xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision 5373c61d6a7ec29c2b1126cb908fd08e23b4247b)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 
28 #include <libfdt.h>
29 
30 #include "pnv_xive_regs.h"
31 
32 #undef XIVE_DEBUG
33 
34 /*
35  * Virtual structures table (VST)
36  */
37 #define SBE_PER_BYTE   4
38 
39 typedef struct XiveVstInfo {
40     const char *name;
41     uint32_t    size;
42     uint32_t    max_blocks;
43 } XiveVstInfo;
44 
45 static const XiveVstInfo vst_infos[] = {
46     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
47     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
48     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 
51     /*
52      *  Interrupt fifo backing store table (not modeled) :
53      *
54      * 0 - IPI,
55      * 1 - HWD,
56      * 2 - First escalate,
57      * 3 - Second escalate,
58      * 4 - Redistribution,
59      * 5 - IPI cascaded queue ?
60      */
61     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
62 };
63 
64 #define xive_error(xive, fmt, ...)                                      \
65     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
66                   (xive)->chip->chip_id, ## __VA_ARGS__);
67 
68 /*
69  * QEMU version of the GETFIELD/SETFIELD macros
70  *
71  * TODO: It might be better to use the existing extract64() and
72  * deposit64() but this means that all the register definitions will
73  * change and become incompatible with the ones found in skiboot.
74  *
75  * Keep it as it is for now until we find a common ground.
76  */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79     return (word & mask) >> ctz64(mask);
80 }
81 
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83                                 uint64_t value)
84 {
85     return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87 
88 /*
89  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
90  * of the chips is good enough.
91  *
92  * TODO: Block scope support
93  */
94 static PnvXive *pnv_xive_get_ic(uint8_t blk)
95 {
96     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
97     int i;
98 
99     for (i = 0; i < pnv->num_chips; i++) {
100         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
101         PnvXive *xive = &chip9->xive;
102 
103         if (xive->chip->chip_id == blk) {
104             return xive;
105         }
106     }
107     return NULL;
108 }
109 
110 /*
111  * VST accessors for SBE, EAT, ENDT, NVT
112  *
113  * Indirect VST tables are arrays of VSDs pointing to a page (of same
114  * size). Each page is a direct VST table.
115  */
116 
117 #define XIVE_VSD_SIZE 8
118 
119 /* Indirect page size can be 4K, 64K, 2M, 16M. */
120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
121 {
122      return page_shift == 12 || page_shift == 16 ||
123          page_shift == 21 || page_shift == 24;
124 }
125 
126 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
127                                          uint64_t vsd, uint32_t idx)
128 {
129     const XiveVstInfo *info = &vst_infos[type];
130     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
131     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
132     uint32_t idx_max;
133 
134     idx_max = vst_tsize / info->size - 1;
135     if (idx > idx_max) {
136 #ifdef XIVE_DEBUG
137         xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
138                    info->name, idx, idx_max);
139 #endif
140         return 0;
141     }
142 
143     return vst_addr + idx * info->size;
144 }
145 
146 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
147                                            uint64_t vsd, uint32_t idx)
148 {
149     const XiveVstInfo *info = &vst_infos[type];
150     uint64_t vsd_addr;
151     uint32_t vsd_idx;
152     uint32_t page_shift;
153     uint32_t vst_per_page;
154 
155     /* Get the page size of the indirect table. */
156     vsd_addr = vsd & VSD_ADDRESS_MASK;
157     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
158 
159     if (!(vsd & VSD_ADDRESS_MASK)) {
160 #ifdef XIVE_DEBUG
161         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
162 #endif
163         return 0;
164     }
165 
166     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
167 
168     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
169         xive_error(xive, "VST: invalid %s page shift %d", info->name,
170                    page_shift);
171         return 0;
172     }
173 
174     vst_per_page = (1ull << page_shift) / info->size;
175     vsd_idx = idx / vst_per_page;
176 
177     /* Load the VSD we are looking for, if not already done */
178     if (vsd_idx) {
179         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
180         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
181 
182         if (!(vsd & VSD_ADDRESS_MASK)) {
183 #ifdef XIVE_DEBUG
184             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
185 #endif
186             return 0;
187         }
188 
189         /*
190          * Check that the pages have a consistent size across the
191          * indirect table
192          */
193         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
194             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
195                        info->name, idx);
196             return 0;
197         }
198     }
199 
200     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
201 }
202 
203 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
204                                   uint32_t idx)
205 {
206     const XiveVstInfo *info = &vst_infos[type];
207     uint64_t vsd;
208 
209     if (blk >= info->max_blocks) {
210         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
211                    blk, info->name, idx);
212         return 0;
213     }
214 
215     vsd = xive->vsds[type][blk];
216 
217     /* Remote VST access */
218     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
219         xive = pnv_xive_get_ic(blk);
220 
221         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
222     }
223 
224     if (VSD_INDIRECT & vsd) {
225         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
226     }
227 
228     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
229 }
230 
231 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
232                              uint32_t idx, void *data)
233 {
234     const XiveVstInfo *info = &vst_infos[type];
235     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
236 
237     if (!addr) {
238         return -1;
239     }
240 
241     cpu_physical_memory_read(addr, data, info->size);
242     return 0;
243 }
244 
245 #define XIVE_VST_WORD_ALL -1
246 
247 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
248                               uint32_t idx, void *data, uint32_t word_number)
249 {
250     const XiveVstInfo *info = &vst_infos[type];
251     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
252 
253     if (!addr) {
254         return -1;
255     }
256 
257     if (word_number == XIVE_VST_WORD_ALL) {
258         cpu_physical_memory_write(addr, data, info->size);
259     } else {
260         cpu_physical_memory_write(addr + word_number * 4,
261                                   data + word_number * 4, 4);
262     }
263     return 0;
264 }
265 
266 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
267                             XiveEND *end)
268 {
269     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
270 }
271 
272 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
273                               XiveEND *end, uint8_t word_number)
274 {
275     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
276                               word_number);
277 }
278 
279 static int pnv_xive_end_update(PnvXive *xive)
280 {
281     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
282                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
283     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
284                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
285     int i;
286     uint64_t eqc_watch[4];
287 
288     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
289         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
290     }
291 
292     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
293                               XIVE_VST_WORD_ALL);
294 }
295 
296 static void pnv_xive_end_cache_load(PnvXive *xive)
297 {
298     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302     uint64_t eqc_watch[4] = { 0 };
303     int i;
304 
305     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
306         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
307     }
308 
309     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
310         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
311     }
312 }
313 
314 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
315                             XiveNVT *nvt)
316 {
317     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
318 }
319 
320 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
321                               XiveNVT *nvt, uint8_t word_number)
322 {
323     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
324                               word_number);
325 }
326 
327 static int pnv_xive_nvt_update(PnvXive *xive)
328 {
329     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
330                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
331     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
332                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
333     int i;
334     uint64_t vpc_watch[8];
335 
336     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
337         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
338     }
339 
340     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
341                               XIVE_VST_WORD_ALL);
342 }
343 
344 static void pnv_xive_nvt_cache_load(PnvXive *xive)
345 {
346     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350     uint64_t vpc_watch[8] = { 0 };
351     int i;
352 
353     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
354         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
355     }
356 
357     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
358         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
359     }
360 }
361 
362 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
363                             XiveEAS *eas)
364 {
365     PnvXive *xive = PNV_XIVE(xrtr);
366 
367     if (pnv_xive_get_ic(blk) != xive) {
368         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
369         return -1;
370     }
371 
372     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
373 }
374 
375 /*
376  * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
377  * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
378  * second register covers cores 16-23 (normal) or 8-11 (fused).
379  */
380 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
381 {
382     int pir = ppc_cpu_pir(cpu);
383     uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
384     uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
385     uint32_t bit = pir & 0x3f;
386 
387     return xive->regs[reg >> 3] & PPC_BIT(bit);
388 }
389 
390 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
391                               uint8_t nvt_blk, uint32_t nvt_idx,
392                               bool cam_ignore, uint8_t priority,
393                               uint32_t logic_serv, XiveTCTXMatch *match)
394 {
395     PnvXive *xive = PNV_XIVE(xptr);
396     PnvChip *chip = xive->chip;
397     int count = 0;
398     int i, j;
399 
400     for (i = 0; i < chip->nr_cores; i++) {
401         PnvCore *pc = chip->cores[i];
402         CPUCore *cc = CPU_CORE(pc);
403 
404         for (j = 0; j < cc->nr_threads; j++) {
405             PowerPCCPU *cpu = pc->threads[j];
406             XiveTCTX *tctx;
407             int ring;
408 
409             if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
410                 continue;
411             }
412 
413             tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
414 
415             /*
416              * Check the thread context CAM lines and record matches.
417              */
418             ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
419                                              nvt_idx, cam_ignore, logic_serv);
420             /*
421              * Save the context and follow on to catch duplicates, that we
422              * don't support yet.
423              */
424             if (ring != -1) {
425                 if (match->tctx) {
426                     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
427                                   "thread context NVT %x/%x\n",
428                                   nvt_blk, nvt_idx);
429                     return -1;
430                 }
431 
432                 match->ring = ring;
433                 match->tctx = tctx;
434                 count++;
435             }
436         }
437     }
438 
439     return count;
440 }
441 
442 /*
443  * The TIMA MMIO space is shared among the chips and to identify the
444  * chip from which the access is being done, we extract the chip id
445  * from the PIR.
446  */
447 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
448 {
449     int pir = ppc_cpu_pir(cpu);
450     PnvChip *chip;
451     PnvXive *xive;
452 
453     chip = pnv_get_chip(PNV9_PIR2CHIP(pir));
454     assert(chip);
455     xive = &PNV9_CHIP(chip)->xive;
456 
457     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
458         xive_error(xive, "IC: CPU %x is not enabled", pir);
459     }
460     return xive;
461 }
462 
463 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
464 {
465     PowerPCCPU *cpu = POWERPC_CPU(cs);
466     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
467 
468     if (!xive) {
469         return NULL;
470     }
471 
472     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
473 }
474 
475 /*
476  * The internal sources (IPIs) of the interrupt controller have no
477  * knowledge of the XIVE chip on which they reside. Encode the block
478  * id in the source interrupt number before forwarding the source
479  * event notification to the Router. This is required on a multichip
480  * system.
481  */
482 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
483 {
484     PnvXive *xive = PNV_XIVE(xn);
485     uint8_t blk = xive->chip->chip_id;
486 
487     xive_router_notify(xn, XIVE_EAS(blk, srcno));
488 }
489 
490 /*
491  * XIVE helpers
492  */
493 
494 static uint64_t pnv_xive_vc_size(PnvXive *xive)
495 {
496     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
497 }
498 
499 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
500 {
501     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
502 }
503 
504 static uint64_t pnv_xive_pc_size(PnvXive *xive)
505 {
506     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
507 }
508 
509 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
510 {
511     uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
512     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
513 
514     return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
515 }
516 
517 /*
518  * EDT Table
519  *
520  * The Virtualization Controller MMIO region containing the IPI ESB
521  * pages and END ESB pages is sub-divided into "sets" which map
522  * portions of the VC region to the different ESB pages. It is
523  * configured at runtime through the EDT "Domain Table" to let the
524  * firmware decide how to split the VC address space between IPI ESB
525  * pages and END ESB pages.
526  */
527 
528 /*
529  * Computes the overall size of the IPI or the END ESB pages
530  */
531 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
532 {
533     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
534     uint64_t size = 0;
535     int i;
536 
537     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
538         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
539 
540         if (edt_type == type) {
541             size += edt_size;
542         }
543     }
544 
545     return size;
546 }
547 
548 /*
549  * Maps an offset of the VC region in the IPI or END region using the
550  * layout defined by the EDT "Domaine Table"
551  */
552 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
553                                               uint64_t type)
554 {
555     int i;
556     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
557     uint64_t edt_offset = vc_offset;
558 
559     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
560         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
561 
562         if (edt_type != type) {
563             edt_offset -= edt_size;
564         }
565     }
566 
567     return edt_offset;
568 }
569 
570 static void pnv_xive_edt_resize(PnvXive *xive)
571 {
572     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
573     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
574 
575     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
576     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
577 
578     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
579     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
580 }
581 
582 /*
583  * XIVE Table configuration. Only EDT is supported.
584  */
585 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
586 {
587     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
588     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
589     uint64_t *xive_table;
590     uint8_t max_index;
591 
592     switch (tsel) {
593     case CQ_TAR_TSEL_BLK:
594         max_index = ARRAY_SIZE(xive->blk);
595         xive_table = xive->blk;
596         break;
597     case CQ_TAR_TSEL_MIG:
598         max_index = ARRAY_SIZE(xive->mig);
599         xive_table = xive->mig;
600         break;
601     case CQ_TAR_TSEL_EDT:
602         max_index = ARRAY_SIZE(xive->edt);
603         xive_table = xive->edt;
604         break;
605     case CQ_TAR_TSEL_VDT:
606         max_index = ARRAY_SIZE(xive->vdt);
607         xive_table = xive->vdt;
608         break;
609     default:
610         xive_error(xive, "IC: invalid table %d", (int) tsel);
611         return -1;
612     }
613 
614     if (tsel_index >= max_index) {
615         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
616         return -1;
617     }
618 
619     xive_table[tsel_index] = val;
620 
621     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
622         xive->regs[CQ_TAR >> 3] =
623             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
624     }
625 
626     /*
627      * EDT configuration is complete. Resize the MMIO windows exposing
628      * the IPI and the END ESBs in the VC region.
629      */
630     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
631         pnv_xive_edt_resize(xive);
632     }
633 
634     return 0;
635 }
636 
637 /*
638  * Virtual Structure Tables (VST) configuration
639  */
640 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
641                                        uint8_t blk, uint64_t vsd)
642 {
643     XiveENDSource *end_xsrc = &xive->end_source;
644     XiveSource *xsrc = &xive->ipi_source;
645     const XiveVstInfo *info = &vst_infos[type];
646     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
647     uint64_t vst_tsize = 1ull << page_shift;
648     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
649 
650     /* Basic checks */
651 
652     if (VSD_INDIRECT & vsd) {
653         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
654             xive_error(xive, "VST: %s indirect tables are not enabled",
655                        info->name);
656             return;
657         }
658 
659         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
660             xive_error(xive, "VST: invalid %s page shift %d", info->name,
661                        page_shift);
662             return;
663         }
664     }
665 
666     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
667         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
668                    " page shift %d", info->name, vst_addr, page_shift);
669         return;
670     }
671 
672     /* Record the table configuration (in SRAM on HW) */
673     xive->vsds[type][blk] = vsd;
674 
675     /* Now tune the models with the configuration provided by the FW */
676 
677     switch (type) {
678     case VST_TSEL_IVT:  /* Nothing to be done */
679         break;
680 
681     case VST_TSEL_EQDT:
682         /*
683          * Backing store pages for the END.
684          *
685          * If the table is direct, we can compute the number of PQ
686          * entries provisioned by FW (such as skiboot) and resize the
687          * END ESB window accordingly.
688          */
689         if (!(VSD_INDIRECT & vsd)) {
690             memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
691                                    * (1ull << xsrc->esb_shift));
692         }
693         memory_region_add_subregion(&xive->end_edt_mmio, 0,
694                                     &end_xsrc->esb_mmio);
695         break;
696 
697     case VST_TSEL_SBE:
698         /*
699          * Backing store pages for the source PQ bits. The model does
700          * not use these PQ bits backed in RAM because the XiveSource
701          * model has its own.
702          *
703          * If the table is direct, we can compute the number of PQ
704          * entries provisioned by FW (such as skiboot) and resize the
705          * ESB window accordingly.
706          */
707         if (!(VSD_INDIRECT & vsd)) {
708             memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
709                                    * (1ull << xsrc->esb_shift));
710         }
711         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
712         break;
713 
714     case VST_TSEL_VPDT: /* Not modeled */
715     case VST_TSEL_IRQ:  /* Not modeled */
716         /*
717          * These tables contains the backing store pages for the
718          * interrupt fifos of the VC sub-engine in case of overflow.
719          */
720         break;
721 
722     default:
723         g_assert_not_reached();
724     }
725 }
726 
727 /*
728  * Both PC and VC sub-engines are configured as each use the Virtual
729  * Structure Tables : SBE, EAS, END and NVT.
730  */
731 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
732 {
733     uint8_t mode = GETFIELD(VSD_MODE, vsd);
734     uint8_t type = GETFIELD(VST_TABLE_SELECT,
735                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
736     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
737                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
738     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
739 
740     if (type > VST_TSEL_IRQ) {
741         xive_error(xive, "VST: invalid table type %d", type);
742         return;
743     }
744 
745     if (blk >= vst_infos[type].max_blocks) {
746         xive_error(xive, "VST: invalid block id %d for"
747                       " %s table", blk, vst_infos[type].name);
748         return;
749     }
750 
751     /*
752      * Only take the VC sub-engine configuration into account because
753      * the XiveRouter model combines both VC and PC sub-engines
754      */
755     if (pc_engine) {
756         return;
757     }
758 
759     if (!vst_addr) {
760         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
761         return;
762     }
763 
764     switch (mode) {
765     case VSD_MODE_FORWARD:
766         xive->vsds[type][blk] = vsd;
767         break;
768 
769     case VSD_MODE_EXCLUSIVE:
770         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
771         break;
772 
773     default:
774         xive_error(xive, "VST: unsupported table mode %d", mode);
775         return;
776     }
777 }
778 
779 /*
780  * Interrupt controller MMIO region. The layout is compatible between
781  * 4K and 64K pages :
782  *
783  * Page 0           sub-engine BARs
784  *  0x000 - 0x3FF   IC registers
785  *  0x400 - 0x7FF   PC registers
786  *  0x800 - 0xFFF   VC registers
787  *
788  * Page 1           Notify page (writes only)
789  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
790  *  0x800 - 0xFFF   forwards and syncs
791  *
792  * Page 2           LSI Trigger page (writes only) (not modeled)
793  * Page 3           LSI SB EOI page (reads only) (not modeled)
794  *
795  * Page 4-7         indirect TIMA
796  */
797 
798 /*
799  * IC - registers MMIO
800  */
801 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
802                                   uint64_t val, unsigned size)
803 {
804     PnvXive *xive = PNV_XIVE(opaque);
805     MemoryRegion *sysmem = get_system_memory();
806     uint32_t reg = offset >> 3;
807     bool is_chip0 = xive->chip->chip_id == 0;
808 
809     switch (offset) {
810 
811     /*
812      * XIVE CQ (PowerBus bridge) settings
813      */
814     case CQ_MSGSND:     /* msgsnd for doorbells */
815     case CQ_FIRMASK_OR: /* FIR error reporting */
816         break;
817     case CQ_PBI_CTL:
818         if (val & CQ_PBI_PC_64K) {
819             xive->pc_shift = 16;
820         }
821         if (val & CQ_PBI_VC_64K) {
822             xive->vc_shift = 16;
823         }
824         break;
825     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
826         /*
827          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
828          */
829         break;
830 
831     /*
832      * XIVE Virtualization Controller settings
833      */
834     case VC_GLOBAL_CONFIG:
835         break;
836 
837     /*
838      * XIVE Presenter Controller settings
839      */
840     case PC_GLOBAL_CONFIG:
841         /*
842          * PC_GCONF_CHIPID_OVR
843          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
844          */
845         break;
846     case PC_TCTXT_CFG:
847         /*
848          * TODO: block group support
849          *
850          * PC_TCTXT_CFG_BLKGRP_EN
851          * PC_TCTXT_CFG_HARD_CHIPID_BLK :
852          *   Moves the chipid into block field for hardwired CAM compares.
853          *   Block offset value is adjusted to 0b0..01 & ThrdId
854          *
855          *   Will require changes in xive_presenter_tctx_match(). I am
856          *   not sure how to handle that yet.
857          */
858 
859         /* Overrides hardwired chip ID with the chip ID field */
860         if (val & PC_TCTXT_CHIPID_OVERRIDE) {
861             xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
862         }
863         break;
864     case PC_TCTXT_TRACK:
865         /*
866          * PC_TCTXT_TRACK_EN:
867          *   enable block tracking and exchange of block ownership
868          *   information between Interrupt controllers
869          */
870         break;
871 
872     /*
873      * Misc settings
874      */
875     case VC_SBC_CONFIG: /* Store EOI configuration */
876         /*
877          * Configure store EOI if required by firwmare (skiboot has removed
878          * support recently though)
879          */
880         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
881             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
882         }
883         break;
884 
885     case VC_EQC_CONFIG: /* TODO: silent escalation */
886     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
887         break;
888 
889     /*
890      * XIVE BAR settings (XSCOM only)
891      */
892     case CQ_RST_CTL:
893         /* bit4: resets all BAR registers */
894         break;
895 
896     case CQ_IC_BAR: /* IC BAR. 8 pages */
897         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
898         if (!(val & CQ_IC_BAR_VALID)) {
899             xive->ic_base = 0;
900             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
901                 memory_region_del_subregion(&xive->ic_mmio,
902                                             &xive->ic_reg_mmio);
903                 memory_region_del_subregion(&xive->ic_mmio,
904                                             &xive->ic_notify_mmio);
905                 memory_region_del_subregion(&xive->ic_mmio,
906                                             &xive->ic_lsi_mmio);
907                 memory_region_del_subregion(&xive->ic_mmio,
908                                             &xive->tm_indirect_mmio);
909 
910                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
911             }
912         } else {
913             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
914             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
915                 memory_region_add_subregion(sysmem, xive->ic_base,
916                                             &xive->ic_mmio);
917 
918                 memory_region_add_subregion(&xive->ic_mmio,  0,
919                                             &xive->ic_reg_mmio);
920                 memory_region_add_subregion(&xive->ic_mmio,
921                                             1ul << xive->ic_shift,
922                                             &xive->ic_notify_mmio);
923                 memory_region_add_subregion(&xive->ic_mmio,
924                                             2ul << xive->ic_shift,
925                                             &xive->ic_lsi_mmio);
926                 memory_region_add_subregion(&xive->ic_mmio,
927                                             4ull << xive->ic_shift,
928                                             &xive->tm_indirect_mmio);
929             }
930         }
931         break;
932 
933     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
934     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
935         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
936         if (!(val & CQ_TM_BAR_VALID)) {
937             xive->tm_base = 0;
938             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
939                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
940             }
941         } else {
942             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
943             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
944                 memory_region_add_subregion(sysmem, xive->tm_base,
945                                             &xive->tm_mmio);
946             }
947         }
948         break;
949 
950     case CQ_PC_BARM:
951         xive->regs[reg] = val;
952         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
953         break;
954     case CQ_PC_BAR: /* From 32M to 512G */
955         if (!(val & CQ_PC_BAR_VALID)) {
956             xive->pc_base = 0;
957             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
958                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
959             }
960         } else {
961             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
962             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
963                 memory_region_add_subregion(sysmem, xive->pc_base,
964                                             &xive->pc_mmio);
965             }
966         }
967         break;
968 
969     case CQ_VC_BARM:
970         xive->regs[reg] = val;
971         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
972         break;
973     case CQ_VC_BAR: /* From 64M to 4TB */
974         if (!(val & CQ_VC_BAR_VALID)) {
975             xive->vc_base = 0;
976             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
977                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
978             }
979         } else {
980             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
981             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
982                 memory_region_add_subregion(sysmem, xive->vc_base,
983                                             &xive->vc_mmio);
984             }
985         }
986         break;
987 
988     /*
989      * XIVE Table settings.
990      */
991     case CQ_TAR: /* Table Address */
992         break;
993     case CQ_TDR: /* Table Data */
994         pnv_xive_table_set_data(xive, val);
995         break;
996 
997     /*
998      * XIVE VC & PC Virtual Structure Table settings
999      */
1000     case VC_VSD_TABLE_ADDR:
1001     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1002         break;
1003     case VC_VSD_TABLE_DATA: /* Virtual table setting */
1004     case PC_VSD_TABLE_DATA:
1005         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1006         break;
1007 
1008     /*
1009      * Interrupt fifo overflow in memory backing store (Not modeled)
1010      */
1011     case VC_IRQ_CONFIG_IPI:
1012     case VC_IRQ_CONFIG_HW:
1013     case VC_IRQ_CONFIG_CASCADE1:
1014     case VC_IRQ_CONFIG_CASCADE2:
1015     case VC_IRQ_CONFIG_REDIST:
1016     case VC_IRQ_CONFIG_IPI_CASC:
1017         break;
1018 
1019     /*
1020      * XIVE hardware thread enablement
1021      */
1022     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1023     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1024         break;
1025 
1026     case PC_THREAD_EN_REG0_SET:
1027         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1028         break;
1029     case PC_THREAD_EN_REG1_SET:
1030         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1031         break;
1032     case PC_THREAD_EN_REG0_CLR:
1033         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1034         break;
1035     case PC_THREAD_EN_REG1_CLR:
1036         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1037         break;
1038 
1039     /*
1040      * Indirect TIMA access set up. Defines the PIR of the HW thread
1041      * to use.
1042      */
1043     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1044         break;
1045 
1046     /*
1047      * XIVE PC & VC cache updates for EAS, NVT and END
1048      */
1049     case VC_IVC_SCRUB_MASK:
1050     case VC_IVC_SCRUB_TRIG:
1051         break;
1052 
1053     case VC_EQC_CWATCH_SPEC:
1054         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1055         break;
1056     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1057         break;
1058     case VC_EQC_CWATCH_DAT0:
1059         /* writing to DATA0 triggers the cache write */
1060         xive->regs[reg] = val;
1061         pnv_xive_end_update(xive);
1062         break;
1063     case VC_EQC_SCRUB_MASK:
1064     case VC_EQC_SCRUB_TRIG:
1065         /*
1066          * The scrubbing registers flush the cache in RAM and can also
1067          * invalidate.
1068          */
1069         break;
1070 
1071     case PC_VPC_CWATCH_SPEC:
1072         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1073         break;
1074     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1075         break;
1076     case PC_VPC_CWATCH_DAT0:
1077         /* writing to DATA0 triggers the cache write */
1078         xive->regs[reg] = val;
1079         pnv_xive_nvt_update(xive);
1080         break;
1081     case PC_VPC_SCRUB_MASK:
1082     case PC_VPC_SCRUB_TRIG:
1083         /*
1084          * The scrubbing registers flush the cache in RAM and can also
1085          * invalidate.
1086          */
1087         break;
1088 
1089 
1090     /*
1091      * XIVE PC & VC cache invalidation
1092      */
1093     case PC_AT_KILL:
1094         break;
1095     case VC_AT_MACRO_KILL:
1096         break;
1097     case PC_AT_KILL_MASK:
1098     case VC_AT_MACRO_KILL_MASK:
1099         break;
1100 
1101     default:
1102         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1103         return;
1104     }
1105 
1106     xive->regs[reg] = val;
1107 }
1108 
1109 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1110 {
1111     PnvXive *xive = PNV_XIVE(opaque);
1112     uint64_t val = 0;
1113     uint32_t reg = offset >> 3;
1114 
1115     switch (offset) {
1116     case CQ_CFG_PB_GEN:
1117     case CQ_IC_BAR:
1118     case CQ_TM1_BAR:
1119     case CQ_TM2_BAR:
1120     case CQ_PC_BAR:
1121     case CQ_PC_BARM:
1122     case CQ_VC_BAR:
1123     case CQ_VC_BARM:
1124     case CQ_TAR:
1125     case CQ_TDR:
1126     case CQ_PBI_CTL:
1127 
1128     case PC_TCTXT_CFG:
1129     case PC_TCTXT_TRACK:
1130     case PC_TCTXT_INDIR0:
1131     case PC_TCTXT_INDIR1:
1132     case PC_TCTXT_INDIR2:
1133     case PC_TCTXT_INDIR3:
1134     case PC_GLOBAL_CONFIG:
1135 
1136     case PC_VPC_SCRUB_MASK:
1137 
1138     case VC_GLOBAL_CONFIG:
1139     case VC_AIB_TX_ORDER_TAG2:
1140 
1141     case VC_IRQ_CONFIG_IPI:
1142     case VC_IRQ_CONFIG_HW:
1143     case VC_IRQ_CONFIG_CASCADE1:
1144     case VC_IRQ_CONFIG_CASCADE2:
1145     case VC_IRQ_CONFIG_REDIST:
1146     case VC_IRQ_CONFIG_IPI_CASC:
1147 
1148     case VC_EQC_SCRUB_MASK:
1149     case VC_IVC_SCRUB_MASK:
1150     case VC_SBC_CONFIG:
1151     case VC_AT_MACRO_KILL_MASK:
1152     case VC_VSD_TABLE_ADDR:
1153     case PC_VSD_TABLE_ADDR:
1154     case VC_VSD_TABLE_DATA:
1155     case PC_VSD_TABLE_DATA:
1156     case PC_THREAD_EN_REG0:
1157     case PC_THREAD_EN_REG1:
1158         val = xive->regs[reg];
1159         break;
1160 
1161     /*
1162      * XIVE hardware thread enablement
1163      */
1164     case PC_THREAD_EN_REG0_SET:
1165     case PC_THREAD_EN_REG0_CLR:
1166         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1167         break;
1168     case PC_THREAD_EN_REG1_SET:
1169     case PC_THREAD_EN_REG1_CLR:
1170         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1171         break;
1172 
1173     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1174         val = 0xffffff0000000000;
1175         break;
1176 
1177     /*
1178      * XIVE PC & VC cache updates for EAS, NVT and END
1179      */
1180     case VC_EQC_CWATCH_SPEC:
1181         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1182         val = xive->regs[reg];
1183         break;
1184     case VC_EQC_CWATCH_DAT0:
1185         /*
1186          * Load DATA registers from cache with data requested by the
1187          * SPEC register
1188          */
1189         pnv_xive_end_cache_load(xive);
1190         val = xive->regs[reg];
1191         break;
1192     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1193         val = xive->regs[reg];
1194         break;
1195 
1196     case PC_VPC_CWATCH_SPEC:
1197         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1198         val = xive->regs[reg];
1199         break;
1200     case PC_VPC_CWATCH_DAT0:
1201         /*
1202          * Load DATA registers from cache with data requested by the
1203          * SPEC register
1204          */
1205         pnv_xive_nvt_cache_load(xive);
1206         val = xive->regs[reg];
1207         break;
1208     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1209         val = xive->regs[reg];
1210         break;
1211 
1212     case PC_VPC_SCRUB_TRIG:
1213     case VC_IVC_SCRUB_TRIG:
1214     case VC_EQC_SCRUB_TRIG:
1215         xive->regs[reg] &= ~VC_SCRUB_VALID;
1216         val = xive->regs[reg];
1217         break;
1218 
1219     /*
1220      * XIVE PC & VC cache invalidation
1221      */
1222     case PC_AT_KILL:
1223         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1224         val = xive->regs[reg];
1225         break;
1226     case VC_AT_MACRO_KILL:
1227         xive->regs[reg] &= ~VC_KILL_VALID;
1228         val = xive->regs[reg];
1229         break;
1230 
1231     /*
1232      * XIVE synchronisation
1233      */
1234     case VC_EQC_CONFIG:
1235         val = VC_EQC_SYNC_MASK;
1236         break;
1237 
1238     default:
1239         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1240     }
1241 
1242     return val;
1243 }
1244 
1245 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1246     .read = pnv_xive_ic_reg_read,
1247     .write = pnv_xive_ic_reg_write,
1248     .endianness = DEVICE_BIG_ENDIAN,
1249     .valid = {
1250         .min_access_size = 8,
1251         .max_access_size = 8,
1252     },
1253     .impl = {
1254         .min_access_size = 8,
1255         .max_access_size = 8,
1256     },
1257 };
1258 
1259 /*
1260  * IC - Notify MMIO port page (write only)
1261  */
1262 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1263 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1264 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1265 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1266 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1267 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1268 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1269 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1270 
1271 /* VC synchronisation */
1272 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1273 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1274 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1275 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1276 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1277 
1278 /* PC synchronisation */
1279 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1280 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1281 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1282 
1283 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1284 {
1285     uint8_t blk;
1286     uint32_t idx;
1287 
1288     if (val & XIVE_TRIGGER_END) {
1289         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1290                    addr, val);
1291         return;
1292     }
1293 
1294     /*
1295      * Forward the source event notification directly to the Router.
1296      * The source interrupt number should already be correctly encoded
1297      * with the chip block id by the sending device (PHB, PSI).
1298      */
1299     blk = XIVE_EAS_BLOCK(val);
1300     idx = XIVE_EAS_INDEX(val);
1301 
1302     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1303 }
1304 
1305 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1306                                      unsigned size)
1307 {
1308     PnvXive *xive = PNV_XIVE(opaque);
1309 
1310     /* VC: HW triggers */
1311     switch (addr) {
1312     case 0x000 ... 0x7FF:
1313         pnv_xive_ic_hw_trigger(opaque, addr, val);
1314         break;
1315 
1316     /* VC: Forwarded IRQs */
1317     case PNV_XIVE_FORWARD_IPI:
1318     case PNV_XIVE_FORWARD_HW:
1319     case PNV_XIVE_FORWARD_OS_ESC:
1320     case PNV_XIVE_FORWARD_HW_ESC:
1321     case PNV_XIVE_FORWARD_REDIS:
1322         /* TODO: forwarded IRQs. Should be like HW triggers */
1323         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1324                    addr, val);
1325         break;
1326 
1327     /* VC syncs */
1328     case PNV_XIVE_SYNC_IPI:
1329     case PNV_XIVE_SYNC_HW:
1330     case PNV_XIVE_SYNC_OS_ESC:
1331     case PNV_XIVE_SYNC_HW_ESC:
1332     case PNV_XIVE_SYNC_REDIS:
1333         break;
1334 
1335     /* PC syncs */
1336     case PNV_XIVE_SYNC_PULL:
1337     case PNV_XIVE_SYNC_PUSH:
1338     case PNV_XIVE_SYNC_VPC:
1339         break;
1340 
1341     default:
1342         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1343     }
1344 }
1345 
1346 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1347                                         unsigned size)
1348 {
1349     PnvXive *xive = PNV_XIVE(opaque);
1350 
1351     /* loads are invalid */
1352     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1353     return -1;
1354 }
1355 
1356 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1357     .read = pnv_xive_ic_notify_read,
1358     .write = pnv_xive_ic_notify_write,
1359     .endianness = DEVICE_BIG_ENDIAN,
1360     .valid = {
1361         .min_access_size = 8,
1362         .max_access_size = 8,
1363     },
1364     .impl = {
1365         .min_access_size = 8,
1366         .max_access_size = 8,
1367     },
1368 };
1369 
1370 /*
1371  * IC - LSI MMIO handlers (not modeled)
1372  */
1373 
1374 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1375                               uint64_t val, unsigned size)
1376 {
1377     PnvXive *xive = PNV_XIVE(opaque);
1378 
1379     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1380 }
1381 
1382 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1383 {
1384     PnvXive *xive = PNV_XIVE(opaque);
1385 
1386     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1387     return -1;
1388 }
1389 
1390 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1391     .read = pnv_xive_ic_lsi_read,
1392     .write = pnv_xive_ic_lsi_write,
1393     .endianness = DEVICE_BIG_ENDIAN,
1394     .valid = {
1395         .min_access_size = 8,
1396         .max_access_size = 8,
1397     },
1398     .impl = {
1399         .min_access_size = 8,
1400         .max_access_size = 8,
1401     },
1402 };
1403 
1404 /*
1405  * IC - Indirect TIMA MMIO handlers
1406  */
1407 
1408 /*
1409  * When the TIMA is accessed from the indirect page, the thread id of
1410  * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1411  * use. This is used for resets and for debug purpose also.
1412  */
1413 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1414 {
1415     PnvChip *chip = xive->chip;
1416     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1417     PowerPCCPU *cpu = NULL;
1418     int pir;
1419 
1420     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1421         xive_error(xive, "IC: no indirect TIMA access in progress");
1422         return NULL;
1423     }
1424 
1425     pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1426     cpu = pnv_chip_find_cpu(chip, pir);
1427     if (!cpu) {
1428         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1429         return NULL;
1430     }
1431 
1432     /* Check that HW thread is XIVE enabled */
1433     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1434         xive_error(xive, "IC: CPU %x is not enabled", pir);
1435     }
1436 
1437     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1438 }
1439 
1440 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1441                                    uint64_t value, unsigned size)
1442 {
1443     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1444 
1445     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1446 }
1447 
1448 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1449                                       unsigned size)
1450 {
1451     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1452 
1453     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1454 }
1455 
1456 static const MemoryRegionOps xive_tm_indirect_ops = {
1457     .read = xive_tm_indirect_read,
1458     .write = xive_tm_indirect_write,
1459     .endianness = DEVICE_BIG_ENDIAN,
1460     .valid = {
1461         .min_access_size = 1,
1462         .max_access_size = 8,
1463     },
1464     .impl = {
1465         .min_access_size = 1,
1466         .max_access_size = 8,
1467     },
1468 };
1469 
1470 /*
1471  * Interrupt controller XSCOM region.
1472  */
1473 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1474 {
1475     switch (addr >> 3) {
1476     case X_VC_EQC_CONFIG:
1477         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1478         return VC_EQC_SYNC_MASK;
1479     default:
1480         return pnv_xive_ic_reg_read(opaque, addr, size);
1481     }
1482 }
1483 
1484 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1485                                 uint64_t val, unsigned size)
1486 {
1487     pnv_xive_ic_reg_write(opaque, addr, val, size);
1488 }
1489 
1490 static const MemoryRegionOps pnv_xive_xscom_ops = {
1491     .read = pnv_xive_xscom_read,
1492     .write = pnv_xive_xscom_write,
1493     .endianness = DEVICE_BIG_ENDIAN,
1494     .valid = {
1495         .min_access_size = 8,
1496         .max_access_size = 8,
1497     },
1498     .impl = {
1499         .min_access_size = 8,
1500         .max_access_size = 8,
1501     }
1502 };
1503 
1504 /*
1505  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1506  */
1507 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1508                                  unsigned size)
1509 {
1510     PnvXive *xive = PNV_XIVE(opaque);
1511     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1512     uint64_t edt_type = 0;
1513     uint64_t edt_offset;
1514     MemTxResult result;
1515     AddressSpace *edt_as = NULL;
1516     uint64_t ret = -1;
1517 
1518     if (edt_index < XIVE_TABLE_EDT_MAX) {
1519         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1520     }
1521 
1522     switch (edt_type) {
1523     case CQ_TDR_EDT_IPI:
1524         edt_as = &xive->ipi_as;
1525         break;
1526     case CQ_TDR_EDT_EQ:
1527         edt_as = &xive->end_as;
1528         break;
1529     default:
1530         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1531         return -1;
1532     }
1533 
1534     /* Remap the offset for the targeted address space */
1535     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1536 
1537     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1538                             &result);
1539 
1540     if (result != MEMTX_OK) {
1541         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1542                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1543                    offset, edt_offset);
1544         return -1;
1545     }
1546 
1547     return ret;
1548 }
1549 
1550 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1551                               uint64_t val, unsigned size)
1552 {
1553     PnvXive *xive = PNV_XIVE(opaque);
1554     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1555     uint64_t edt_type = 0;
1556     uint64_t edt_offset;
1557     MemTxResult result;
1558     AddressSpace *edt_as = NULL;
1559 
1560     if (edt_index < XIVE_TABLE_EDT_MAX) {
1561         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1562     }
1563 
1564     switch (edt_type) {
1565     case CQ_TDR_EDT_IPI:
1566         edt_as = &xive->ipi_as;
1567         break;
1568     case CQ_TDR_EDT_EQ:
1569         edt_as = &xive->end_as;
1570         break;
1571     default:
1572         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1573                    offset);
1574         return;
1575     }
1576 
1577     /* Remap the offset for the targeted address space */
1578     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1579 
1580     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1581     if (result != MEMTX_OK) {
1582         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1583     }
1584 }
1585 
1586 static const MemoryRegionOps pnv_xive_vc_ops = {
1587     .read = pnv_xive_vc_read,
1588     .write = pnv_xive_vc_write,
1589     .endianness = DEVICE_BIG_ENDIAN,
1590     .valid = {
1591         .min_access_size = 8,
1592         .max_access_size = 8,
1593     },
1594     .impl = {
1595         .min_access_size = 8,
1596         .max_access_size = 8,
1597     },
1598 };
1599 
1600 /*
1601  * Presenter Controller MMIO region. The Virtualization Controller
1602  * updates the IPB in the NVT table when required. Not modeled.
1603  */
1604 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1605                                  unsigned size)
1606 {
1607     PnvXive *xive = PNV_XIVE(opaque);
1608 
1609     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1610     return -1;
1611 }
1612 
1613 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1614                               uint64_t value, unsigned size)
1615 {
1616     PnvXive *xive = PNV_XIVE(opaque);
1617 
1618     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1619 }
1620 
1621 static const MemoryRegionOps pnv_xive_pc_ops = {
1622     .read = pnv_xive_pc_read,
1623     .write = pnv_xive_pc_write,
1624     .endianness = DEVICE_BIG_ENDIAN,
1625     .valid = {
1626         .min_access_size = 8,
1627         .max_access_size = 8,
1628     },
1629     .impl = {
1630         .min_access_size = 8,
1631         .max_access_size = 8,
1632     },
1633 };
1634 
1635 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1636 {
1637     XiveRouter *xrtr = XIVE_ROUTER(xive);
1638     uint8_t blk = xive->chip->chip_id;
1639     uint32_t srcno0 = XIVE_EAS(blk, 0);
1640     uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1641     XiveEAS eas;
1642     XiveEND end;
1643     int i;
1644 
1645     monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1646                    srcno0 + nr_ipis - 1);
1647     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1648 
1649     monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1650                    srcno0 + nr_ipis - 1);
1651     for (i = 0; i < nr_ipis; i++) {
1652         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1653             break;
1654         }
1655         if (!xive_eas_is_masked(&eas)) {
1656             xive_eas_pic_print_info(&eas, i, mon);
1657         }
1658     }
1659 
1660     monitor_printf(mon, "XIVE[%x] ENDT\n", blk);
1661     i = 0;
1662     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1663         xive_end_pic_print_info(&end, i++, mon);
1664     }
1665 
1666     monitor_printf(mon, "XIVE[%x] END Escalation EAT\n", blk);
1667     i = 0;
1668     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1669         xive_end_eas_pic_print_info(&end, i++, mon);
1670     }
1671 }
1672 
1673 static void pnv_xive_reset(void *dev)
1674 {
1675     PnvXive *xive = PNV_XIVE(dev);
1676     XiveSource *xsrc = &xive->ipi_source;
1677     XiveENDSource *end_xsrc = &xive->end_source;
1678 
1679     /*
1680      * Use the PnvChip id to identify the XIVE interrupt controller.
1681      * It can be overriden by configuration at runtime.
1682      */
1683     xive->tctx_chipid = xive->chip->chip_id;
1684 
1685     /* Default page size (Should be changed at runtime to 64k) */
1686     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1687 
1688     /* Clear subregions */
1689     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1690         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1691     }
1692 
1693     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1694         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1695     }
1696 
1697     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1698         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1699     }
1700 
1701     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1702         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1703     }
1704 }
1705 
1706 static void pnv_xive_init(Object *obj)
1707 {
1708     PnvXive *xive = PNV_XIVE(obj);
1709 
1710     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1711                             sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1712                             &error_abort, NULL);
1713     object_initialize_child(obj, "end_source", &xive->end_source,
1714                             sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1715                             &error_abort, NULL);
1716 }
1717 
1718 /*
1719  *  Maximum number of IRQs and ENDs supported by HW
1720  */
1721 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1722 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1723 
1724 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1725 {
1726     PnvXive *xive = PNV_XIVE(dev);
1727     XiveSource *xsrc = &xive->ipi_source;
1728     XiveENDSource *end_xsrc = &xive->end_source;
1729     Error *local_err = NULL;
1730 
1731     assert(xive->chip);
1732 
1733     /*
1734      * The XiveSource and XiveENDSource objects are realized with the
1735      * maximum allowed HW configuration. The ESB MMIO regions will be
1736      * resized dynamically when the controller is configured by the FW
1737      * to limit accesses to resources not provisioned.
1738      */
1739     object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1740                             &error_fatal);
1741     object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1742                              &error_abort);
1743     object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1744     if (local_err) {
1745         error_propagate(errp, local_err);
1746         return;
1747     }
1748 
1749     object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1750                             &error_fatal);
1751     object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1752                              &error_abort);
1753     object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1754     if (local_err) {
1755         error_propagate(errp, local_err);
1756         return;
1757     }
1758 
1759     /* Default page size. Generally changed at runtime to 64k */
1760     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1761 
1762     /* XSCOM region, used for initial configuration of the BARs */
1763     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1764                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1765 
1766     /* Interrupt controller MMIO regions */
1767     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1768                        PNV9_XIVE_IC_SIZE);
1769 
1770     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1771                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1772     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1773                           &pnv_xive_ic_notify_ops,
1774                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1775 
1776     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1777     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1778                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1779 
1780     /* Thread Interrupt Management Area (Indirect) */
1781     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1782                           &xive_tm_indirect_ops,
1783                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1784     /*
1785      * Overall Virtualization Controller MMIO region containing the
1786      * IPI ESB pages and END ESB pages. The layout is defined by the
1787      * EDT "Domain table" and the accesses are dispatched using
1788      * address spaces for each.
1789      */
1790     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1791                           "xive-vc", PNV9_XIVE_VC_SIZE);
1792 
1793     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1794                        PNV9_XIVE_VC_SIZE);
1795     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1796     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1797                        PNV9_XIVE_VC_SIZE);
1798     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1799 
1800     /*
1801      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1802      * VC region. Their size is configured by the FW in the EDT table.
1803      */
1804     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1805     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1806 
1807     /* Presenter Controller MMIO region (not modeled) */
1808     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1809                           "xive-pc", PNV9_XIVE_PC_SIZE);
1810 
1811     /* Thread Interrupt Management Area (Direct) */
1812     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1813                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1814 
1815     qemu_register_reset(pnv_xive_reset, dev);
1816 }
1817 
1818 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1819                              int xscom_offset)
1820 {
1821     const char compat[] = "ibm,power9-xive-x";
1822     char *name;
1823     int offset;
1824     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1825     uint32_t reg[] = {
1826         cpu_to_be32(lpc_pcba),
1827         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1828     };
1829 
1830     name = g_strdup_printf("xive@%x", lpc_pcba);
1831     offset = fdt_add_subnode(fdt, xscom_offset, name);
1832     _FDT(offset);
1833     g_free(name);
1834 
1835     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1836     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1837                       sizeof(compat))));
1838     return 0;
1839 }
1840 
1841 static Property pnv_xive_properties[] = {
1842     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1843     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1844     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1845     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1846     /* The PnvChip id identifies the XIVE interrupt controller. */
1847     DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1848     DEFINE_PROP_END_OF_LIST(),
1849 };
1850 
1851 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1852 {
1853     DeviceClass *dc = DEVICE_CLASS(klass);
1854     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1855     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1856     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1857     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1858 
1859     xdc->dt_xscom = pnv_xive_dt_xscom;
1860 
1861     dc->desc = "PowerNV XIVE Interrupt Controller";
1862     dc->realize = pnv_xive_realize;
1863     dc->props = pnv_xive_properties;
1864 
1865     xrc->get_eas = pnv_xive_get_eas;
1866     xrc->get_end = pnv_xive_get_end;
1867     xrc->write_end = pnv_xive_write_end;
1868     xrc->get_nvt = pnv_xive_get_nvt;
1869     xrc->write_nvt = pnv_xive_write_nvt;
1870     xrc->get_tctx = pnv_xive_get_tctx;
1871 
1872     xnc->notify = pnv_xive_notify;
1873     xpc->match_nvt  = pnv_xive_match_nvt;
1874 };
1875 
1876 static const TypeInfo pnv_xive_info = {
1877     .name          = TYPE_PNV_XIVE,
1878     .parent        = TYPE_XIVE_ROUTER,
1879     .instance_init = pnv_xive_init,
1880     .instance_size = sizeof(PnvXive),
1881     .class_init    = pnv_xive_class_init,
1882     .interfaces    = (InterfaceInfo[]) {
1883         { TYPE_PNV_XSCOM_INTERFACE },
1884         { }
1885     }
1886 };
1887 
1888 static void pnv_xive_register_types(void)
1889 {
1890     type_register_static(&pnv_xive_info);
1891 }
1892 
1893 type_init(pnv_xive_register_types)
1894