1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ 16 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 58 static const uint8_t nvic_id[] = { 59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 60 }; 61 62 static int nvic_pending_prio(NVICState *s) 63 { 64 /* return the priority of the current pending interrupt, 65 * or NVIC_NOEXC_PRIO if no interrupt is pending 66 */ 67 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO; 68 } 69 70 /* Return the value of the ISCR RETTOBASE bit: 71 * 1 if there is exactly one active exception 72 * 0 if there is more than one active exception 73 * UNKNOWN if there are no active exceptions (we choose 1, 74 * which matches the choice Cortex-M3 is documented as making). 75 * 76 * NB: some versions of the documentation talk about this 77 * counting "active exceptions other than the one shown by IPSR"; 78 * this is only different in the obscure corner case where guest 79 * code has manually deactivated an exception and is about 80 * to fail an exception-return integrity check. The definition 81 * above is the one from the v8M ARM ARM and is also in line 82 * with the behaviour documented for the Cortex-M3. 83 */ 84 static bool nvic_rettobase(NVICState *s) 85 { 86 int irq, nhand = 0; 87 88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 89 if (s->vectors[irq].active) { 90 nhand++; 91 if (nhand == 2) { 92 return 0; 93 } 94 } 95 } 96 97 return 1; 98 } 99 100 /* Return the value of the ISCR ISRPENDING bit: 101 * 1 if an external interrupt is pending 102 * 0 if no external interrupt is pending 103 */ 104 static bool nvic_isrpending(NVICState *s) 105 { 106 int irq; 107 108 /* We can shortcut if the highest priority pending interrupt 109 * happens to be external or if there is nothing pending. 110 */ 111 if (s->vectpending > NVIC_FIRST_IRQ) { 112 return true; 113 } 114 if (s->vectpending == 0) { 115 return false; 116 } 117 118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 119 if (s->vectors[irq].pending) { 120 return true; 121 } 122 } 123 return false; 124 } 125 126 /* Return a mask word which clears the subpriority bits from 127 * a priority value for an M-profile exception, leaving only 128 * the group priority. 129 */ 130 static inline uint32_t nvic_gprio_mask(NVICState *s) 131 { 132 return ~0U << (s->prigroup + 1); 133 } 134 135 /* Recompute vectpending and exception_prio */ 136 static void nvic_recompute_state(NVICState *s) 137 { 138 int i; 139 int pend_prio = NVIC_NOEXC_PRIO; 140 int active_prio = NVIC_NOEXC_PRIO; 141 int pend_irq = 0; 142 143 for (i = 1; i < s->num_irq; i++) { 144 VecInfo *vec = &s->vectors[i]; 145 146 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 147 pend_prio = vec->prio; 148 pend_irq = i; 149 } 150 if (vec->active && vec->prio < active_prio) { 151 active_prio = vec->prio; 152 } 153 } 154 155 s->vectpending = pend_irq; 156 s->exception_prio = active_prio & nvic_gprio_mask(s); 157 158 trace_nvic_recompute_state(s->vectpending, s->exception_prio); 159 } 160 161 /* Return the current execution priority of the CPU 162 * (equivalent to the pseudocode ExecutionPriority function). 163 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 164 */ 165 static inline int nvic_exec_prio(NVICState *s) 166 { 167 CPUARMState *env = &s->cpu->env; 168 int running; 169 170 if (env->v7m.faultmask[env->v7m.secure]) { 171 running = -1; 172 } else if (env->v7m.primask[env->v7m.secure]) { 173 running = 0; 174 } else if (env->v7m.basepri[env->v7m.secure] > 0) { 175 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s); 176 } else { 177 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 178 } 179 /* consider priority of active handler */ 180 return MIN(running, s->exception_prio); 181 } 182 183 bool armv7m_nvic_can_take_pending_exception(void *opaque) 184 { 185 NVICState *s = opaque; 186 187 return nvic_exec_prio(s) > nvic_pending_prio(s); 188 } 189 190 int armv7m_nvic_raw_execution_priority(void *opaque) 191 { 192 NVICState *s = opaque; 193 194 return s->exception_prio; 195 } 196 197 /* caller must call nvic_irq_update() after this */ 198 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 199 { 200 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 201 assert(irq < s->num_irq); 202 203 s->vectors[irq].prio = prio; 204 205 trace_nvic_set_prio(irq, prio); 206 } 207 208 /* Recompute state and assert irq line accordingly. 209 * Must be called after changes to: 210 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 211 * prigroup 212 */ 213 static void nvic_irq_update(NVICState *s) 214 { 215 int lvl; 216 int pend_prio; 217 218 nvic_recompute_state(s); 219 pend_prio = nvic_pending_prio(s); 220 221 /* Raise NVIC output if this IRQ would be taken, except that we 222 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 223 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 224 * to those CPU registers don't cause us to recalculate the NVIC 225 * pending info. 226 */ 227 lvl = (pend_prio < s->exception_prio); 228 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 229 qemu_set_irq(s->excpout, lvl); 230 } 231 232 static void armv7m_nvic_clear_pending(void *opaque, int irq) 233 { 234 NVICState *s = (NVICState *)opaque; 235 VecInfo *vec; 236 237 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 238 239 vec = &s->vectors[irq]; 240 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 241 if (vec->pending) { 242 vec->pending = 0; 243 nvic_irq_update(s); 244 } 245 } 246 247 void armv7m_nvic_set_pending(void *opaque, int irq) 248 { 249 NVICState *s = (NVICState *)opaque; 250 VecInfo *vec; 251 252 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 253 254 vec = &s->vectors[irq]; 255 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 256 257 258 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 259 /* If a synchronous exception is pending then it may be 260 * escalated to HardFault if: 261 * * it is equal or lower priority to current execution 262 * * it is disabled 263 * (ie we need to take it immediately but we can't do so). 264 * Asynchronous exceptions (and interrupts) simply remain pending. 265 * 266 * For QEMU, we don't have any imprecise (asynchronous) faults, 267 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 268 * synchronous. 269 * Debug exceptions are awkward because only Debug exceptions 270 * resulting from the BKPT instruction should be escalated, 271 * but we don't currently implement any Debug exceptions other 272 * than those that result from BKPT, so we treat all debug exceptions 273 * as needing escalation. 274 * 275 * This all means we can identify whether to escalate based only on 276 * the exception number and don't (yet) need the caller to explicitly 277 * tell us whether this exception is synchronous or not. 278 */ 279 int running = nvic_exec_prio(s); 280 bool escalate = false; 281 282 if (vec->prio >= running) { 283 trace_nvic_escalate_prio(irq, vec->prio, running); 284 escalate = true; 285 } else if (!vec->enabled) { 286 trace_nvic_escalate_disabled(irq); 287 escalate = true; 288 } 289 290 if (escalate) { 291 if (running < 0) { 292 /* We want to escalate to HardFault but we can't take a 293 * synchronous HardFault at this point either. This is a 294 * Lockup condition due to a guest bug. We don't model 295 * Lockup, so report via cpu_abort() instead. 296 */ 297 cpu_abort(&s->cpu->parent_obj, 298 "Lockup: can't escalate %d to HardFault " 299 "(current priority %d)\n", irq, running); 300 } 301 302 /* We can do the escalation, so we take HardFault instead */ 303 irq = ARMV7M_EXCP_HARD; 304 vec = &s->vectors[irq]; 305 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 306 } 307 } 308 309 if (!vec->pending) { 310 vec->pending = 1; 311 nvic_irq_update(s); 312 } 313 } 314 315 /* Make pending IRQ active. */ 316 void armv7m_nvic_acknowledge_irq(void *opaque) 317 { 318 NVICState *s = (NVICState *)opaque; 319 CPUARMState *env = &s->cpu->env; 320 const int pending = s->vectpending; 321 const int running = nvic_exec_prio(s); 322 int pendgroupprio; 323 VecInfo *vec; 324 325 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 326 327 vec = &s->vectors[pending]; 328 329 assert(vec->enabled); 330 assert(vec->pending); 331 332 pendgroupprio = vec->prio & nvic_gprio_mask(s); 333 assert(pendgroupprio < running); 334 335 trace_nvic_acknowledge_irq(pending, vec->prio); 336 337 vec->active = 1; 338 vec->pending = 0; 339 340 env->v7m.exception = s->vectpending; 341 342 nvic_irq_update(s); 343 } 344 345 int armv7m_nvic_complete_irq(void *opaque, int irq) 346 { 347 NVICState *s = (NVICState *)opaque; 348 VecInfo *vec; 349 int ret; 350 351 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 352 353 vec = &s->vectors[irq]; 354 355 trace_nvic_complete_irq(irq); 356 357 if (!vec->active) { 358 /* Tell the caller this was an illegal exception return */ 359 return -1; 360 } 361 362 ret = nvic_rettobase(s); 363 364 vec->active = 0; 365 if (vec->level) { 366 /* Re-pend the exception if it's still held high; only 367 * happens for extenal IRQs 368 */ 369 assert(irq >= NVIC_FIRST_IRQ); 370 vec->pending = 1; 371 } 372 373 nvic_irq_update(s); 374 375 return ret; 376 } 377 378 /* callback when external interrupt line is changed */ 379 static void set_irq_level(void *opaque, int n, int level) 380 { 381 NVICState *s = opaque; 382 VecInfo *vec; 383 384 n += NVIC_FIRST_IRQ; 385 386 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 387 388 trace_nvic_set_irq_level(n, level); 389 390 /* The pending status of an external interrupt is 391 * latched on rising edge and exception handler return. 392 * 393 * Pulsing the IRQ will always run the handler 394 * once, and the handler will re-run until the 395 * level is low when the handler completes. 396 */ 397 vec = &s->vectors[n]; 398 if (level != vec->level) { 399 vec->level = level; 400 if (level) { 401 armv7m_nvic_set_pending(s, n); 402 } 403 } 404 } 405 406 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 407 { 408 ARMCPU *cpu = s->cpu; 409 uint32_t val; 410 411 switch (offset) { 412 case 4: /* Interrupt Control Type. */ 413 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 414 case 0xd00: /* CPUID Base. */ 415 return cpu->midr; 416 case 0xd04: /* Interrupt Control State. */ 417 /* VECTACTIVE */ 418 val = cpu->env.v7m.exception; 419 /* VECTPENDING */ 420 val |= (s->vectpending & 0xff) << 12; 421 /* ISRPENDING - set if any external IRQ is pending */ 422 if (nvic_isrpending(s)) { 423 val |= (1 << 22); 424 } 425 /* RETTOBASE - set if only one handler is active */ 426 if (nvic_rettobase(s)) { 427 val |= (1 << 11); 428 } 429 /* PENDSTSET */ 430 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 431 val |= (1 << 26); 432 } 433 /* PENDSVSET */ 434 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 435 val |= (1 << 28); 436 } 437 /* NMIPENDSET */ 438 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 439 val |= (1 << 31); 440 } 441 /* ISRPREEMPT not implemented */ 442 return val; 443 case 0xd08: /* Vector Table Offset. */ 444 return cpu->env.v7m.vecbase[attrs.secure]; 445 case 0xd0c: /* Application Interrupt/Reset Control. */ 446 return 0xfa050000 | (s->prigroup << 8); 447 case 0xd10: /* System Control. */ 448 /* TODO: Implement SLEEPONEXIT. */ 449 return 0; 450 case 0xd14: /* Configuration Control. */ 451 return cpu->env.v7m.ccr; 452 case 0xd24: /* System Handler Status. */ 453 val = 0; 454 if (s->vectors[ARMV7M_EXCP_MEM].active) { 455 val |= (1 << 0); 456 } 457 if (s->vectors[ARMV7M_EXCP_BUS].active) { 458 val |= (1 << 1); 459 } 460 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 461 val |= (1 << 3); 462 } 463 if (s->vectors[ARMV7M_EXCP_SVC].active) { 464 val |= (1 << 7); 465 } 466 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 467 val |= (1 << 8); 468 } 469 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 470 val |= (1 << 10); 471 } 472 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 473 val |= (1 << 11); 474 } 475 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 476 val |= (1 << 12); 477 } 478 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 479 val |= (1 << 13); 480 } 481 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 482 val |= (1 << 14); 483 } 484 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 485 val |= (1 << 15); 486 } 487 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 488 val |= (1 << 16); 489 } 490 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 491 val |= (1 << 17); 492 } 493 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 494 val |= (1 << 18); 495 } 496 return val; 497 case 0xd28: /* Configurable Fault Status. */ 498 return cpu->env.v7m.cfsr; 499 case 0xd2c: /* Hard Fault Status. */ 500 return cpu->env.v7m.hfsr; 501 case 0xd30: /* Debug Fault Status. */ 502 return cpu->env.v7m.dfsr; 503 case 0xd34: /* MMFAR MemManage Fault Address */ 504 return cpu->env.v7m.mmfar; 505 case 0xd38: /* Bus Fault Address. */ 506 return cpu->env.v7m.bfar; 507 case 0xd3c: /* Aux Fault Status. */ 508 /* TODO: Implement fault status registers. */ 509 qemu_log_mask(LOG_UNIMP, 510 "Aux Fault status registers unimplemented\n"); 511 return 0; 512 case 0xd40: /* PFR0. */ 513 return 0x00000030; 514 case 0xd44: /* PRF1. */ 515 return 0x00000200; 516 case 0xd48: /* DFR0. */ 517 return 0x00100000; 518 case 0xd4c: /* AFR0. */ 519 return 0x00000000; 520 case 0xd50: /* MMFR0. */ 521 return 0x00000030; 522 case 0xd54: /* MMFR1. */ 523 return 0x00000000; 524 case 0xd58: /* MMFR2. */ 525 return 0x00000000; 526 case 0xd5c: /* MMFR3. */ 527 return 0x00000000; 528 case 0xd60: /* ISAR0. */ 529 return 0x01141110; 530 case 0xd64: /* ISAR1. */ 531 return 0x02111000; 532 case 0xd68: /* ISAR2. */ 533 return 0x21112231; 534 case 0xd6c: /* ISAR3. */ 535 return 0x01111110; 536 case 0xd70: /* ISAR4. */ 537 return 0x01310102; 538 /* TODO: Implement debug registers. */ 539 case 0xd90: /* MPU_TYPE */ 540 /* Unified MPU; if the MPU is not present this value is zero */ 541 return cpu->pmsav7_dregion << 8; 542 break; 543 case 0xd94: /* MPU_CTRL */ 544 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 545 case 0xd98: /* MPU_RNR */ 546 return cpu->env.pmsav7.rnr[attrs.secure]; 547 case 0xd9c: /* MPU_RBAR */ 548 case 0xda4: /* MPU_RBAR_A1 */ 549 case 0xdac: /* MPU_RBAR_A2 */ 550 case 0xdb4: /* MPU_RBAR_A3 */ 551 { 552 int region = cpu->env.pmsav7.rnr[attrs.secure]; 553 554 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 555 /* PMSAv8M handling of the aliases is different from v7M: 556 * aliases A1, A2, A3 override the low two bits of the region 557 * number in MPU_RNR, and there is no 'region' field in the 558 * RBAR register. 559 */ 560 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 561 if (aliasno) { 562 region = deposit32(region, 0, 2, aliasno); 563 } 564 if (region >= cpu->pmsav7_dregion) { 565 return 0; 566 } 567 return cpu->env.pmsav8.rbar[attrs.secure][region]; 568 } 569 570 if (region >= cpu->pmsav7_dregion) { 571 return 0; 572 } 573 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 574 } 575 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 576 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 577 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 578 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 579 { 580 int region = cpu->env.pmsav7.rnr[attrs.secure]; 581 582 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 583 /* PMSAv8M handling of the aliases is different from v7M: 584 * aliases A1, A2, A3 override the low two bits of the region 585 * number in MPU_RNR. 586 */ 587 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 588 if (aliasno) { 589 region = deposit32(region, 0, 2, aliasno); 590 } 591 if (region >= cpu->pmsav7_dregion) { 592 return 0; 593 } 594 return cpu->env.pmsav8.rlar[attrs.secure][region]; 595 } 596 597 if (region >= cpu->pmsav7_dregion) { 598 return 0; 599 } 600 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 601 (cpu->env.pmsav7.drsr[region] & 0xffff); 602 } 603 case 0xdc0: /* MPU_MAIR0 */ 604 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 605 goto bad_offset; 606 } 607 return cpu->env.pmsav8.mair0[attrs.secure]; 608 case 0xdc4: /* MPU_MAIR1 */ 609 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 610 goto bad_offset; 611 } 612 return cpu->env.pmsav8.mair1[attrs.secure]; 613 default: 614 bad_offset: 615 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 616 return 0; 617 } 618 } 619 620 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 621 MemTxAttrs attrs) 622 { 623 ARMCPU *cpu = s->cpu; 624 625 switch (offset) { 626 case 0xd04: /* Interrupt Control State. */ 627 if (value & (1 << 31)) { 628 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 629 } 630 if (value & (1 << 28)) { 631 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 632 } else if (value & (1 << 27)) { 633 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 634 } 635 if (value & (1 << 26)) { 636 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 637 } else if (value & (1 << 25)) { 638 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 639 } 640 break; 641 case 0xd08: /* Vector Table Offset. */ 642 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 643 break; 644 case 0xd0c: /* Application Interrupt/Reset Control. */ 645 if ((value >> 16) == 0x05fa) { 646 if (value & 4) { 647 qemu_irq_pulse(s->sysresetreq); 648 } 649 if (value & 2) { 650 qemu_log_mask(LOG_GUEST_ERROR, 651 "Setting VECTCLRACTIVE when not in DEBUG mode " 652 "is UNPREDICTABLE\n"); 653 } 654 if (value & 1) { 655 qemu_log_mask(LOG_GUEST_ERROR, 656 "Setting VECTRESET when not in DEBUG mode " 657 "is UNPREDICTABLE\n"); 658 } 659 s->prigroup = extract32(value, 8, 3); 660 nvic_irq_update(s); 661 } 662 break; 663 case 0xd10: /* System Control. */ 664 /* TODO: Implement control registers. */ 665 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 666 break; 667 case 0xd14: /* Configuration Control. */ 668 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 669 value &= (R_V7M_CCR_STKALIGN_MASK | 670 R_V7M_CCR_BFHFNMIGN_MASK | 671 R_V7M_CCR_DIV_0_TRP_MASK | 672 R_V7M_CCR_UNALIGN_TRP_MASK | 673 R_V7M_CCR_USERSETMPEND_MASK | 674 R_V7M_CCR_NONBASETHRDENA_MASK); 675 676 cpu->env.v7m.ccr = value; 677 break; 678 case 0xd24: /* System Handler Control. */ 679 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 680 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 681 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 682 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 683 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 684 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 685 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 686 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 687 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 688 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 689 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 690 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 691 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 692 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 693 nvic_irq_update(s); 694 break; 695 case 0xd28: /* Configurable Fault Status. */ 696 cpu->env.v7m.cfsr &= ~value; /* W1C */ 697 break; 698 case 0xd2c: /* Hard Fault Status. */ 699 cpu->env.v7m.hfsr &= ~value; /* W1C */ 700 break; 701 case 0xd30: /* Debug Fault Status. */ 702 cpu->env.v7m.dfsr &= ~value; /* W1C */ 703 break; 704 case 0xd34: /* Mem Manage Address. */ 705 cpu->env.v7m.mmfar = value; 706 return; 707 case 0xd38: /* Bus Fault Address. */ 708 cpu->env.v7m.bfar = value; 709 return; 710 case 0xd3c: /* Aux Fault Status. */ 711 qemu_log_mask(LOG_UNIMP, 712 "NVIC: Aux fault status registers unimplemented\n"); 713 break; 714 case 0xd90: /* MPU_TYPE */ 715 return; /* RO */ 716 case 0xd94: /* MPU_CTRL */ 717 if ((value & 718 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 719 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 720 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 721 "UNPREDICTABLE\n"); 722 } 723 cpu->env.v7m.mpu_ctrl[attrs.secure] 724 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 725 R_V7M_MPU_CTRL_HFNMIENA_MASK | 726 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 727 tlb_flush(CPU(cpu)); 728 break; 729 case 0xd98: /* MPU_RNR */ 730 if (value >= cpu->pmsav7_dregion) { 731 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 732 PRIu32 "/%" PRIu32 "\n", 733 value, cpu->pmsav7_dregion); 734 } else { 735 cpu->env.pmsav7.rnr[attrs.secure] = value; 736 } 737 break; 738 case 0xd9c: /* MPU_RBAR */ 739 case 0xda4: /* MPU_RBAR_A1 */ 740 case 0xdac: /* MPU_RBAR_A2 */ 741 case 0xdb4: /* MPU_RBAR_A3 */ 742 { 743 int region; 744 745 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 746 /* PMSAv8M handling of the aliases is different from v7M: 747 * aliases A1, A2, A3 override the low two bits of the region 748 * number in MPU_RNR, and there is no 'region' field in the 749 * RBAR register. 750 */ 751 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 752 753 region = cpu->env.pmsav7.rnr[attrs.secure]; 754 if (aliasno) { 755 region = deposit32(region, 0, 2, aliasno); 756 } 757 if (region >= cpu->pmsav7_dregion) { 758 return; 759 } 760 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 761 tlb_flush(CPU(cpu)); 762 return; 763 } 764 765 if (value & (1 << 4)) { 766 /* VALID bit means use the region number specified in this 767 * value and also update MPU_RNR.REGION with that value. 768 */ 769 region = extract32(value, 0, 4); 770 if (region >= cpu->pmsav7_dregion) { 771 qemu_log_mask(LOG_GUEST_ERROR, 772 "MPU region out of range %u/%" PRIu32 "\n", 773 region, cpu->pmsav7_dregion); 774 return; 775 } 776 cpu->env.pmsav7.rnr[attrs.secure] = region; 777 } else { 778 region = cpu->env.pmsav7.rnr[attrs.secure]; 779 } 780 781 if (region >= cpu->pmsav7_dregion) { 782 return; 783 } 784 785 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 786 tlb_flush(CPU(cpu)); 787 break; 788 } 789 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 790 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 791 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 792 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 793 { 794 int region = cpu->env.pmsav7.rnr[attrs.secure]; 795 796 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 797 /* PMSAv8M handling of the aliases is different from v7M: 798 * aliases A1, A2, A3 override the low two bits of the region 799 * number in MPU_RNR. 800 */ 801 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 802 803 region = cpu->env.pmsav7.rnr[attrs.secure]; 804 if (aliasno) { 805 region = deposit32(region, 0, 2, aliasno); 806 } 807 if (region >= cpu->pmsav7_dregion) { 808 return; 809 } 810 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 811 tlb_flush(CPU(cpu)); 812 return; 813 } 814 815 if (region >= cpu->pmsav7_dregion) { 816 return; 817 } 818 819 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 820 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 821 tlb_flush(CPU(cpu)); 822 break; 823 } 824 case 0xdc0: /* MPU_MAIR0 */ 825 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 826 goto bad_offset; 827 } 828 if (cpu->pmsav7_dregion) { 829 /* Register is RES0 if no MPU regions are implemented */ 830 cpu->env.pmsav8.mair0[attrs.secure] = value; 831 } 832 /* We don't need to do anything else because memory attributes 833 * only affect cacheability, and we don't implement caching. 834 */ 835 break; 836 case 0xdc4: /* MPU_MAIR1 */ 837 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 838 goto bad_offset; 839 } 840 if (cpu->pmsav7_dregion) { 841 /* Register is RES0 if no MPU regions are implemented */ 842 cpu->env.pmsav8.mair1[attrs.secure] = value; 843 } 844 /* We don't need to do anything else because memory attributes 845 * only affect cacheability, and we don't implement caching. 846 */ 847 break; 848 case 0xf00: /* Software Triggered Interrupt Register */ 849 { 850 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 851 if (excnum < s->num_irq) { 852 armv7m_nvic_set_pending(s, excnum); 853 } 854 break; 855 } 856 default: 857 bad_offset: 858 qemu_log_mask(LOG_GUEST_ERROR, 859 "NVIC: Bad write offset 0x%x\n", offset); 860 } 861 } 862 863 static bool nvic_user_access_ok(NVICState *s, hwaddr offset) 864 { 865 /* Return true if unprivileged access to this register is permitted. */ 866 switch (offset) { 867 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 868 return s->cpu->env.v7m.ccr & R_V7M_CCR_USERSETMPEND_MASK; 869 default: 870 /* All other user accesses cause a BusFault unconditionally */ 871 return false; 872 } 873 } 874 875 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 876 uint64_t *data, unsigned size, 877 MemTxAttrs attrs) 878 { 879 NVICState *s = (NVICState *)opaque; 880 uint32_t offset = addr; 881 unsigned i, startvec, end; 882 uint32_t val; 883 884 if (attrs.user && !nvic_user_access_ok(s, addr)) { 885 /* Generate BusFault for unprivileged accesses */ 886 return MEMTX_ERROR; 887 } 888 889 switch (offset) { 890 /* reads of set and clear both return the status */ 891 case 0x100 ... 0x13f: /* NVIC Set enable */ 892 offset += 0x80; 893 /* fall through */ 894 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 895 val = 0; 896 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 897 898 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 899 if (s->vectors[startvec + i].enabled) { 900 val |= (1 << i); 901 } 902 } 903 break; 904 case 0x200 ... 0x23f: /* NVIC Set pend */ 905 offset += 0x80; 906 /* fall through */ 907 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 908 val = 0; 909 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 910 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 911 if (s->vectors[startvec + i].pending) { 912 val |= (1 << i); 913 } 914 } 915 break; 916 case 0x300 ... 0x33f: /* NVIC Active */ 917 val = 0; 918 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 919 920 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 921 if (s->vectors[startvec + i].active) { 922 val |= (1 << i); 923 } 924 } 925 break; 926 case 0x400 ... 0x5ef: /* NVIC Priority */ 927 val = 0; 928 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 929 930 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 931 val |= s->vectors[startvec + i].prio << (8 * i); 932 } 933 break; 934 case 0xd18 ... 0xd23: /* System Handler Priority. */ 935 val = 0; 936 for (i = 0; i < size; i++) { 937 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 938 } 939 break; 940 case 0xfe0 ... 0xfff: /* ID. */ 941 if (offset & 3) { 942 val = 0; 943 } else { 944 val = nvic_id[(offset - 0xfe0) >> 2]; 945 } 946 break; 947 default: 948 if (size == 4) { 949 val = nvic_readl(s, offset, attrs); 950 } else { 951 qemu_log_mask(LOG_GUEST_ERROR, 952 "NVIC: Bad read of size %d at offset 0x%x\n", 953 size, offset); 954 val = 0; 955 } 956 } 957 958 trace_nvic_sysreg_read(addr, val, size); 959 *data = val; 960 return MEMTX_OK; 961 } 962 963 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 964 uint64_t value, unsigned size, 965 MemTxAttrs attrs) 966 { 967 NVICState *s = (NVICState *)opaque; 968 uint32_t offset = addr; 969 unsigned i, startvec, end; 970 unsigned setval = 0; 971 972 trace_nvic_sysreg_write(addr, value, size); 973 974 if (attrs.user && !nvic_user_access_ok(s, addr)) { 975 /* Generate BusFault for unprivileged accesses */ 976 return MEMTX_ERROR; 977 } 978 979 switch (offset) { 980 case 0x100 ... 0x13f: /* NVIC Set enable */ 981 offset += 0x80; 982 setval = 1; 983 /* fall through */ 984 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 985 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 986 987 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 988 if (value & (1 << i)) { 989 s->vectors[startvec + i].enabled = setval; 990 } 991 } 992 nvic_irq_update(s); 993 return MEMTX_OK; 994 case 0x200 ... 0x23f: /* NVIC Set pend */ 995 /* the special logic in armv7m_nvic_set_pending() 996 * is not needed since IRQs are never escalated 997 */ 998 offset += 0x80; 999 setval = 1; 1000 /* fall through */ 1001 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1002 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1003 1004 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1005 if (value & (1 << i)) { 1006 s->vectors[startvec + i].pending = setval; 1007 } 1008 } 1009 nvic_irq_update(s); 1010 return MEMTX_OK; 1011 case 0x300 ... 0x33f: /* NVIC Active */ 1012 return MEMTX_OK; /* R/O */ 1013 case 0x400 ... 0x5ef: /* NVIC Priority */ 1014 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1015 1016 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1017 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 1018 } 1019 nvic_irq_update(s); 1020 return MEMTX_OK; 1021 case 0xd18 ... 0xd23: /* System Handler Priority. */ 1022 for (i = 0; i < size; i++) { 1023 unsigned hdlidx = (offset - 0xd14) + i; 1024 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 1025 } 1026 nvic_irq_update(s); 1027 return MEMTX_OK; 1028 } 1029 if (size == 4) { 1030 nvic_writel(s, offset, value, attrs); 1031 return MEMTX_OK; 1032 } 1033 qemu_log_mask(LOG_GUEST_ERROR, 1034 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1035 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1036 return MEMTX_OK; 1037 } 1038 1039 static const MemoryRegionOps nvic_sysreg_ops = { 1040 .read_with_attrs = nvic_sysreg_read, 1041 .write_with_attrs = nvic_sysreg_write, 1042 .endianness = DEVICE_NATIVE_ENDIAN, 1043 }; 1044 1045 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1046 uint64_t value, unsigned size, 1047 MemTxAttrs attrs) 1048 { 1049 if (attrs.secure) { 1050 /* S accesses to the alias act like NS accesses to the real region */ 1051 attrs.secure = 0; 1052 return nvic_sysreg_write(opaque, addr, value, size, attrs); 1053 } else { 1054 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1055 if (attrs.user) { 1056 return MEMTX_ERROR; 1057 } 1058 return MEMTX_OK; 1059 } 1060 } 1061 1062 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1063 uint64_t *data, unsigned size, 1064 MemTxAttrs attrs) 1065 { 1066 if (attrs.secure) { 1067 /* S accesses to the alias act like NS accesses to the real region */ 1068 attrs.secure = 0; 1069 return nvic_sysreg_read(opaque, addr, data, size, attrs); 1070 } else { 1071 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1072 if (attrs.user) { 1073 return MEMTX_ERROR; 1074 } 1075 *data = 0; 1076 return MEMTX_OK; 1077 } 1078 } 1079 1080 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1081 .read_with_attrs = nvic_sysreg_ns_read, 1082 .write_with_attrs = nvic_sysreg_ns_write, 1083 .endianness = DEVICE_NATIVE_ENDIAN, 1084 }; 1085 1086 static int nvic_post_load(void *opaque, int version_id) 1087 { 1088 NVICState *s = opaque; 1089 unsigned i; 1090 1091 /* Check for out of range priority settings */ 1092 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 1093 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1094 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1095 return 1; 1096 } 1097 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1098 if (s->vectors[i].prio & ~0xff) { 1099 return 1; 1100 } 1101 } 1102 1103 nvic_recompute_state(s); 1104 1105 return 0; 1106 } 1107 1108 static const VMStateDescription vmstate_VecInfo = { 1109 .name = "armv7m_nvic_info", 1110 .version_id = 1, 1111 .minimum_version_id = 1, 1112 .fields = (VMStateField[]) { 1113 VMSTATE_INT16(prio, VecInfo), 1114 VMSTATE_UINT8(enabled, VecInfo), 1115 VMSTATE_UINT8(pending, VecInfo), 1116 VMSTATE_UINT8(active, VecInfo), 1117 VMSTATE_UINT8(level, VecInfo), 1118 VMSTATE_END_OF_LIST() 1119 } 1120 }; 1121 1122 static const VMStateDescription vmstate_nvic = { 1123 .name = "armv7m_nvic", 1124 .version_id = 4, 1125 .minimum_version_id = 4, 1126 .post_load = &nvic_post_load, 1127 .fields = (VMStateField[]) { 1128 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1129 vmstate_VecInfo, VecInfo), 1130 VMSTATE_UINT32(prigroup, NVICState), 1131 VMSTATE_END_OF_LIST() 1132 } 1133 }; 1134 1135 static Property props_nvic[] = { 1136 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1137 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1138 DEFINE_PROP_END_OF_LIST() 1139 }; 1140 1141 static void armv7m_nvic_reset(DeviceState *dev) 1142 { 1143 NVICState *s = NVIC(dev); 1144 1145 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1146 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1147 /* MEM, BUS, and USAGE are enabled through 1148 * the System Handler Control register 1149 */ 1150 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1151 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1152 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1153 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1154 1155 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 1156 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1157 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1158 1159 /* Strictly speaking the reset handler should be enabled. 1160 * However, we don't simulate soft resets through the NVIC, 1161 * and the reset vector should never be pended. 1162 * So we leave it disabled to catch logic errors. 1163 */ 1164 1165 s->exception_prio = NVIC_NOEXC_PRIO; 1166 s->vectpending = 0; 1167 } 1168 1169 static void nvic_systick_trigger(void *opaque, int n, int level) 1170 { 1171 NVICState *s = opaque; 1172 1173 if (level) { 1174 /* SysTick just asked us to pend its exception. 1175 * (This is different from an external interrupt line's 1176 * behaviour.) 1177 */ 1178 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 1179 } 1180 } 1181 1182 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 1183 { 1184 NVICState *s = NVIC(dev); 1185 SysBusDevice *systick_sbd; 1186 Error *err = NULL; 1187 int regionlen; 1188 1189 s->cpu = ARM_CPU(qemu_get_cpu(0)); 1190 assert(s->cpu); 1191 1192 if (s->num_irq > NVIC_MAX_IRQ) { 1193 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 1194 return; 1195 } 1196 1197 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 1198 1199 /* include space for internal exception vectors */ 1200 s->num_irq += NVIC_FIRST_IRQ; 1201 1202 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 1203 if (err != NULL) { 1204 error_propagate(errp, err); 1205 return; 1206 } 1207 systick_sbd = SYS_BUS_DEVICE(&s->systick); 1208 sysbus_connect_irq(systick_sbd, 0, 1209 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 1210 1211 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 1212 * and looks like this: 1213 * 0x004 - ICTR 1214 * 0x010 - 0xff - systick 1215 * 0x100..0x7ec - NVIC 1216 * 0x7f0..0xcff - Reserved 1217 * 0xd00..0xd3c - SCS registers 1218 * 0xd40..0xeff - Reserved or Not implemented 1219 * 0xf00 - STIR 1220 * 1221 * Some registers within this space are banked between security states. 1222 * In v8M there is a second range 0xe002e000..0xe002efff which is the 1223 * NonSecure alias SCS; secure accesses to this behave like NS accesses 1224 * to the main SCS range, and non-secure accesses (including when 1225 * the security extension is not implemented) are RAZ/WI. 1226 * Note that both the main SCS range and the alias range are defined 1227 * to be exempt from memory attribution (R_BLJT) and so the memory 1228 * transaction attribute always matches the current CPU security 1229 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 1230 * wrappers we change attrs.secure to indicate the NS access; so 1231 * generally code determining which banked register to use should 1232 * use attrs.secure; code determining actual behaviour of the system 1233 * should use env->v7m.secure. 1234 */ 1235 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 1236 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 1237 /* The system register region goes at the bottom of the priority 1238 * stack as it covers the whole page. 1239 */ 1240 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 1241 "nvic_sysregs", 0x1000); 1242 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 1243 memory_region_add_subregion_overlap(&s->container, 0x10, 1244 sysbus_mmio_get_region(systick_sbd, 0), 1245 1); 1246 1247 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 1248 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 1249 &nvic_sysreg_ns_ops, s, 1250 "nvic_sysregs_ns", 0x1000); 1251 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 1252 } 1253 1254 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 1255 } 1256 1257 static void armv7m_nvic_instance_init(Object *obj) 1258 { 1259 /* We have a different default value for the num-irq property 1260 * than our superclass. This function runs after qdev init 1261 * has set the defaults from the Property array and before 1262 * any user-specified property setting, so just modify the 1263 * value in the GICState struct. 1264 */ 1265 DeviceState *dev = DEVICE(obj); 1266 NVICState *nvic = NVIC(obj); 1267 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1268 1269 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 1270 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 1271 1272 sysbus_init_irq(sbd, &nvic->excpout); 1273 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 1274 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 1275 } 1276 1277 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 1278 { 1279 DeviceClass *dc = DEVICE_CLASS(klass); 1280 1281 dc->vmsd = &vmstate_nvic; 1282 dc->props = props_nvic; 1283 dc->reset = armv7m_nvic_reset; 1284 dc->realize = armv7m_nvic_realize; 1285 } 1286 1287 static const TypeInfo armv7m_nvic_info = { 1288 .name = TYPE_NVIC, 1289 .parent = TYPE_SYS_BUS_DEVICE, 1290 .instance_init = armv7m_nvic_instance_init, 1291 .instance_size = sizeof(NVICState), 1292 .class_init = armv7m_nvic_class_init, 1293 .class_size = sizeof(SysBusDeviceClass), 1294 }; 1295 1296 static void armv7m_nvic_register_types(void) 1297 { 1298 type_register_static(&armv7m_nvic_info); 1299 } 1300 1301 type_init(armv7m_nvic_register_types) 1302