid index %d", (int) tsel_index); 570 return -1; 571 } 572 573 xive_table[tsel_index] = val; 574 575 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) { 576 xive->regs[CQ_TAR >> 3] = 577 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index); 578 } 579 580 /* 581 * EDT configuration is complete. Resize the MMIO windows exposing 582 * the IPI and the END ESBs in the VC region. 583 */ 584 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) { 585 pnv_xive_edt_resize(xive); 586 } 587 588 return 0; 589 } 590 591 /* 592 * Virtual Structure Tables (VST) configuration 593 */ 594 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type, 595 uint8_t blk, uint64_t vsd) 596 { 597 XiveENDSource *end_xsrc = &xive->end_source; 598 XiveSource *xsrc = &xive->ipi_source; 599 const XiveVstInfo *info = &vst_infos[type]; 600 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; 601 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 602 603 /* Basic checks */ 604 605 if (VSD_INDIRECT & vsd) { 606 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) { 607 xive_error(xive, "VST: %s indirect tables are not enabled", 608 info->name); 609 return; 610 } 611 612 if (!pnv_xive_vst_page_size_allowed(page_shift)) { 613 xive_error(xive, "VST: invalid %s page shift %d", info->name, 614 page_shift); 615 return; 616 } 617 } 618 619 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { 620 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with" 621 " page shift %d", info->name, vst_addr, page_shift); 622 return; 623 } 624 625 /* Record the table configuration (in SRAM on HW) */ 626 xive->vsds[type][blk] = vsd; 627 628 /* Now tune the models with the configuration provided by the FW */ 629 630 switch (type) { 631 case VST_TSEL_IVT: /* Nothing to be done */ 632 break; 633 634 case VST_TSEL_EQDT: 635 /* 636 * Backing store pages for the END. Compute the number of ENDs 637 * provisioned by FW and resize the END ESB window accordingly. 638 */ 639 memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) * 640 (1ull << (end_xsrc->esb_shift + 1))); 641 memory_region_add_subregion(&xive->end_edt_mmio, 0, 642 &end_xsrc->esb_mmio); 643 break; 644 645 case VST_TSEL_SBE: 646 /* 647 * Backing store pages for the source PQ bits. The model does 648 * not use these PQ bits backed in RAM because the XiveSource 649 * model has its own. Compute the number of IRQs provisioned 650 * by FW and resize the IPI ESB window accordingly. 651 */ 652 memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) * 653 (1ull << xsrc->esb_shift)); 654 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio); 655 break; 656 657 case VST_TSEL_VPDT: /* Not modeled */ 658 case VST_TSEL_IRQ: /* Not modeled */ 659 /* 660 * These tables contains the backing store pages for the 661 * interrupt fifos of the VC sub-engine in case of overflow. 662 */ 663 break; 664 665 default: 666 g_assert_not_reached(); 667 } 668 } 669 670 /* 671 * Both PC and VC sub-engines are configured as each use the Virtual 672 * Structure Tables : SBE, EAS, END and NVT. 673 */ 674 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine) 675 { 676 uint8_t mode = GETFIELD(VSD_MODE, vsd); 677 uint8_t type = GETFIELD(VST_TABLE_SELECT, 678 xive->regs[VC_VSD_TABLE_ADDR >> 3]); 679 uint8_t blk = GETFIELD(VST_TABLE_BLOCK, 680 xive->regs[VC_VSD_TABLE_ADDR >> 3]); 681 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; 682 683 if (type > VST_TSEL_IRQ) { 684 xive_error(xive, "VST: invalid table type %d", type); 685 return; 686 } 687 688 if (blk >= vst_infos[type].max_blocks) { 689 xive_error(xive, "VST: invalid block id %d for" 690 " %s table", blk, vst_infos[type].name); 691 return; 692 } 693 694 /* 695 * Only take the VC sub-engine configuration into account because 696 * the XiveRouter model combines both VC and PC sub-engines 697 */ 698 if (pc_engine) { 699 return; 700 } 701 702 if (!vst_addr) { 703 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name); 704 return; 705 } 706 707 switch (mode) { 708 case VSD_MODE_FORWARD: 709 xive->vsds[type][blk] = vsd; 710 break; 711 712 case VSD_MODE_EXCLUSIVE: 713 pnv_xive_vst_set_exclusive(xive, type, blk, vsd); 714 break; 715 716 default: 717 xive_error(xive, "VST: unsupported table mode %d", mode); 718 return; 719 } 720 } 721 722 /* 723 * Interrupt controller MMIO region. The layout is compatible between 724 * 4K and 64K pages : 725 * 726 * Page 0 sub-engine BARs 727 * 0x000 - 0x3FF IC registers 728 * 0x400 - 0x7FF PC registers 729 * 0x800 - 0xFFF VC registers 730 * 731 * Page 1 Notify page (writes only) 732 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB) 733 * 0x800 - 0xFFF forwards and syncs 734 * 735 * Page 2 LSI Trigger page (writes only) (not modeled) 736 * Page 3 LSI SB EOI page (reads only) (not modeled) 737 * 738 * Page 4-7 indirect TIMA 739 */ 740 741 /* 742 * IC - registers MMIO 743 */ 744 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset, 745 uint64_t val, unsigned size) 746 { 747 PnvXive *xive = PNV_XIVE(opaque); 748 MemoryRegion *sysmem = get_system_memory(); 749 uint32_t reg = offset >> 3; 750 bool is_chip0 = xive->chip->chip_id == 0; 751 752 switch (offset) { 753 754 /* 755 * XIVE CQ (PowerBus bridge) settings 756 */ 757 case CQ_MSGSND: /* msgsnd for doorbells */ 758 case CQ_FIRMASK_OR: /* FIR error reporting */ 759 break; 760 case CQ_PBI_CTL: 761 if (val & CQ_PBI_PC_64K) { 762 xive->pc_shift = 16; 763 } 764 if (val & CQ_PBI_VC_64K) { 765 xive->vc_shift = 16; 766 } 767 break; 768 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */ 769 /* 770 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode 771 */ 772 break; 773 774 /* 775 * XIVE Virtualization Controller settings 776 */ 777 case VC_GLOBAL_CONFIG: 778 break; 779 780 /* 781 * XIVE Presenter Controller settings 782 */ 783 case PC_GLOBAL_CONFIG: 784 /* 785 * PC_GCONF_CHIPID_OVR 786 * Overrides Int command Chip ID with the Chip ID field (DEBUG) 787 */ 788 break; 789 case PC_TCTXT_CFG: 790 /* 791 * TODO: block group support 792 * 793 * PC_TCTXT_CFG_BLKGRP_EN 794 * PC_TCTXT_CFG_HARD_CHIPID_BLK : 795 * Moves the chipid into block field for hardwired CAM compares. 796 * Block offset value is adjusted to 0b0..01 & ThrdId 797 * 798 * Will require changes in xive_presenter_tctx_match(). I am 799 * not sure how to handle that yet. 800 */ 801 802 /* Overrides hardwired chip ID with the chip ID field */ 803 if (val & PC_TCTXT_CHIPID_OVERRIDE) { 804 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val); 805 } 806 break; 807 case PC_TCTXT_TRACK: 808 /* 809 * PC_TCTXT_TRACK_EN: 810 * enable block tracking and exchange of block ownership 811 * information between Interrupt controllers 812 */ 813 break; 814 815 /* 816 * Misc settings 817 */ 818 case VC_SBC_CONFIG: /* Store EOI configuration */ 819 /* 820 * Configure store EOI if required by firwmare (skiboot has removed 821 * support recently though) 822 */ 823 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) { 824 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI; 825 } 826 break; 827 828 case VC_EQC_CONFIG: /* TODO: silent escalation */ 829 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */ 830 break; 831 832 /* 833 * XIVE BAR settings (XSCOM only) 834 */ 835 case CQ_RST_CTL: 836 /* bit4: resets all BAR registers */ 837 break; 838 839 case CQ_IC_BAR: /* IC BAR. 8 pages */ 840 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; 841 if (!(val & CQ_IC_BAR_VALID)) { 842 xive->ic_base = 0; 843 if (xive->regs[reg] & CQ_IC_BAR_VALID) { 844 memory_region_del_subregion(&xive->ic_mmio, 845 &xive->ic_reg_mmio); 846 memory_region_del_subregion(&xive->ic_mmio, 847 &xive->ic_notify_mmio); 848 memory_region_del_subregion(&xive->ic_mmio, 849 &xive->ic_lsi_mmio); 850 memory_region_del_subregion(&xive->ic_mmio, 851 &xive->tm_indirect_mmio); 852 853 memory_region_del_subregion(sysmem, &xive->ic_mmio); 854 } 855 } else { 856 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); 857 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) { 858 memory_region_add_subregion(sysmem, xive->ic_base, 859 &xive->ic_mmio); 860 861 memory_region_add_subregion(&xive->ic_mmio, 0, 862 &xive->ic_reg_mmio); 863 memory_region_add_subregion(&xive->ic_mmio, 864 1ul << xive->ic_shift, 865 &xive->ic_notify_mmio); 866 memory_region_add_subregion(&xive->ic_mmio, 867 2ul << xive->ic_shift, 868 &xive->ic_lsi_mmio); 869 memory_region_add_subregion(&xive->ic_mmio, 870 4ull << xive->ic_shift, 871 &xive->tm_indirect_mmio); 872 } 873 } 874 break; 875 876 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */ 877 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */ 878 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; 879 if (!(val & CQ_TM_BAR_VALID)) { 880 xive->tm_base = 0; 881 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) { 882 memory_region_del_subregion(sysmem, &xive->tm_mmio); 883 } 884 } else { 885 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); 886 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) { 887 memory_region_add_subregion(sysmem, xive->tm_base, 888 &xive->tm_mmio); 889 } 890 } 891 break; 892 893 case CQ_PC_BARM: 894 xive->regs[reg] = val; 895 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive)); 896 break; 897 case CQ_PC_BAR: /* From 32M to 512G */ 898 if (!(val & CQ_PC_BAR_VALID)) { 899 xive->pc_base = 0; 900 if (xive->regs[reg] & CQ_PC_BAR_VALID) { 901 memory_region_del_subregion(sysmem, &xive->pc_mmio); 902 } 903 } else { 904 xive->pc_base = val & ~(CQ_PC_BAR_VALID); 905 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) { 906 memory_region_add_subregion(sysmem, xive->pc_base, 907 &xive->pc_mmio); 908 } 909 } 910 break; 911 912 case CQ_VC_BARM: 913 xive->regs[reg] = val; 914 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive)); 915 break; 916 case CQ_VC_BAR: /* From 64M to 4TB */ 917 if (!(val & CQ_VC_BAR_VALID)) { 918 xive->vc_base = 0; 919 if (xive->regs[reg] & CQ_VC_BAR_VALID) { 920 memory_region_del_subregion(sysmem, &xive->vc_mmio); 921 } 922 } else { 923 xive->vc_base = val & ~(CQ_VC_BAR_VALID); 924 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) { 925 memory_region_add_subregion(sysmem, xive->vc_base, 926 &xive->vc_mmio); 927 } 928 } 929 break; 930 931 /* 932 * XIVE Table settings. 933 */ 934 case CQ_TAR: /* Table Address */ 935 break; 936 case CQ_TDR: /* Table Data */ 937 pnv_xive_table_set_data(xive, val); 938 break; 939 940 /* 941 * XIVE VC & PC Virtual Structure Table settings 942 */ 943 case VC_VSD_TABLE_ADDR: 944 case PC_VSD_TABLE_ADDR: /* Virtual table selector */ 945 break; 946 case VC_VSD_TABLE_DATA: /* Virtual table setting */ 947 case PC_VSD_TABLE_DATA: 948 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA); 949 break; 950 951 /* 952 * Interrupt fifo overflow in memory backing store (Not modeled) 953 */ 954 case VC_IRQ_CONFIG_IPI: 955 case VC_IRQ_CONFIG_HW: 956 case VC_IRQ_CONFIG_CASCADE1: 957 case VC_IRQ_CONFIG_CASCADE2: 958 case VC_IRQ_CONFIG_REDIST: 959 case VC_IRQ_CONFIG_IPI_CASC: 960 break; 961 962 /* 963 * XIVE hardware thread enablement 964 */ 965 case PC_THREAD_EN_REG0: /* Physical Thread Enable */ 966 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */ 967 break; 968 969 case PC_THREAD_EN_REG0_SET: 970 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val; 971 break; 972 case PC_THREAD_EN_REG1_SET: 973 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val; 974 break; 975 case PC_THREAD_EN_REG0_CLR: 976 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val; 977 break; 978 case PC_THREAD_EN_REG1_CLR: 979 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val; 980 break; 981 982 /* 983 * Indirect TIMA access set up. Defines the PIR of the HW thread 984 * to use. 985 */ 986 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3: 987 break; 988 989 /* 990 * XIVE PC & VC cache updates for EAS, NVT and END 991 */ 992 case VC_IVC_SCRUB_MASK: 993 case VC_IVC_SCRUB_TRIG: 994 break; 995 996 case VC_EQC_CWATCH_SPEC: 997 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */ 998 break; 999 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: 1000 break; 1001 case VC_EQC_CWATCH_DAT0: 1002 /* writing to DATA0 triggers the cache write */ 1003 xive->regs[reg] = val; 1004 pnv_xive_end_update(xive); 1005 break; 1006 case VC_EQC_SCRUB_MASK: 1007 case VC_EQC_SCRUB_TRIG: 1008 /* 1009 * The scrubbing registers flush the cache in RAM and can also 1010 * invalidate. 1011 */ 1012 break; 1013 1014 case PC_VPC_CWATCH_SPEC: 1015 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */ 1016 break; 1017 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: 1018 break; 1019 case PC_VPC_CWATCH_DAT0: 1020 /* writing to DATA0 triggers the cache write */ 1021 xive->regs[reg] = val; 1022 pnv_xive_nvt_update(xive); 1023 break; 1024 case PC_VPC_SCRUB_MASK: 1025 case PC_VPC_SCRUB_TRIG: 1026 /* 1027 * The scrubbing registers flush the cache in RAM and can also 1028 * invalidate. 1029 */ 1030 break; 1031 1032 1033 /* 1034 * XIVE PC & VC cache invalidation 1035 */ 1036 case PC_AT_KILL: 1037 break; 1038 case VC_AT_MACRO_KILL: 1039 break; 1040 case PC_AT_KILL_MASK: 1041 case VC_AT_MACRO_KILL_MASK: 1042 break; 1043 1044 default: 1045 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset); 1046 return; 1047 } 1048 1049 xive->regs[reg] = val; 1050 } 1051 1052 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size) 1053 { 1054 PnvXive *xive = PNV_XIVE(opaque); 1055 uint64_t val = 0; 1056 uint32_t reg = offset >> 3; 1057 1058 switch (offset) { 1059 case CQ_CFG_PB_GEN: 1060 case CQ_IC_BAR: 1061 case CQ_TM1_BAR: 1062 case CQ_TM2_BAR: 1063 case CQ_PC_BAR: 1064 case CQ_PC_BARM: 1065 case CQ_VC_BAR: 1066 case CQ_VC_BARM: 1067 case CQ_TAR: 1068 case CQ_TDR: 1069 case CQ_PBI_CTL: 1070 1071 case PC_TCTXT_CFG: 1072 case PC_TCTXT_TRACK: 1073 case PC_TCTXT_INDIR0: 1074 case PC_TCTXT_INDIR1: 1075 case PC_TCTXT_INDIR2: 1076 case PC_TCTXT_INDIR3: 1077 case PC_GLOBAL_CONFIG: 1078 1079 case PC_VPC_SCRUB_MASK: 1080 1081 case VC_GLOBAL_CONFIG: 1082 case VC_AIB_TX_ORDER_TAG2: 1083 1084 case VC_IRQ_CONFIG_IPI: 1085 case VC_IRQ_CONFIG_HW: 1086 case VC_IRQ_CONFIG_CASCADE1: 1087 case VC_IRQ_CONFIG_CASCADE2: 1088 case VC_IRQ_CONFIG_REDIST: 1089 case VC_IRQ_CONFIG_IPI_CASC: 1090 1091 case VC_EQC_SCRUB_MASK: 1092 case VC_IVC_SCRUB_MASK: 1093 case VC_SBC_CONFIG: 1094 case VC_AT_MACRO_KILL_MASK: 1095 case VC_VSD_TABLE_ADDR: 1096 case PC_VSD_TABLE_ADDR: 1097 case VC_VSD_TABLE_DATA: 1098 case PC_VSD_TABLE_DATA: 1099 case PC_THREAD_EN_REG0: 1100 case PC_THREAD_EN_REG1: 1101 val = xive->regs[reg]; 1102 break; 1103 1104 /* 1105 * XIVE hardware thread enablement 1106 */ 1107 case PC_THREAD_EN_REG0_SET: 1108 case PC_THREAD_EN_REG0_CLR: 1109 val = xive->regs[PC_THREAD_EN_REG0 >> 3]; 1110 break; 1111 case PC_THREAD_EN_REG1_SET: 1112 case PC_THREAD_EN_REG1_CLR: 1113 val = xive->regs[PC_THREAD_EN_REG1 >> 3]; 1114 break; 1115 1116 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */ 1117 val = 0xffffff0000000000; 1118 break; 1119 1120 /* 1121 * XIVE PC & VC cache updates for EAS, NVT and END 1122 */ 1123 case VC_EQC_CWATCH_SPEC: 1124 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT); 1125 val = xive->regs[reg]; 1126 break; 1127 case VC_EQC_CWATCH_DAT0: 1128 /* 1129 * Load DATA registers from cache with data requested by the 1130 * SPEC register 1131 */ 1132 pnv_xive_end_cache_load(xive); 1133 val = xive->regs[reg]; 1134 break; 1135 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: 1136 val = xive->regs[reg]; 1137 break; 1138 1139 case PC_VPC_CWATCH_SPEC: 1140 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT); 1141 val = xive->regs[reg]; 1142 break; 1143 case PC_VPC_CWATCH_DAT0: 1144 /* 1145 * Load DATA registers from cache with data requested by the 1146 * SPEC register 1147 */ 1148 pnv_xive_nvt_cache_load(xive); 1149 val = xive->regs[reg]; 1150 break; 1151 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: 1152 val = xive->regs[reg]; 1153 break; 1154 1155 case PC_VPC_SCRUB_TRIG: 1156 case VC_IVC_SCRUB_TRIG: 1157 case VC_EQC_SCRUB_TRIG: 1158 xive->regs[reg] &= ~VC_SCRUB_VALID; 1159 val = xive->regs[reg]; 1160 break; 1161 1162 /* 1163 * XIVE PC & VC cache invalidation 1164 */ 1165 case PC_AT_KILL: 1166 xive->regs[reg] &= ~PC_AT_KILL_VALID; 1167 val = xive->regs[reg]; 1168 break; 1169 case VC_AT_MACRO_KILL: 1170 xive->regs[reg] &= ~VC_KILL_VALID; 1171 val = xive->regs[reg]; 1172 break; 1173 1174 /* 1175 * XIVE synchronisation 1176 */ 1177 case VC_EQC_CONFIG: 1178 val = VC_EQC_SYNC_MASK; 1179 break; 1180 1181 default: 1182 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset); 1183 } 1184 1185 return val; 1186 } 1187 1188 static const MemoryRegionOps pnv_xive_ic_reg_ops = { 1189 .read = pnv_xive_ic_reg_read, 1190 .write = pnv_xive_ic_reg_write, 1191 .endianness = DEVICE_BIG_ENDIAN, 1192 .valid = { 1193 .min_access_size = 8, 1194 .max_access_size = 8, 1195 }, 1196 .impl = { 1197 .min_access_size = 8, 1198 .max_access_size = 8, 1199 }, 1200 }; 1201 1202 /* 1203 * IC - Notify MMIO port page (write only) 1204 */ 1205 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */ 1206 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */ 1207 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */ 1208 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */ 1209 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */ 1210 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */ 1211 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */ 1212 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */ 1213 1214 /* VC synchronisation */ 1215 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */ 1216 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */ 1217 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */ 1218 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */ 1219 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */ 1220 1221 /* PC synchronisation */ 1222 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */ 1223 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */ 1224 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */ 1225 1226 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val) 1227 { 1228 /* 1229 * Forward the source event notification directly to the Router. 1230 * The source interrupt number should already be correctly encoded 1231 * with the chip block id by the sending device (PHB, PSI). 1232 */ 1233 xive_router_notify(XIVE_NOTIFIER(xive), val); 1234 } 1235 1236 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val, 1237 unsigned size) 1238 { 1239 PnvXive *xive = PNV_XIVE(opaque); 1240 1241 /* VC: HW triggers */ 1242 switch (addr) { 1243 case 0x000 ... 0x7FF: 1244 pnv_xive_ic_hw_trigger(opaque, addr, val); 1245 break; 1246 1247 /* VC: Forwarded IRQs */ 1248 case PNV_XIVE_FORWARD_IPI: 1249 case PNV_XIVE_FORWARD_HW: 1250 case PNV_XIVE_FORWARD_OS_ESC: 1251 case PNV_XIVE_FORWARD_HW_ESC: 1252 case PNV_XIVE_FORWARD_REDIS: 1253 /* TODO: forwarded IRQs. Should be like HW triggers */ 1254 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64, 1255 addr, val); 1256 break; 1257 1258 /* VC syncs */ 1259 case PNV_XIVE_SYNC_IPI: 1260 case PNV_XIVE_SYNC_HW: 1261 case PNV_XIVE_SYNC_OS_ESC: 1262 case PNV_XIVE_SYNC_HW_ESC: 1263 case PNV_XIVE_SYNC_REDIS: 1264 break; 1265 1266 /* PC syncs */ 1267 case PNV_XIVE_SYNC_PULL: 1268 case PNV_XIVE_SYNC_PUSH: 1269 case PNV_XIVE_SYNC_VPC: 1270 break; 1271 1272 default: 1273 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr); 1274 } 1275 } 1276 1277 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr, 1278 unsigned size) 1279 { 1280 PnvXive *xive = PNV_XIVE(opaque); 1281 1282 /* loads are invalid */ 1283 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr); 1284 return -1; 1285 } 1286 1287 static const MemoryRegionOps pnv_xive_ic_notify_ops = { 1288 .read = pnv_xive_ic_notify_read, 1289 .write = pnv_xive_ic_notify_write, 1290 .endianness = DEVICE_BIG_ENDIAN, 1291 .valid = { 1292 .min_access_size = 8, 1293 .max_access_size = 8, 1294 }, 1295 .impl = { 1296 .min_access_size = 8, 1297 .max_access_size = 8, 1298 }, 1299 }; 1300 1301 /* 1302 * IC - LSI MMIO handlers (not modeled) 1303 */ 1304 1305 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr, 1306 uint64_t val, unsigned size) 1307 { 1308 PnvXive *xive = PNV_XIVE(opaque); 1309 1310 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr); 1311 } 1312 1313 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size) 1314 { 1315 PnvXive *xive = PNV_XIVE(opaque); 1316 1317 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr); 1318 return -1; 1319 } 1320 1321 static const MemoryRegionOps pnv_xive_ic_lsi_ops = { 1322 .read = pnv_xive_ic_lsi_read, 1323 .write = pnv_xive_ic_lsi_write, 1324 .endianness = DEVICE_BIG_ENDIAN, 1325 .valid = { 1326 .min_access_size = 8, 1327 .max_access_size = 8, 1328 }, 1329 .impl = { 1330 .min_access_size = 8, 1331 .max_access_size = 8, 1332 }, 1333 }; 1334 1335 /* 1336 * IC - Indirect TIMA MMIO handlers 1337 */ 1338 1339 /* 1340 * When the TIMA is accessed from the indirect page, the thread id 1341 * (PIR) has to be configured in the IC registers before. This is used 1342 * for resets and for debug purpose also. 1343 */ 1344 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive) 1345 { 1346 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3]; 1347 PowerPCCPU *cpu = NULL; 1348 int pir; 1349 1350 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) { 1351 xive_error(xive, "IC: no indirect TIMA access in progress"); 1352 return NULL; 1353 } 1354 1355 pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff; 1356 cpu = ppc_get_vcpu_by_pir(pir); 1357 if (!cpu) { 1358 xive_error(xive, "IC: invalid PIR %x for indirect access", pir); 1359 return NULL; 1360 } 1361 1362 /* Check that HW thread is XIVE enabled */ 1363 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) { 1364 xive_error(xive, "IC: CPU %x is not enabled", pir); 1365 } 1366 1367 return XIVE_TCTX(pnv_cpu_state(cpu)->intc); 1368 } 1369 1370 static void xive_tm_indirect_write(void *opaque, hwaddr offset, 1371 uint64_t value, unsigned size) 1372 { 1373 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); 1374 1375 xive_tctx_tm_write(tctx, offset, value, size); 1376 } 1377 1378 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset, 1379 unsigned size) 1380 { 1381 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); 1382 1383 return xive_tctx_tm_read(tctx, offset, size); 1384 } 1385 1386 static const MemoryRegionOps xive_tm_indirect_ops = { 1387 .read = xive_tm_indirect_read, 1388 .write = xive_tm_indirect_write, 1389 .endianness = DEVICE_BIG_ENDIAN, 1390 .valid = { 1391 .min_access_size = 1, 1392 .max_access_size = 8, 1393 }, 1394 .impl = { 1395 .min_access_size = 1, 1396 .max_access_size = 8, 1397 }, 1398 }; 1399 1400 /* 1401 * Interrupt controller XSCOM region. 1402 */ 1403 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size) 1404 { 1405 switch (addr >> 3) { 1406 case X_VC_EQC_CONFIG: 1407 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */ 1408 return VC_EQC_SYNC_MASK; 1409 default: 1410 return pnv_xive_ic_reg_read(opaque, addr, size); 1411 } 1412 } 1413 1414 static void pnv_xive_xscom_write(void *opaque, hwaddr addr, 1415 uint64_t val, unsigned size) 1416 { 1417 pnv_xive_ic_reg_write(opaque, addr, val, size); 1418 } 1419 1420 static const MemoryRegionOps pnv_xive_xscom_ops = { 1421 .read = pnv_xive_xscom_read, 1422 .write = pnv_xive_xscom_write, 1423 .endianness = DEVICE_BIG_ENDIAN, 1424 .valid = { 1425 .min_access_size = 8, 1426 .max_access_size = 8, 1427 }, 1428 .impl = { 1429 .min_access_size = 8, 1430 .max_access_size = 8, 1431 } 1432 }; 1433 1434 /* 1435 * Virtualization Controller MMIO region containing the IPI and END ESB pages 1436 */ 1437 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset, 1438 unsigned size) 1439 { 1440 PnvXive *xive = PNV_XIVE(opaque); 1441 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); 1442 uint64_t edt_type = 0; 1443 uint64_t edt_offset; 1444 MemTxResult result; 1445 AddressSpace *edt_as = NULL; 1446 uint64_t ret = -1; 1447 1448 if (edt_index < XIVE_TABLE_EDT_MAX) { 1449 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); 1450 } 1451 1452 switch (edt_type) { 1453 case CQ_TDR_EDT_IPI: 1454 edt_as = &xive->ipi_as; 1455 break; 1456 case CQ_TDR_EDT_EQ: 1457 edt_as = &xive->end_as; 1458 break; 1459 default: 1460 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset); 1461 return -1; 1462 } 1463 1464 /* Remap the offset for the targeted address space */ 1465 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); 1466 1467 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED, 1468 &result); 1469 1470 if (result != MEMTX_OK) { 1471 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%" 1472 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END", 1473 offset, edt_offset); 1474 return -1; 1475 } 1476 1477 return ret; 1478 } 1479 1480 static void pnv_xive_vc_write(void *opaque, hwaddr offset, 1481 uint64_t val, unsigned size) 1482 { 1483 PnvXive *xive = PNV_XIVE(opaque); 1484 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); 1485 uint64_t edt_type = 0; 1486 uint64_t edt_offset; 1487 MemTxResult result; 1488 AddressSpace *edt_as = NULL; 1489 1490 if (edt_index < XIVE_TABLE_EDT_MAX) { 1491 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); 1492 } 1493 1494 switch (edt_type) { 1495 case CQ_TDR_EDT_IPI: 1496 edt_as = &xive->ipi_as; 1497 break; 1498 case CQ_TDR_EDT_EQ: 1499 edt_as = &xive->end_as; 1500 break; 1501 default: 1502 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx, 1503 offset); 1504 return; 1505 } 1506 1507 /* Remap the offset for the targeted address space */ 1508 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); 1509 1510 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result); 1511 if (result != MEMTX_OK) { 1512 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset); 1513 } 1514 } 1515 1516 static const MemoryRegionOps pnv_xive_vc_ops = { 1517 .read = pnv_xive_vc_read, 1518 .write = pnv_xive_vc_write, 1519 .endianness = DEVICE_BIG_ENDIAN, 1520 .valid = { 1521 .min_access_size = 8, 1522 .max_access_size = 8, 1523 }, 1524 .impl = { 1525 .min_access_size = 8, 1526 .max_access_size = 8, 1527 }, 1528 }; 1529 1530 /* 1531 * Presenter Controller MMIO region. The Virtualization Controller 1532 * updates the IPB in the NVT table when required. Not modeled. 1533 */ 1534 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr, 1535 unsigned size) 1536 { 1537 PnvXive *xive = PNV_XIVE(opaque); 1538 1539 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr); 1540 return -1; 1541 } 1542 1543 static void pnv_xive_pc_write(void *opaque, hwaddr addr, 1544 uint64_t value, unsigned size) 1545 { 1546 PnvXive *xive = PNV_XIVE(opaque); 1547 1548 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr); 1549 } 1550 1551 static const MemoryRegionOps pnv_xive_pc_ops = { 1552 .read = pnv_xive_pc_read, 1553 .write = pnv_xive_pc_write, 1554 .endianness = DEVICE_BIG_ENDIAN, 1555 .valid = { 1556 .min_access_size = 8, 1557 .max_access_size = 8, 1558 }, 1559 .impl = { 1560 .min_access_size = 8, 1561 .max_access_size = 8, 1562 }, 1563 }; 1564 1565 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon) 1566 { 1567 XiveRouter *xrtr = XIVE_ROUTER(xive); 1568 uint8_t blk = xive->chip->chip_id; 1569 uint32_t srcno0 = XIVE_SRCNO(blk, 0); 1570 uint32_t nr_ipis = pnv_xive_nr_ipis(xive); 1571 uint32_t nr_ends = pnv_xive_nr_ends(xive); 1572 XiveEAS eas; 1573 XiveEND end; 1574 int i; 1575 1576 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0, 1577 srcno0 + nr_ipis - 1); 1578 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon); 1579 1580 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0, 1581 srcno0 + nr_ipis - 1); 1582 for (i = 0; i < nr_ipis; i++) { 1583 if (xive_router_get_eas(xrtr, blk, i, &eas)) { 1584 break; 1585 } 1586 if (!xive_eas_is_masked(&eas)) { 1587 xive_eas_pic_print_info(&eas, i, mon); 1588 } 1589 } 1590 1591 monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1); 1592 for (i = 0; i < nr_ends; i++) { 1593 if (xive_router_get_end(xrtr, blk, i, &end)) { 1594 break; 1595 } 1596 xive_end_pic_print_info(&end, i, mon); 1597 } 1598 1599 monitor_printf(mon, "XIVE[%x] END Escalation %08x .. %08x\n", blk, 0, 1600 nr_ends - 1); 1601 for (i = 0; i < nr_ends; i++) { 1602 if (xive_router_get_end(xrtr, blk, i, &end)) { 1603 break; 1604 } 1605 xive_end_eas_pic_print_info(&end, i, mon); 1606 } 1607 } 1608 1609 static void pnv_xive_reset(void *dev) 1610 { 1611 PnvXive *xive = PNV_XIVE(dev); 1612 XiveSource *xsrc = &xive->ipi_source; 1613 XiveENDSource *end_xsrc = &xive->end_source; 1614 1615 /* 1616 * Use the PnvChip id to identify the XIVE interrupt controller. 1617 * It can be overriden by configuration at runtime. 1618 */ 1619 xive->tctx_chipid = xive->chip->chip_id; 1620 1621 /* Default page size (Should be changed at runtime to 64k) */ 1622 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; 1623 1624 /* Clear subregions */ 1625 if (memory_region_is_mapped(&xsrc->esb_mmio)) { 1626 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio); 1627 } 1628 1629 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) { 1630 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio); 1631 } 1632 1633 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { 1634 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio); 1635 } 1636 1637 if (memory_region_is_mapped(&xive->end_edt_mmio)) { 1638 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio); 1639 } 1640 } 1641 1642 static void pnv_xive_init(Object *obj) 1643 { 1644 PnvXive *xive = PNV_XIVE(obj); 1645 1646 object_initialize_child(obj, "ipi_source", &xive->ipi_source, 1647 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE, 1648 &error_abort, NULL); 1649 object_initialize_child(obj, "end_source", &xive->end_source, 1650 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE, 1651 &error_abort, NULL); 1652 } 1653 1654 /* 1655 * Maximum number of IRQs and ENDs supported by HW 1656 */ 1657 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 1658 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) 1659 1660 static void pnv_xive_realize(DeviceState *dev, Error **errp) 1661 { 1662 PnvXive *xive = PNV_XIVE(dev); 1663 XiveSource *xsrc = &xive->ipi_source; 1664 XiveENDSource *end_xsrc = &xive->end_source; 1665 Error *local_err = NULL; 1666 Object *obj; 1667 1668 obj = object_property_get_link(OBJECT(dev), "chip", &local_err); 1669 if (!obj) { 1670 error_propagate(errp, local_err); 1671 error_prepend(errp, "required link 'chip' not found: "); 1672 return; 1673 } 1674 1675 /* The PnvChip id identifies the XIVE interrupt controller. */ 1676 xive->chip = PNV_CHIP(obj); 1677 1678 /* 1679 * The XiveSource and XiveENDSource objects are realized with the 1680 * maximum allowed HW configuration. The ESB MMIO regions will be 1681 * resized dynamically when the controller is configured by the FW 1682 * to limit accesses to resources not provisioned. 1683 */ 1684 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs", 1685 &error_fatal); 1686 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive), 1687 &error_fatal); 1688 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err); 1689 if (local_err) { 1690 error_propagate(errp, local_err); 1691 return; 1692 } 1693 1694 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends", 1695 &error_fatal); 1696 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive), 1697 &error_fatal); 1698 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err); 1699 if (local_err) { 1700 error_propagate(errp, local_err); 1701 return; 1702 } 1703 1704 /* Default page size. Generally changed at runtime to 64k */ 1705 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; 1706 1707 /* XSCOM region, used for initial configuration of the BARs */ 1708 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops, 1709 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3); 1710 1711 /* Interrupt controller MMIO regions */ 1712 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", 1713 PNV9_XIVE_IC_SIZE); 1714 1715 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops, 1716 xive, "xive-ic-reg", 1 << xive->ic_shift); 1717 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev), 1718 &pnv_xive_ic_notify_ops, 1719 xive, "xive-ic-notify", 1 << xive->ic_shift); 1720 1721 /* The Pervasive LSI trigger and EOI pages (not modeled) */ 1722 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops, 1723 xive, "xive-ic-lsi", 2 << xive->ic_shift); 1724 1725 /* Thread Interrupt Management Area (Indirect) */ 1726 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev), 1727 &xive_tm_indirect_ops, 1728 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE); 1729 /* 1730 * Overall Virtualization Controller MMIO region containing the 1731 * IPI ESB pages and END ESB pages. The layout is defined by the 1732 * EDT "Domain table" and the accesses are dispatched using 1733 * address spaces for each. 1734 */ 1735 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive, 1736 "xive-vc", PNV9_XIVE_VC_SIZE); 1737 1738 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi", 1739 PNV9_XIVE_VC_SIZE); 1740 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi"); 1741 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end", 1742 PNV9_XIVE_VC_SIZE); 1743 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end"); 1744 1745 /* 1746 * The MMIO windows exposing the IPI ESBs and the END ESBs in the 1747 * VC region. Their size is configured by the FW in the EDT table. 1748 */ 1749 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0); 1750 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0); 1751 1752 /* Presenter Controller MMIO region (not modeled) */ 1753 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive, 1754 "xive-pc", PNV9_XIVE_PC_SIZE); 1755 1756 /* Thread Interrupt Management Area (Direct) */ 1757 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, 1758 xive, "xive-tima", PNV9_XIVE_TM_SIZE); 1759 1760 qemu_register_reset(pnv_xive_reset, dev); 1761 } 1762 1763 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt, 1764 int xscom_offset) 1765 { 1766 const char compat[] = "ibm,power9-xive-x"; 1767 char *name; 1768 int offset; 1769 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE; 1770 uint32_t reg[] = { 1771 cpu_to_be32(lpc_pcba), 1772 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE) 1773 }; 1774 1775 name = g_strdup_printf("xive@%x", lpc_pcba); 1776 offset = fdt_add_subnode(fdt, xscom_offset, name); 1777 _FDT(offset); 1778 g_free(name); 1779 1780 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); 1781 _FDT((fdt_setprop(fdt, offset, "compatible", compat, 1782 sizeof(compat)))); 1783 return 0; 1784 } 1785 1786 static Property pnv_xive_properties[] = { 1787 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0), 1788 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0), 1789 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0), 1790 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0), 1791 DEFINE_PROP_END_OF_LIST(), 1792 }; 1793 1794 static void pnv_xive_class_init(ObjectClass *klass, void *data) 1795 { 1796 DeviceClass *dc = DEVICE_CLASS(klass); 1797 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); 1798 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 1799 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1800 1801 xdc->dt_xscom = pnv_xive_dt_xscom; 1802 1803 dc->desc = "PowerNV XIVE Interrupt Controller"; 1804 dc->realize = pnv_xive_realize; 1805 dc->props = pnv_xive_properties; 1806 1807 xrc->get_eas = pnv_xive_get_eas; 1808 xrc->get_end = pnv_xive_get_end; 1809 xrc->write_end = pnv_xive_write_end; 1810 xrc->get_nvt = pnv_xive_get_nvt; 1811 xrc->write_nvt = pnv_xive_write_nvt; 1812 xrc->get_tctx = pnv_xive_get_tctx; 1813 1814 xnc->notify = pnv_xive_notify; 1815 }; 1816 1817 static const TypeInfo pnv_xive_info = { 1818 .name = TYPE_PNV_XIVE, 1819 .parent = TYPE_XIVE_ROUTER, 1820 .instance_init = pnv_xive_init, 1821 .instance_size = sizeof(PnvXive), 1822 .class_init = pnv_xive_class_init, 1823 .interfaces = (InterfaceInfo[]) { 1824 { TYPE_PNV_XSCOM_INTERFACE }, 1825 { } 1826 } 1827 }; 1828 1829 static void pnv_xive_register_types(void) 1830 { 1831 type_register_static(&pnv_xive_info); 1832 } 1833 1834 type_init(pnv_xive_register_types) 1835