xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision 5cc8767d)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_core.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/ppc/pnv_xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "hw/ppc/ppc.h"
25 
26 #include <libfdt.h>
27 
28 #include "pnv_xive_regs.h"
29 
30 #define XIVE_DEBUG
31 
32 /*
33  * Virtual structures table (VST)
34  */
35 #define SBE_PER_BYTE   4
36 
37 typedef struct XiveVstInfo {
38     const char *name;
39     uint32_t    size;
40     uint32_t    max_blocks;
41 } XiveVstInfo;
42 
43 static const XiveVstInfo vst_infos[] = {
44     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
45     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
46     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
47     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
48 
49     /*
50      *  Interrupt fifo backing store table (not modeled) :
51      *
52      * 0 - IPI,
53      * 1 - HWD,
54      * 2 - First escalate,
55      * 3 - Second escalate,
56      * 4 - Redistribution,
57      * 5 - IPI cascaded queue ?
58      */
59     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
60 };
61 
62 #define xive_error(xive, fmt, ...)                                      \
63     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
64                   (xive)->chip->chip_id, ## __VA_ARGS__);
65 
66 /*
67  * QEMU version of the GETFIELD/SETFIELD macros
68  *
69  * TODO: It might be better to use the existing extract64() and
70  * deposit64() but this means that all the register definitions will
71  * change and become incompatible with the ones found in skiboot.
72  *
73  * Keep it as it is for now until we find a common ground.
74  */
75 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
76 {
77     return (word & mask) >> ctz64(mask);
78 }
79 
80 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
81                                 uint64_t value)
82 {
83     return (word & ~mask) | ((value << ctz64(mask)) & mask);
84 }
85 
86 /*
87  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
88  * of the chips is good enough.
89  *
90  * TODO: Block scope support
91  */
92 static PnvXive *pnv_xive_get_ic(uint8_t blk)
93 {
94     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
95     int i;
96 
97     for (i = 0; i < pnv->num_chips; i++) {
98         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
99         PnvXive *xive = &chip9->xive;
100 
101         if (xive->chip->chip_id == blk) {
102             return xive;
103         }
104     }
105     return NULL;
106 }
107 
108 /*
109  * VST accessors for SBE, EAT, ENDT, NVT
110  *
111  * Indirect VST tables are arrays of VSDs pointing to a page (of same
112  * size). Each page is a direct VST table.
113  */
114 
115 #define XIVE_VSD_SIZE 8
116 
117 /* Indirect page size can be 4K, 64K, 2M, 16M. */
118 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
119 {
120      return page_shift == 12 || page_shift == 16 ||
121          page_shift == 21 || page_shift == 24;
122 }
123 
124 static uint64_t pnv_xive_vst_size(uint64_t vsd)
125 {
126     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
127 
128     /*
129      * Read the first descriptor to get the page size of the indirect
130      * table.
131      */
132     if (VSD_INDIRECT & vsd) {
133         uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
134         uint32_t page_shift;
135 
136         vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
137         page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
138 
139         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
140             return 0;
141         }
142 
143         return nr_pages * (1ull << page_shift);
144     }
145 
146     return vst_tsize;
147 }
148 
149 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
150                                          uint64_t vsd, uint32_t idx)
151 {
152     const XiveVstInfo *info = &vst_infos[type];
153     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
154 
155     return vst_addr + idx * info->size;
156 }
157 
158 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
159                                            uint64_t vsd, uint32_t idx)
160 {
161     const XiveVstInfo *info = &vst_infos[type];
162     uint64_t vsd_addr;
163     uint32_t vsd_idx;
164     uint32_t page_shift;
165     uint32_t vst_per_page;
166 
167     /* Get the page size of the indirect table. */
168     vsd_addr = vsd & VSD_ADDRESS_MASK;
169     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
170 
171     if (!(vsd & VSD_ADDRESS_MASK)) {
172         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
173         return 0;
174     }
175 
176     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
177 
178     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
179         xive_error(xive, "VST: invalid %s page shift %d", info->name,
180                    page_shift);
181         return 0;
182     }
183 
184     vst_per_page = (1ull << page_shift) / info->size;
185     vsd_idx = idx / vst_per_page;
186 
187     /* Load the VSD we are looking for, if not already done */
188     if (vsd_idx) {
189         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
190         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
191 
192         if (!(vsd & VSD_ADDRESS_MASK)) {
193             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
194             return 0;
195         }
196 
197         /*
198          * Check that the pages have a consistent size across the
199          * indirect table
200          */
201         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
202             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
203                        info->name, idx);
204             return 0;
205         }
206     }
207 
208     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
209 }
210 
211 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
212                                   uint32_t idx)
213 {
214     const XiveVstInfo *info = &vst_infos[type];
215     uint64_t vsd;
216     uint32_t idx_max;
217 
218     if (blk >= info->max_blocks) {
219         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
220                    blk, info->name, idx);
221         return 0;
222     }
223 
224     vsd = xive->vsds[type][blk];
225 
226     /* Remote VST access */
227     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
228         xive = pnv_xive_get_ic(blk);
229 
230         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
231     }
232 
233     idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
234     if (idx > idx_max) {
235 #ifdef XIVE_DEBUG
236         xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
237                    info->name, blk, idx, idx_max);
238 #endif
239         return 0;
240     }
241 
242     if (VSD_INDIRECT & vsd) {
243         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
244     }
245 
246     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
247 }
248 
249 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
250                              uint32_t idx, void *data)
251 {
252     const XiveVstInfo *info = &vst_infos[type];
253     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
254 
255     if (!addr) {
256         return -1;
257     }
258 
259     cpu_physical_memory_read(addr, data, info->size);
260     return 0;
261 }
262 
263 #define XIVE_VST_WORD_ALL -1
264 
265 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
266                               uint32_t idx, void *data, uint32_t word_number)
267 {
268     const XiveVstInfo *info = &vst_infos[type];
269     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
270 
271     if (!addr) {
272         return -1;
273     }
274 
275     if (word_number == XIVE_VST_WORD_ALL) {
276         cpu_physical_memory_write(addr, data, info->size);
277     } else {
278         cpu_physical_memory_write(addr + word_number * 4,
279                                   data + word_number * 4, 4);
280     }
281     return 0;
282 }
283 
284 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
285                             XiveEND *end)
286 {
287     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
288 }
289 
290 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
291                               XiveEND *end, uint8_t word_number)
292 {
293     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
294                               word_number);
295 }
296 
297 static int pnv_xive_end_update(PnvXive *xive)
298 {
299     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
300                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
301     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
302                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303     int i;
304     uint64_t eqc_watch[4];
305 
306     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
307         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
308     }
309 
310     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
311                               XIVE_VST_WORD_ALL);
312 }
313 
314 static void pnv_xive_end_cache_load(PnvXive *xive)
315 {
316     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
317                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
318     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
319                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
320     uint64_t eqc_watch[4] = { 0 };
321     int i;
322 
323     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
324         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
325     }
326 
327     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
328         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
329     }
330 }
331 
332 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
333                             XiveNVT *nvt)
334 {
335     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
336 }
337 
338 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
339                               XiveNVT *nvt, uint8_t word_number)
340 {
341     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
342                               word_number);
343 }
344 
345 static int pnv_xive_nvt_update(PnvXive *xive)
346 {
347     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
348                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
349     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
350                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351     int i;
352     uint64_t vpc_watch[8];
353 
354     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
355         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
356     }
357 
358     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
359                               XIVE_VST_WORD_ALL);
360 }
361 
362 static void pnv_xive_nvt_cache_load(PnvXive *xive)
363 {
364     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
365                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
366     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
367                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
368     uint64_t vpc_watch[8] = { 0 };
369     int i;
370 
371     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
372         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
373     }
374 
375     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
376         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
377     }
378 }
379 
380 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
381                             XiveEAS *eas)
382 {
383     PnvXive *xive = PNV_XIVE(xrtr);
384 
385     if (pnv_xive_get_ic(blk) != xive) {
386         xive_error(xive, "VST: EAS %x is remote !?", XIVE_SRCNO(blk, idx));
387         return -1;
388     }
389 
390     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
391 }
392 
393 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
394 {
395     PowerPCCPU *cpu = POWERPC_CPU(cs);
396     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
397     PnvXive *xive = NULL;
398     CPUPPCState *env = &cpu->env;
399     int pir = env->spr_cb[SPR_PIR].default_value;
400 
401     /*
402      * Perform an extra check on the HW thread enablement.
403      *
404      * The TIMA is shared among the chips and to identify the chip
405      * from which the access is being done, we extract the chip id
406      * from the PIR.
407      */
408     xive = pnv_xive_get_ic((pir >> 8) & 0xf);
409     if (!xive) {
410         return NULL;
411     }
412 
413     if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
414         xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
415     }
416 
417     return tctx;
418 }
419 
420 /*
421  * The internal sources (IPIs) of the interrupt controller have no
422  * knowledge of the XIVE chip on which they reside. Encode the block
423  * id in the source interrupt number before forwarding the source
424  * event notification to the Router. This is required on a multichip
425  * system.
426  */
427 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
428 {
429     PnvXive *xive = PNV_XIVE(xn);
430     uint8_t blk = xive->chip->chip_id;
431 
432     xive_router_notify(xn, XIVE_SRCNO(blk, srcno));
433 }
434 
435 /*
436  * XIVE helpers
437  */
438 
439 static uint64_t pnv_xive_vc_size(PnvXive *xive)
440 {
441     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
442 }
443 
444 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
445 {
446     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
447 }
448 
449 static uint64_t pnv_xive_pc_size(PnvXive *xive)
450 {
451     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
452 }
453 
454 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
455 {
456     uint8_t blk = xive->chip->chip_id;
457 
458     return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
459 }
460 
461 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
462 {
463     uint8_t blk = xive->chip->chip_id;
464 
465     return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
466         / vst_infos[VST_TSEL_EQDT].size;
467 }
468 
469 /*
470  * EDT Table
471  *
472  * The Virtualization Controller MMIO region containing the IPI ESB
473  * pages and END ESB pages is sub-divided into "sets" which map
474  * portions of the VC region to the different ESB pages. It is
475  * configured at runtime through the EDT "Domain Table" to let the
476  * firmware decide how to split the VC address space between IPI ESB
477  * pages and END ESB pages.
478  */
479 
480 /*
481  * Computes the overall size of the IPI or the END ESB pages
482  */
483 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
484 {
485     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
486     uint64_t size = 0;
487     int i;
488 
489     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
490         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
491 
492         if (edt_type == type) {
493             size += edt_size;
494         }
495     }
496 
497     return size;
498 }
499 
500 /*
501  * Maps an offset of the VC region in the IPI or END region using the
502  * layout defined by the EDT "Domaine Table"
503  */
504 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
505                                               uint64_t type)
506 {
507     int i;
508     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
509     uint64_t edt_offset = vc_offset;
510 
511     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
512         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
513 
514         if (edt_type != type) {
515             edt_offset -= edt_size;
516         }
517     }
518 
519     return edt_offset;
520 }
521 
522 static void pnv_xive_edt_resize(PnvXive *xive)
523 {
524     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
525     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
526 
527     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
528     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
529 
530     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
531     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
532 }
533 
534 /*
535  * XIVE Table configuration. Only EDT is supported.
536  */
537 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
538 {
539     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
540     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
541     uint64_t *xive_table;
542     uint8_t max_index;
543 
544     switch (tsel) {
545     case CQ_TAR_TSEL_BLK:
546         max_index = ARRAY_SIZE(xive->blk);
547         xive_table = xive->blk;
548         break;
549     case CQ_TAR_TSEL_MIG:
550         max_index = ARRAY_SIZE(xive->mig);
551         xive_table = xive->mig;
552         break;
553     case CQ_TAR_TSEL_EDT:
554         max_index = ARRAY_SIZE(xive->edt);
555         xive_table = xive->edt;
556         break;
557     case CQ_TAR_TSEL_VDT:
558         max_index = ARRAY_SIZE(xive->vdt);
559         xive_table = xive->vdt;
560         break;
561     default:
562         xive_error(xive, "IC: invalid table %d", (int) tsel);
563         return -1;
564     }
565 
566     if (tsel_index >= max_index) {
567         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
568         return -1;
569     }
570 
571     xive_table[tsel_index] = val;
572 
573     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
574         xive->regs[CQ_TAR >> 3] =
575             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
576     }
577 
578     /*
579      * EDT configuration is complete. Resize the MMIO windows exposing
580      * the IPI and the END ESBs in the VC region.
581      */
582     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
583         pnv_xive_edt_resize(xive);
584     }
585 
586     return 0;
587 }
588 
589 /*
590  * Virtual Structure Tables (VST) configuration
591  */
592 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
593                                        uint8_t blk, uint64_t vsd)
594 {
595     XiveENDSource *end_xsrc = &xive->end_source;
596     XiveSource *xsrc = &xive->ipi_source;
597     const XiveVstInfo *info = &vst_infos[type];
598     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
599     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
600 
601     /* Basic checks */
602 
603     if (VSD_INDIRECT & vsd) {
604         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
605             xive_error(xive, "VST: %s indirect tables are not enabled",
606                        info->name);
607             return;
608         }
609 
610         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
611             xive_error(xive, "VST: invalid %s page shift %d", info->name,
612                        page_shift);
613             return;
614         }
615     }
616 
617     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
618         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
619                    " page shift %d", info->name, vst_addr, page_shift);
620         return;
621     }
622 
623     /* Record the table configuration (in SRAM on HW) */
624     xive->vsds[type][blk] = vsd;
625 
626     /* Now tune the models with the configuration provided by the FW */
627 
628     switch (type) {
629     case VST_TSEL_IVT:  /* Nothing to be done */
630         break;
631 
632     case VST_TSEL_EQDT:
633         /*
634          * Backing store pages for the END. Compute the number of ENDs
635          * provisioned by FW and resize the END ESB window accordingly.
636          */
637         memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
638                                (1ull << (end_xsrc->esb_shift + 1)));
639         memory_region_add_subregion(&xive->end_edt_mmio, 0,
640                                     &end_xsrc->esb_mmio);
641         break;
642 
643     case VST_TSEL_SBE:
644         /*
645          * Backing store pages for the source PQ bits. The model does
646          * not use these PQ bits backed in RAM because the XiveSource
647          * model has its own. Compute the number of IRQs provisioned
648          * by FW and resize the IPI ESB window accordingly.
649          */
650         memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
651                                (1ull << xsrc->esb_shift));
652         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
653         break;
654 
655     case VST_TSEL_VPDT: /* Not modeled */
656     case VST_TSEL_IRQ:  /* Not modeled */
657         /*
658          * These tables contains the backing store pages for the
659          * interrupt fifos of the VC sub-engine in case of overflow.
660          */
661         break;
662 
663     default:
664         g_assert_not_reached();
665     }
666 }
667 
668 /*
669  * Both PC and VC sub-engines are configured as each use the Virtual
670  * Structure Tables : SBE, EAS, END and NVT.
671  */
672 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
673 {
674     uint8_t mode = GETFIELD(VSD_MODE, vsd);
675     uint8_t type = GETFIELD(VST_TABLE_SELECT,
676                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
677     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
678                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
679     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
680 
681     if (type > VST_TSEL_IRQ) {
682         xive_error(xive, "VST: invalid table type %d", type);
683         return;
684     }
685 
686     if (blk >= vst_infos[type].max_blocks) {
687         xive_error(xive, "VST: invalid block id %d for"
688                       " %s table", blk, vst_infos[type].name);
689         return;
690     }
691 
692     /*
693      * Only take the VC sub-engine configuration into account because
694      * the XiveRouter model combines both VC and PC sub-engines
695      */
696     if (pc_engine) {
697         return;
698     }
699 
700     if (!vst_addr) {
701         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
702         return;
703     }
704 
705     switch (mode) {
706     case VSD_MODE_FORWARD:
707         xive->vsds[type][blk] = vsd;
708         break;
709 
710     case VSD_MODE_EXCLUSIVE:
711         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
712         break;
713 
714     default:
715         xive_error(xive, "VST: unsupported table mode %d", mode);
716         return;
717     }
718 }
719 
720 /*
721  * Interrupt controller MMIO region. The layout is compatible between
722  * 4K and 64K pages :
723  *
724  * Page 0           sub-engine BARs
725  *  0x000 - 0x3FF   IC registers
726  *  0x400 - 0x7FF   PC registers
727  *  0x800 - 0xFFF   VC registers
728  *
729  * Page 1           Notify page (writes only)
730  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
731  *  0x800 - 0xFFF   forwards and syncs
732  *
733  * Page 2           LSI Trigger page (writes only) (not modeled)
734  * Page 3           LSI SB EOI page (reads only) (not modeled)
735  *
736  * Page 4-7         indirect TIMA
737  */
738 
739 /*
740  * IC - registers MMIO
741  */
742 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
743                                   uint64_t val, unsigned size)
744 {
745     PnvXive *xive = PNV_XIVE(opaque);
746     MemoryRegion *sysmem = get_system_memory();
747     uint32_t reg = offset >> 3;
748     bool is_chip0 = xive->chip->chip_id == 0;
749 
750     switch (offset) {
751 
752     /*
753      * XIVE CQ (PowerBus bridge) settings
754      */
755     case CQ_MSGSND:     /* msgsnd for doorbells */
756     case CQ_FIRMASK_OR: /* FIR error reporting */
757         break;
758     case CQ_PBI_CTL:
759         if (val & CQ_PBI_PC_64K) {
760             xive->pc_shift = 16;
761         }
762         if (val & CQ_PBI_VC_64K) {
763             xive->vc_shift = 16;
764         }
765         break;
766     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
767         /*
768          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
769          */
770         break;
771 
772     /*
773      * XIVE Virtualization Controller settings
774      */
775     case VC_GLOBAL_CONFIG:
776         break;
777 
778     /*
779      * XIVE Presenter Controller settings
780      */
781     case PC_GLOBAL_CONFIG:
782         /*
783          * PC_GCONF_CHIPID_OVR
784          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
785          */
786         break;
787     case PC_TCTXT_CFG:
788         /*
789          * TODO: block group support
790          *
791          * PC_TCTXT_CFG_BLKGRP_EN
792          * PC_TCTXT_CFG_HARD_CHIPID_BLK :
793          *   Moves the chipid into block field for hardwired CAM compares.
794          *   Block offset value is adjusted to 0b0..01 & ThrdId
795          *
796          *   Will require changes in xive_presenter_tctx_match(). I am
797          *   not sure how to handle that yet.
798          */
799 
800         /* Overrides hardwired chip ID with the chip ID field */
801         if (val & PC_TCTXT_CHIPID_OVERRIDE) {
802             xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
803         }
804         break;
805     case PC_TCTXT_TRACK:
806         /*
807          * PC_TCTXT_TRACK_EN:
808          *   enable block tracking and exchange of block ownership
809          *   information between Interrupt controllers
810          */
811         break;
812 
813     /*
814      * Misc settings
815      */
816     case VC_SBC_CONFIG: /* Store EOI configuration */
817         /*
818          * Configure store EOI if required by firwmare (skiboot has removed
819          * support recently though)
820          */
821         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
822             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
823         }
824         break;
825 
826     case VC_EQC_CONFIG: /* TODO: silent escalation */
827     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
828         break;
829 
830     /*
831      * XIVE BAR settings (XSCOM only)
832      */
833     case CQ_RST_CTL:
834         /* bit4: resets all BAR registers */
835         break;
836 
837     case CQ_IC_BAR: /* IC BAR. 8 pages */
838         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
839         if (!(val & CQ_IC_BAR_VALID)) {
840             xive->ic_base = 0;
841             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
842                 memory_region_del_subregion(&xive->ic_mmio,
843                                             &xive->ic_reg_mmio);
844                 memory_region_del_subregion(&xive->ic_mmio,
845                                             &xive->ic_notify_mmio);
846                 memory_region_del_subregion(&xive->ic_mmio,
847                                             &xive->ic_lsi_mmio);
848                 memory_region_del_subregion(&xive->ic_mmio,
849                                             &xive->tm_indirect_mmio);
850 
851                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
852             }
853         } else {
854             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
855             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
856                 memory_region_add_subregion(sysmem, xive->ic_base,
857                                             &xive->ic_mmio);
858 
859                 memory_region_add_subregion(&xive->ic_mmio,  0,
860                                             &xive->ic_reg_mmio);
861                 memory_region_add_subregion(&xive->ic_mmio,
862                                             1ul << xive->ic_shift,
863                                             &xive->ic_notify_mmio);
864                 memory_region_add_subregion(&xive->ic_mmio,
865                                             2ul << xive->ic_shift,
866                                             &xive->ic_lsi_mmio);
867                 memory_region_add_subregion(&xive->ic_mmio,
868                                             4ull << xive->ic_shift,
869                                             &xive->tm_indirect_mmio);
870             }
871         }
872         break;
873 
874     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
875     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
876         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
877         if (!(val & CQ_TM_BAR_VALID)) {
878             xive->tm_base = 0;
879             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
880                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
881             }
882         } else {
883             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
884             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
885                 memory_region_add_subregion(sysmem, xive->tm_base,
886                                             &xive->tm_mmio);
887             }
888         }
889         break;
890 
891     case CQ_PC_BARM:
892         xive->regs[reg] = val;
893         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
894         break;
895     case CQ_PC_BAR: /* From 32M to 512G */
896         if (!(val & CQ_PC_BAR_VALID)) {
897             xive->pc_base = 0;
898             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
899                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
900             }
901         } else {
902             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
903             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
904                 memory_region_add_subregion(sysmem, xive->pc_base,
905                                             &xive->pc_mmio);
906             }
907         }
908         break;
909 
910     case CQ_VC_BARM:
911         xive->regs[reg] = val;
912         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
913         break;
914     case CQ_VC_BAR: /* From 64M to 4TB */
915         if (!(val & CQ_VC_BAR_VALID)) {
916             xive->vc_base = 0;
917             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
918                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
919             }
920         } else {
921             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
922             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
923                 memory_region_add_subregion(sysmem, xive->vc_base,
924                                             &xive->vc_mmio);
925             }
926         }
927         break;
928 
929     /*
930      * XIVE Table settings.
931      */
932     case CQ_TAR: /* Table Address */
933         break;
934     case CQ_TDR: /* Table Data */
935         pnv_xive_table_set_data(xive, val);
936         break;
937 
938     /*
939      * XIVE VC & PC Virtual Structure Table settings
940      */
941     case VC_VSD_TABLE_ADDR:
942     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
943         break;
944     case VC_VSD_TABLE_DATA: /* Virtual table setting */
945     case PC_VSD_TABLE_DATA:
946         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
947         break;
948 
949     /*
950      * Interrupt fifo overflow in memory backing store (Not modeled)
951      */
952     case VC_IRQ_CONFIG_IPI:
953     case VC_IRQ_CONFIG_HW:
954     case VC_IRQ_CONFIG_CASCADE1:
955     case VC_IRQ_CONFIG_CASCADE2:
956     case VC_IRQ_CONFIG_REDIST:
957     case VC_IRQ_CONFIG_IPI_CASC:
958         break;
959 
960     /*
961      * XIVE hardware thread enablement
962      */
963     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
964     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
965         break;
966 
967     case PC_THREAD_EN_REG0_SET:
968         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
969         break;
970     case PC_THREAD_EN_REG1_SET:
971         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
972         break;
973     case PC_THREAD_EN_REG0_CLR:
974         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
975         break;
976     case PC_THREAD_EN_REG1_CLR:
977         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
978         break;
979 
980     /*
981      * Indirect TIMA access set up. Defines the PIR of the HW thread
982      * to use.
983      */
984     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
985         break;
986 
987     /*
988      * XIVE PC & VC cache updates for EAS, NVT and END
989      */
990     case VC_IVC_SCRUB_MASK:
991     case VC_IVC_SCRUB_TRIG:
992         break;
993 
994     case VC_EQC_CWATCH_SPEC:
995         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
996         break;
997     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
998         break;
999     case VC_EQC_CWATCH_DAT0:
1000         /* writing to DATA0 triggers the cache write */
1001         xive->regs[reg] = val;
1002         pnv_xive_end_update(xive);
1003         break;
1004     case VC_EQC_SCRUB_MASK:
1005     case VC_EQC_SCRUB_TRIG:
1006         /*
1007          * The scrubbing registers flush the cache in RAM and can also
1008          * invalidate.
1009          */
1010         break;
1011 
1012     case PC_VPC_CWATCH_SPEC:
1013         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1014         break;
1015     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1016         break;
1017     case PC_VPC_CWATCH_DAT0:
1018         /* writing to DATA0 triggers the cache write */
1019         xive->regs[reg] = val;
1020         pnv_xive_nvt_update(xive);
1021         break;
1022     case PC_VPC_SCRUB_MASK:
1023     case PC_VPC_SCRUB_TRIG:
1024         /*
1025          * The scrubbing registers flush the cache in RAM and can also
1026          * invalidate.
1027          */
1028         break;
1029 
1030 
1031     /*
1032      * XIVE PC & VC cache invalidation
1033      */
1034     case PC_AT_KILL:
1035         break;
1036     case VC_AT_MACRO_KILL:
1037         break;
1038     case PC_AT_KILL_MASK:
1039     case VC_AT_MACRO_KILL_MASK:
1040         break;
1041 
1042     default:
1043         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1044         return;
1045     }
1046 
1047     xive->regs[reg] = val;
1048 }
1049 
1050 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1051 {
1052     PnvXive *xive = PNV_XIVE(opaque);
1053     uint64_t val = 0;
1054     uint32_t reg = offset >> 3;
1055 
1056     switch (offset) {
1057     case CQ_CFG_PB_GEN:
1058     case CQ_IC_BAR:
1059     case CQ_TM1_BAR:
1060     case CQ_TM2_BAR:
1061     case CQ_PC_BAR:
1062     case CQ_PC_BARM:
1063     case CQ_VC_BAR:
1064     case CQ_VC_BARM:
1065     case CQ_TAR:
1066     case CQ_TDR:
1067     case CQ_PBI_CTL:
1068 
1069     case PC_TCTXT_CFG:
1070     case PC_TCTXT_TRACK:
1071     case PC_TCTXT_INDIR0:
1072     case PC_TCTXT_INDIR1:
1073     case PC_TCTXT_INDIR2:
1074     case PC_TCTXT_INDIR3:
1075     case PC_GLOBAL_CONFIG:
1076 
1077     case PC_VPC_SCRUB_MASK:
1078 
1079     case VC_GLOBAL_CONFIG:
1080     case VC_AIB_TX_ORDER_TAG2:
1081 
1082     case VC_IRQ_CONFIG_IPI:
1083     case VC_IRQ_CONFIG_HW:
1084     case VC_IRQ_CONFIG_CASCADE1:
1085     case VC_IRQ_CONFIG_CASCADE2:
1086     case VC_IRQ_CONFIG_REDIST:
1087     case VC_IRQ_CONFIG_IPI_CASC:
1088 
1089     case VC_EQC_SCRUB_MASK:
1090     case VC_IVC_SCRUB_MASK:
1091     case VC_SBC_CONFIG:
1092     case VC_AT_MACRO_KILL_MASK:
1093     case VC_VSD_TABLE_ADDR:
1094     case PC_VSD_TABLE_ADDR:
1095     case VC_VSD_TABLE_DATA:
1096     case PC_VSD_TABLE_DATA:
1097     case PC_THREAD_EN_REG0:
1098     case PC_THREAD_EN_REG1:
1099         val = xive->regs[reg];
1100         break;
1101 
1102     /*
1103      * XIVE hardware thread enablement
1104      */
1105     case PC_THREAD_EN_REG0_SET:
1106     case PC_THREAD_EN_REG0_CLR:
1107         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1108         break;
1109     case PC_THREAD_EN_REG1_SET:
1110     case PC_THREAD_EN_REG1_CLR:
1111         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1112         break;
1113 
1114     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1115         val = 0xffffff0000000000;
1116         break;
1117 
1118     /*
1119      * XIVE PC & VC cache updates for EAS, NVT and END
1120      */
1121     case VC_EQC_CWATCH_SPEC:
1122         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1123         val = xive->regs[reg];
1124         break;
1125     case VC_EQC_CWATCH_DAT0:
1126         /*
1127          * Load DATA registers from cache with data requested by the
1128          * SPEC register
1129          */
1130         pnv_xive_end_cache_load(xive);
1131         val = xive->regs[reg];
1132         break;
1133     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1134         val = xive->regs[reg];
1135         break;
1136 
1137     case PC_VPC_CWATCH_SPEC:
1138         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1139         val = xive->regs[reg];
1140         break;
1141     case PC_VPC_CWATCH_DAT0:
1142         /*
1143          * Load DATA registers from cache with data requested by the
1144          * SPEC register
1145          */
1146         pnv_xive_nvt_cache_load(xive);
1147         val = xive->regs[reg];
1148         break;
1149     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1150         val = xive->regs[reg];
1151         break;
1152 
1153     case PC_VPC_SCRUB_TRIG:
1154     case VC_IVC_SCRUB_TRIG:
1155     case VC_EQC_SCRUB_TRIG:
1156         xive->regs[reg] &= ~VC_SCRUB_VALID;
1157         val = xive->regs[reg];
1158         break;
1159 
1160     /*
1161      * XIVE PC & VC cache invalidation
1162      */
1163     case PC_AT_KILL:
1164         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1165         val = xive->regs[reg];
1166         break;
1167     case VC_AT_MACRO_KILL:
1168         xive->regs[reg] &= ~VC_KILL_VALID;
1169         val = xive->regs[reg];
1170         break;
1171 
1172     /*
1173      * XIVE synchronisation
1174      */
1175     case VC_EQC_CONFIG:
1176         val = VC_EQC_SYNC_MASK;
1177         break;
1178 
1179     default:
1180         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1181     }
1182 
1183     return val;
1184 }
1185 
1186 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1187     .read = pnv_xive_ic_reg_read,
1188     .write = pnv_xive_ic_reg_write,
1189     .endianness = DEVICE_BIG_ENDIAN,
1190     .valid = {
1191         .min_access_size = 8,
1192         .max_access_size = 8,
1193     },
1194     .impl = {
1195         .min_access_size = 8,
1196         .max_access_size = 8,
1197     },
1198 };
1199 
1200 /*
1201  * IC - Notify MMIO port page (write only)
1202  */
1203 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1204 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1205 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1206 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1207 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1208 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1209 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1210 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1211 
1212 /* VC synchronisation */
1213 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1214 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1215 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1216 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1217 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1218 
1219 /* PC synchronisation */
1220 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1221 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1222 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1223 
1224 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1225 {
1226     /*
1227      * Forward the source event notification directly to the Router.
1228      * The source interrupt number should already be correctly encoded
1229      * with the chip block id by the sending device (PHB, PSI).
1230      */
1231     xive_router_notify(XIVE_NOTIFIER(xive), val);
1232 }
1233 
1234 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1235                                      unsigned size)
1236 {
1237     PnvXive *xive = PNV_XIVE(opaque);
1238 
1239     /* VC: HW triggers */
1240     switch (addr) {
1241     case 0x000 ... 0x7FF:
1242         pnv_xive_ic_hw_trigger(opaque, addr, val);
1243         break;
1244 
1245     /* VC: Forwarded IRQs */
1246     case PNV_XIVE_FORWARD_IPI:
1247     case PNV_XIVE_FORWARD_HW:
1248     case PNV_XIVE_FORWARD_OS_ESC:
1249     case PNV_XIVE_FORWARD_HW_ESC:
1250     case PNV_XIVE_FORWARD_REDIS:
1251         /* TODO: forwarded IRQs. Should be like HW triggers */
1252         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1253                    addr, val);
1254         break;
1255 
1256     /* VC syncs */
1257     case PNV_XIVE_SYNC_IPI:
1258     case PNV_XIVE_SYNC_HW:
1259     case PNV_XIVE_SYNC_OS_ESC:
1260     case PNV_XIVE_SYNC_HW_ESC:
1261     case PNV_XIVE_SYNC_REDIS:
1262         break;
1263 
1264     /* PC syncs */
1265     case PNV_XIVE_SYNC_PULL:
1266     case PNV_XIVE_SYNC_PUSH:
1267     case PNV_XIVE_SYNC_VPC:
1268         break;
1269 
1270     default:
1271         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1272     }
1273 }
1274 
1275 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1276                                         unsigned size)
1277 {
1278     PnvXive *xive = PNV_XIVE(opaque);
1279 
1280     /* loads are invalid */
1281     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1282     return -1;
1283 }
1284 
1285 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1286     .read = pnv_xive_ic_notify_read,
1287     .write = pnv_xive_ic_notify_write,
1288     .endianness = DEVICE_BIG_ENDIAN,
1289     .valid = {
1290         .min_access_size = 8,
1291         .max_access_size = 8,
1292     },
1293     .impl = {
1294         .min_access_size = 8,
1295         .max_access_size = 8,
1296     },
1297 };
1298 
1299 /*
1300  * IC - LSI MMIO handlers (not modeled)
1301  */
1302 
1303 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1304                               uint64_t val, unsigned size)
1305 {
1306     PnvXive *xive = PNV_XIVE(opaque);
1307 
1308     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1309 }
1310 
1311 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1312 {
1313     PnvXive *xive = PNV_XIVE(opaque);
1314 
1315     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1316     return -1;
1317 }
1318 
1319 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1320     .read = pnv_xive_ic_lsi_read,
1321     .write = pnv_xive_ic_lsi_write,
1322     .endianness = DEVICE_BIG_ENDIAN,
1323     .valid = {
1324         .min_access_size = 8,
1325         .max_access_size = 8,
1326     },
1327     .impl = {
1328         .min_access_size = 8,
1329         .max_access_size = 8,
1330     },
1331 };
1332 
1333 /*
1334  * IC - Indirect TIMA MMIO handlers
1335  */
1336 
1337 /*
1338  * When the TIMA is accessed from the indirect page, the thread id
1339  * (PIR) has to be configured in the IC registers before. This is used
1340  * for resets and for debug purpose also.
1341  */
1342 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1343 {
1344     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1345     PowerPCCPU *cpu = NULL;
1346     int pir;
1347 
1348     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1349         xive_error(xive, "IC: no indirect TIMA access in progress");
1350         return NULL;
1351     }
1352 
1353     pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1354     cpu = ppc_get_vcpu_by_pir(pir);
1355     if (!cpu) {
1356         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1357         return NULL;
1358     }
1359 
1360     /* Check that HW thread is XIVE enabled */
1361     if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1362         xive_error(xive, "IC: CPU %x is not enabled", pir);
1363     }
1364 
1365     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1366 }
1367 
1368 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1369                                    uint64_t value, unsigned size)
1370 {
1371     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1372 
1373     xive_tctx_tm_write(tctx, offset, value, size);
1374 }
1375 
1376 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1377                                       unsigned size)
1378 {
1379     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1380 
1381     return xive_tctx_tm_read(tctx, offset, size);
1382 }
1383 
1384 static const MemoryRegionOps xive_tm_indirect_ops = {
1385     .read = xive_tm_indirect_read,
1386     .write = xive_tm_indirect_write,
1387     .endianness = DEVICE_BIG_ENDIAN,
1388     .valid = {
1389         .min_access_size = 1,
1390         .max_access_size = 8,
1391     },
1392     .impl = {
1393         .min_access_size = 1,
1394         .max_access_size = 8,
1395     },
1396 };
1397 
1398 /*
1399  * Interrupt controller XSCOM region.
1400  */
1401 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1402 {
1403     switch (addr >> 3) {
1404     case X_VC_EQC_CONFIG:
1405         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1406         return VC_EQC_SYNC_MASK;
1407     default:
1408         return pnv_xive_ic_reg_read(opaque, addr, size);
1409     }
1410 }
1411 
1412 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1413                                 uint64_t val, unsigned size)
1414 {
1415     pnv_xive_ic_reg_write(opaque, addr, val, size);
1416 }
1417 
1418 static const MemoryRegionOps pnv_xive_xscom_ops = {
1419     .read = pnv_xive_xscom_read,
1420     .write = pnv_xive_xscom_write,
1421     .endianness = DEVICE_BIG_ENDIAN,
1422     .valid = {
1423         .min_access_size = 8,
1424         .max_access_size = 8,
1425     },
1426     .impl = {
1427         .min_access_size = 8,
1428         .max_access_size = 8,
1429     }
1430 };
1431 
1432 /*
1433  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1434  */
1435 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1436                                  unsigned size)
1437 {
1438     PnvXive *xive = PNV_XIVE(opaque);
1439     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1440     uint64_t edt_type = 0;
1441     uint64_t edt_offset;
1442     MemTxResult result;
1443     AddressSpace *edt_as = NULL;
1444     uint64_t ret = -1;
1445 
1446     if (edt_index < XIVE_TABLE_EDT_MAX) {
1447         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1448     }
1449 
1450     switch (edt_type) {
1451     case CQ_TDR_EDT_IPI:
1452         edt_as = &xive->ipi_as;
1453         break;
1454     case CQ_TDR_EDT_EQ:
1455         edt_as = &xive->end_as;
1456         break;
1457     default:
1458         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1459         return -1;
1460     }
1461 
1462     /* Remap the offset for the targeted address space */
1463     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1464 
1465     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1466                             &result);
1467 
1468     if (result != MEMTX_OK) {
1469         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1470                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1471                    offset, edt_offset);
1472         return -1;
1473     }
1474 
1475     return ret;
1476 }
1477 
1478 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1479                               uint64_t val, unsigned size)
1480 {
1481     PnvXive *xive = PNV_XIVE(opaque);
1482     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1483     uint64_t edt_type = 0;
1484     uint64_t edt_offset;
1485     MemTxResult result;
1486     AddressSpace *edt_as = NULL;
1487 
1488     if (edt_index < XIVE_TABLE_EDT_MAX) {
1489         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1490     }
1491 
1492     switch (edt_type) {
1493     case CQ_TDR_EDT_IPI:
1494         edt_as = &xive->ipi_as;
1495         break;
1496     case CQ_TDR_EDT_EQ:
1497         edt_as = &xive->end_as;
1498         break;
1499     default:
1500         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1501                    offset);
1502         return;
1503     }
1504 
1505     /* Remap the offset for the targeted address space */
1506     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1507 
1508     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1509     if (result != MEMTX_OK) {
1510         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1511     }
1512 }
1513 
1514 static const MemoryRegionOps pnv_xive_vc_ops = {
1515     .read = pnv_xive_vc_read,
1516     .write = pnv_xive_vc_write,
1517     .endianness = DEVICE_BIG_ENDIAN,
1518     .valid = {
1519         .min_access_size = 8,
1520         .max_access_size = 8,
1521     },
1522     .impl = {
1523         .min_access_size = 8,
1524         .max_access_size = 8,
1525     },
1526 };
1527 
1528 /*
1529  * Presenter Controller MMIO region. The Virtualization Controller
1530  * updates the IPB in the NVT table when required. Not modeled.
1531  */
1532 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1533                                  unsigned size)
1534 {
1535     PnvXive *xive = PNV_XIVE(opaque);
1536 
1537     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1538     return -1;
1539 }
1540 
1541 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1542                               uint64_t value, unsigned size)
1543 {
1544     PnvXive *xive = PNV_XIVE(opaque);
1545 
1546     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1547 }
1548 
1549 static const MemoryRegionOps pnv_xive_pc_ops = {
1550     .read = pnv_xive_pc_read,
1551     .write = pnv_xive_pc_write,
1552     .endianness = DEVICE_BIG_ENDIAN,
1553     .valid = {
1554         .min_access_size = 8,
1555         .max_access_size = 8,
1556     },
1557     .impl = {
1558         .min_access_size = 8,
1559         .max_access_size = 8,
1560     },
1561 };
1562 
1563 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1564 {
1565     XiveRouter *xrtr = XIVE_ROUTER(xive);
1566     uint8_t blk = xive->chip->chip_id;
1567     uint32_t srcno0 = XIVE_SRCNO(blk, 0);
1568     uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1569     uint32_t nr_ends = pnv_xive_nr_ends(xive);
1570     XiveEAS eas;
1571     XiveEND end;
1572     int i;
1573 
1574     monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1575                    srcno0 + nr_ipis - 1);
1576     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1577 
1578     monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1579                    srcno0 + nr_ipis - 1);
1580     for (i = 0; i < nr_ipis; i++) {
1581         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1582             break;
1583         }
1584         if (!xive_eas_is_masked(&eas)) {
1585             xive_eas_pic_print_info(&eas, i, mon);
1586         }
1587     }
1588 
1589     monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1590     for (i = 0; i < nr_ends; i++) {
1591         if (xive_router_get_end(xrtr, blk, i, &end)) {
1592             break;
1593         }
1594         xive_end_pic_print_info(&end, i, mon);
1595     }
1596 }
1597 
1598 static void pnv_xive_reset(void *dev)
1599 {
1600     PnvXive *xive = PNV_XIVE(dev);
1601     XiveSource *xsrc = &xive->ipi_source;
1602     XiveENDSource *end_xsrc = &xive->end_source;
1603 
1604     /*
1605      * Use the PnvChip id to identify the XIVE interrupt controller.
1606      * It can be overriden by configuration at runtime.
1607      */
1608     xive->tctx_chipid = xive->chip->chip_id;
1609 
1610     /* Default page size (Should be changed at runtime to 64k) */
1611     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1612 
1613     /* Clear subregions */
1614     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1615         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1616     }
1617 
1618     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1619         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1620     }
1621 
1622     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1623         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1624     }
1625 
1626     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1627         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1628     }
1629 }
1630 
1631 static void pnv_xive_init(Object *obj)
1632 {
1633     PnvXive *xive = PNV_XIVE(obj);
1634 
1635     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1636                             sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1637                             &error_abort, NULL);
1638     object_initialize_child(obj, "end_source", &xive->end_source,
1639                             sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1640                             &error_abort, NULL);
1641 }
1642 
1643 /*
1644  *  Maximum number of IRQs and ENDs supported by HW
1645  */
1646 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1647 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1648 
1649 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1650 {
1651     PnvXive *xive = PNV_XIVE(dev);
1652     XiveSource *xsrc = &xive->ipi_source;
1653     XiveENDSource *end_xsrc = &xive->end_source;
1654     Error *local_err = NULL;
1655     Object *obj;
1656 
1657     obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1658     if (!obj) {
1659         error_propagate(errp, local_err);
1660         error_prepend(errp, "required link 'chip' not found: ");
1661         return;
1662     }
1663 
1664     /* The PnvChip id identifies the XIVE interrupt controller. */
1665     xive->chip = PNV_CHIP(obj);
1666 
1667     /*
1668      * The XiveSource and XiveENDSource objects are realized with the
1669      * maximum allowed HW configuration. The ESB MMIO regions will be
1670      * resized dynamically when the controller is configured by the FW
1671      * to limit accesses to resources not provisioned.
1672      */
1673     object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1674                             &error_fatal);
1675     object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
1676                                    &error_fatal);
1677     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1678     if (local_err) {
1679         error_propagate(errp, local_err);
1680         return;
1681     }
1682 
1683     object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1684                             &error_fatal);
1685     object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1686                                    &error_fatal);
1687     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1688     if (local_err) {
1689         error_propagate(errp, local_err);
1690         return;
1691     }
1692 
1693     /* Default page size. Generally changed at runtime to 64k */
1694     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1695 
1696     /* XSCOM region, used for initial configuration of the BARs */
1697     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1698                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1699 
1700     /* Interrupt controller MMIO regions */
1701     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1702                        PNV9_XIVE_IC_SIZE);
1703 
1704     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1705                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1706     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1707                           &pnv_xive_ic_notify_ops,
1708                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1709 
1710     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1711     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1712                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1713 
1714     /* Thread Interrupt Management Area (Indirect) */
1715     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1716                           &xive_tm_indirect_ops,
1717                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1718     /*
1719      * Overall Virtualization Controller MMIO region containing the
1720      * IPI ESB pages and END ESB pages. The layout is defined by the
1721      * EDT "Domain table" and the accesses are dispatched using
1722      * address spaces for each.
1723      */
1724     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1725                           "xive-vc", PNV9_XIVE_VC_SIZE);
1726 
1727     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1728                        PNV9_XIVE_VC_SIZE);
1729     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1730     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1731                        PNV9_XIVE_VC_SIZE);
1732     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1733 
1734     /*
1735      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1736      * VC region. Their size is configured by the FW in the EDT table.
1737      */
1738     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1739     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1740 
1741     /* Presenter Controller MMIO region (not modeled) */
1742     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1743                           "xive-pc", PNV9_XIVE_PC_SIZE);
1744 
1745     /* Thread Interrupt Management Area (Direct) */
1746     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1747                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1748 
1749     qemu_register_reset(pnv_xive_reset, dev);
1750 }
1751 
1752 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1753                              int xscom_offset)
1754 {
1755     const char compat[] = "ibm,power9-xive-x";
1756     char *name;
1757     int offset;
1758     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1759     uint32_t reg[] = {
1760         cpu_to_be32(lpc_pcba),
1761         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1762     };
1763 
1764     name = g_strdup_printf("xive@%x", lpc_pcba);
1765     offset = fdt_add_subnode(fdt, xscom_offset, name);
1766     _FDT(offset);
1767     g_free(name);
1768 
1769     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1770     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1771                       sizeof(compat))));
1772     return 0;
1773 }
1774 
1775 static Property pnv_xive_properties[] = {
1776     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1777     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1778     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1779     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1780     DEFINE_PROP_END_OF_LIST(),
1781 };
1782 
1783 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1784 {
1785     DeviceClass *dc = DEVICE_CLASS(klass);
1786     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1787     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1788     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1789 
1790     xdc->dt_xscom = pnv_xive_dt_xscom;
1791 
1792     dc->desc = "PowerNV XIVE Interrupt Controller";
1793     dc->realize = pnv_xive_realize;
1794     dc->props = pnv_xive_properties;
1795 
1796     xrc->get_eas = pnv_xive_get_eas;
1797     xrc->get_end = pnv_xive_get_end;
1798     xrc->write_end = pnv_xive_write_end;
1799     xrc->get_nvt = pnv_xive_get_nvt;
1800     xrc->write_nvt = pnv_xive_write_nvt;
1801     xrc->get_tctx = pnv_xive_get_tctx;
1802 
1803     xnc->notify = pnv_xive_notify;
1804 };
1805 
1806 static const TypeInfo pnv_xive_info = {
1807     .name          = TYPE_PNV_XIVE,
1808     .parent        = TYPE_XIVE_ROUTER,
1809     .instance_init = pnv_xive_init,
1810     .instance_size = sizeof(PnvXive),
1811     .class_init    = pnv_xive_class_init,
1812     .interfaces    = (InterfaceInfo[]) {
1813         { TYPE_PNV_XSCOM_INTERFACE },
1814         { }
1815     }
1816 };
1817 
1818 static void pnv_xive_register_types(void)
1819 {
1820     type_register_static(&pnv_xive_info);
1821 }
1822 
1823 type_init(pnv_xive_register_types)
1824