1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 58 static const uint8_t nvic_id[] = { 59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 60 }; 61 62 static int nvic_pending_prio(NVICState *s) 63 { 64 /* return the group priority of the current pending interrupt, 65 * or NVIC_NOEXC_PRIO if no interrupt is pending 66 */ 67 return s->vectpending_prio; 68 } 69 70 /* Return the value of the ISCR RETTOBASE bit: 71 * 1 if there is exactly one active exception 72 * 0 if there is more than one active exception 73 * UNKNOWN if there are no active exceptions (we choose 1, 74 * which matches the choice Cortex-M3 is documented as making). 75 * 76 * NB: some versions of the documentation talk about this 77 * counting "active exceptions other than the one shown by IPSR"; 78 * this is only different in the obscure corner case where guest 79 * code has manually deactivated an exception and is about 80 * to fail an exception-return integrity check. The definition 81 * above is the one from the v8M ARM ARM and is also in line 82 * with the behaviour documented for the Cortex-M3. 83 */ 84 static bool nvic_rettobase(NVICState *s) 85 { 86 int irq, nhand = 0; 87 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 88 89 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 90 if (s->vectors[irq].active || 91 (check_sec && irq < NVIC_INTERNAL_VECTORS && 92 s->sec_vectors[irq].active)) { 93 nhand++; 94 if (nhand == 2) { 95 return 0; 96 } 97 } 98 } 99 100 return 1; 101 } 102 103 /* Return the value of the ISCR ISRPENDING bit: 104 * 1 if an external interrupt is pending 105 * 0 if no external interrupt is pending 106 */ 107 static bool nvic_isrpending(NVICState *s) 108 { 109 int irq; 110 111 /* We can shortcut if the highest priority pending interrupt 112 * happens to be external or if there is nothing pending. 113 */ 114 if (s->vectpending > NVIC_FIRST_IRQ) { 115 return true; 116 } 117 if (s->vectpending == 0) { 118 return false; 119 } 120 121 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 122 if (s->vectors[irq].pending) { 123 return true; 124 } 125 } 126 return false; 127 } 128 129 /* Return a mask word which clears the subpriority bits from 130 * a priority value for an M-profile exception, leaving only 131 * the group priority. 132 */ 133 static inline uint32_t nvic_gprio_mask(NVICState *s) 134 { 135 return ~0U << (s->prigroup[M_REG_NS] + 1); 136 } 137 138 /* Recompute vectpending and exception_prio */ 139 static void nvic_recompute_state(NVICState *s) 140 { 141 int i; 142 int pend_prio = NVIC_NOEXC_PRIO; 143 int active_prio = NVIC_NOEXC_PRIO; 144 int pend_irq = 0; 145 146 for (i = 1; i < s->num_irq; i++) { 147 VecInfo *vec = &s->vectors[i]; 148 149 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 150 pend_prio = vec->prio; 151 pend_irq = i; 152 } 153 if (vec->active && vec->prio < active_prio) { 154 active_prio = vec->prio; 155 } 156 } 157 158 if (active_prio > 0) { 159 active_prio &= nvic_gprio_mask(s); 160 } 161 162 if (pend_prio > 0) { 163 pend_prio &= nvic_gprio_mask(s); 164 } 165 166 s->vectpending = pend_irq; 167 s->vectpending_prio = pend_prio; 168 s->exception_prio = active_prio; 169 170 trace_nvic_recompute_state(s->vectpending, 171 s->vectpending_prio, 172 s->exception_prio); 173 } 174 175 /* Return the current execution priority of the CPU 176 * (equivalent to the pseudocode ExecutionPriority function). 177 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 178 */ 179 static inline int nvic_exec_prio(NVICState *s) 180 { 181 CPUARMState *env = &s->cpu->env; 182 int running; 183 184 if (env->v7m.faultmask[env->v7m.secure]) { 185 running = -1; 186 } else if (env->v7m.primask[env->v7m.secure]) { 187 running = 0; 188 } else if (env->v7m.basepri[env->v7m.secure] > 0) { 189 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s); 190 } else { 191 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 192 } 193 /* consider priority of active handler */ 194 return MIN(running, s->exception_prio); 195 } 196 197 bool armv7m_nvic_can_take_pending_exception(void *opaque) 198 { 199 NVICState *s = opaque; 200 201 return nvic_exec_prio(s) > nvic_pending_prio(s); 202 } 203 204 int armv7m_nvic_raw_execution_priority(void *opaque) 205 { 206 NVICState *s = opaque; 207 208 return s->exception_prio; 209 } 210 211 /* caller must call nvic_irq_update() after this */ 212 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 213 { 214 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 215 assert(irq < s->num_irq); 216 217 s->vectors[irq].prio = prio; 218 219 trace_nvic_set_prio(irq, prio); 220 } 221 222 /* Recompute state and assert irq line accordingly. 223 * Must be called after changes to: 224 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 225 * prigroup 226 */ 227 static void nvic_irq_update(NVICState *s) 228 { 229 int lvl; 230 int pend_prio; 231 232 nvic_recompute_state(s); 233 pend_prio = nvic_pending_prio(s); 234 235 /* Raise NVIC output if this IRQ would be taken, except that we 236 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 237 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 238 * to those CPU registers don't cause us to recalculate the NVIC 239 * pending info. 240 */ 241 lvl = (pend_prio < s->exception_prio); 242 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 243 qemu_set_irq(s->excpout, lvl); 244 } 245 246 static void armv7m_nvic_clear_pending(void *opaque, int irq) 247 { 248 NVICState *s = (NVICState *)opaque; 249 VecInfo *vec; 250 251 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 252 253 vec = &s->vectors[irq]; 254 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 255 if (vec->pending) { 256 vec->pending = 0; 257 nvic_irq_update(s); 258 } 259 } 260 261 void armv7m_nvic_set_pending(void *opaque, int irq) 262 { 263 NVICState *s = (NVICState *)opaque; 264 VecInfo *vec; 265 266 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 267 268 vec = &s->vectors[irq]; 269 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 270 271 272 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 273 /* If a synchronous exception is pending then it may be 274 * escalated to HardFault if: 275 * * it is equal or lower priority to current execution 276 * * it is disabled 277 * (ie we need to take it immediately but we can't do so). 278 * Asynchronous exceptions (and interrupts) simply remain pending. 279 * 280 * For QEMU, we don't have any imprecise (asynchronous) faults, 281 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 282 * synchronous. 283 * Debug exceptions are awkward because only Debug exceptions 284 * resulting from the BKPT instruction should be escalated, 285 * but we don't currently implement any Debug exceptions other 286 * than those that result from BKPT, so we treat all debug exceptions 287 * as needing escalation. 288 * 289 * This all means we can identify whether to escalate based only on 290 * the exception number and don't (yet) need the caller to explicitly 291 * tell us whether this exception is synchronous or not. 292 */ 293 int running = nvic_exec_prio(s); 294 bool escalate = false; 295 296 if (vec->prio >= running) { 297 trace_nvic_escalate_prio(irq, vec->prio, running); 298 escalate = true; 299 } else if (!vec->enabled) { 300 trace_nvic_escalate_disabled(irq); 301 escalate = true; 302 } 303 304 if (escalate) { 305 if (running < 0) { 306 /* We want to escalate to HardFault but we can't take a 307 * synchronous HardFault at this point either. This is a 308 * Lockup condition due to a guest bug. We don't model 309 * Lockup, so report via cpu_abort() instead. 310 */ 311 cpu_abort(&s->cpu->parent_obj, 312 "Lockup: can't escalate %d to HardFault " 313 "(current priority %d)\n", irq, running); 314 } 315 316 /* We can do the escalation, so we take HardFault instead */ 317 irq = ARMV7M_EXCP_HARD; 318 vec = &s->vectors[irq]; 319 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 320 } 321 } 322 323 if (!vec->pending) { 324 vec->pending = 1; 325 nvic_irq_update(s); 326 } 327 } 328 329 /* Make pending IRQ active. */ 330 void armv7m_nvic_acknowledge_irq(void *opaque) 331 { 332 NVICState *s = (NVICState *)opaque; 333 CPUARMState *env = &s->cpu->env; 334 const int pending = s->vectpending; 335 const int running = nvic_exec_prio(s); 336 VecInfo *vec; 337 338 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 339 340 vec = &s->vectors[pending]; 341 342 assert(vec->enabled); 343 assert(vec->pending); 344 345 assert(s->vectpending_prio < running); 346 347 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 348 349 vec->active = 1; 350 vec->pending = 0; 351 352 env->v7m.exception = s->vectpending; 353 354 nvic_irq_update(s); 355 } 356 357 int armv7m_nvic_complete_irq(void *opaque, int irq) 358 { 359 NVICState *s = (NVICState *)opaque; 360 VecInfo *vec; 361 int ret; 362 363 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 364 365 vec = &s->vectors[irq]; 366 367 trace_nvic_complete_irq(irq); 368 369 if (!vec->active) { 370 /* Tell the caller this was an illegal exception return */ 371 return -1; 372 } 373 374 ret = nvic_rettobase(s); 375 376 vec->active = 0; 377 if (vec->level) { 378 /* Re-pend the exception if it's still held high; only 379 * happens for extenal IRQs 380 */ 381 assert(irq >= NVIC_FIRST_IRQ); 382 vec->pending = 1; 383 } 384 385 nvic_irq_update(s); 386 387 return ret; 388 } 389 390 /* callback when external interrupt line is changed */ 391 static void set_irq_level(void *opaque, int n, int level) 392 { 393 NVICState *s = opaque; 394 VecInfo *vec; 395 396 n += NVIC_FIRST_IRQ; 397 398 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 399 400 trace_nvic_set_irq_level(n, level); 401 402 /* The pending status of an external interrupt is 403 * latched on rising edge and exception handler return. 404 * 405 * Pulsing the IRQ will always run the handler 406 * once, and the handler will re-run until the 407 * level is low when the handler completes. 408 */ 409 vec = &s->vectors[n]; 410 if (level != vec->level) { 411 vec->level = level; 412 if (level) { 413 armv7m_nvic_set_pending(s, n); 414 } 415 } 416 } 417 418 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 419 { 420 ARMCPU *cpu = s->cpu; 421 uint32_t val; 422 423 switch (offset) { 424 case 4: /* Interrupt Control Type. */ 425 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 426 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 427 { 428 int startvec = 32 * (offset - 0x380) + NVIC_FIRST_IRQ; 429 int i; 430 431 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 432 goto bad_offset; 433 } 434 if (!attrs.secure) { 435 return 0; 436 } 437 val = 0; 438 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 439 if (s->itns[startvec + i]) { 440 val |= (1 << i); 441 } 442 } 443 return val; 444 } 445 case 0xd00: /* CPUID Base. */ 446 return cpu->midr; 447 case 0xd04: /* Interrupt Control State. */ 448 /* VECTACTIVE */ 449 val = cpu->env.v7m.exception; 450 /* VECTPENDING */ 451 val |= (s->vectpending & 0xff) << 12; 452 /* ISRPENDING - set if any external IRQ is pending */ 453 if (nvic_isrpending(s)) { 454 val |= (1 << 22); 455 } 456 /* RETTOBASE - set if only one handler is active */ 457 if (nvic_rettobase(s)) { 458 val |= (1 << 11); 459 } 460 /* PENDSTSET */ 461 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 462 val |= (1 << 26); 463 } 464 /* PENDSVSET */ 465 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 466 val |= (1 << 28); 467 } 468 /* NMIPENDSET */ 469 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 470 val |= (1 << 31); 471 } 472 /* ISRPREEMPT not implemented */ 473 return val; 474 case 0xd08: /* Vector Table Offset. */ 475 return cpu->env.v7m.vecbase[attrs.secure]; 476 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 477 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 478 if (attrs.secure) { 479 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 480 val |= cpu->env.v7m.aircr; 481 } else { 482 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 483 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 484 * security isn't supported then BFHFNMINS is RAO (and 485 * the bit in env.v7m.aircr is always set). 486 */ 487 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 488 } 489 } 490 return val; 491 case 0xd10: /* System Control. */ 492 /* TODO: Implement SLEEPONEXIT. */ 493 return 0; 494 case 0xd14: /* Configuration Control. */ 495 /* The BFHFNMIGN bit is the only non-banked bit; we 496 * keep it in the non-secure copy of the register. 497 */ 498 val = cpu->env.v7m.ccr[attrs.secure]; 499 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 500 return val; 501 case 0xd24: /* System Handler Status. */ 502 val = 0; 503 if (s->vectors[ARMV7M_EXCP_MEM].active) { 504 val |= (1 << 0); 505 } 506 if (s->vectors[ARMV7M_EXCP_BUS].active) { 507 val |= (1 << 1); 508 } 509 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 510 val |= (1 << 3); 511 } 512 if (s->vectors[ARMV7M_EXCP_SVC].active) { 513 val |= (1 << 7); 514 } 515 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 516 val |= (1 << 8); 517 } 518 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 519 val |= (1 << 10); 520 } 521 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 522 val |= (1 << 11); 523 } 524 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 525 val |= (1 << 12); 526 } 527 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 528 val |= (1 << 13); 529 } 530 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 531 val |= (1 << 14); 532 } 533 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 534 val |= (1 << 15); 535 } 536 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 537 val |= (1 << 16); 538 } 539 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 540 val |= (1 << 17); 541 } 542 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 543 val |= (1 << 18); 544 } 545 return val; 546 case 0xd28: /* Configurable Fault Status. */ 547 /* The BFSR bits [15:8] are shared between security states 548 * and we store them in the NS copy 549 */ 550 val = cpu->env.v7m.cfsr[attrs.secure]; 551 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 552 return val; 553 case 0xd2c: /* Hard Fault Status. */ 554 return cpu->env.v7m.hfsr; 555 case 0xd30: /* Debug Fault Status. */ 556 return cpu->env.v7m.dfsr; 557 case 0xd34: /* MMFAR MemManage Fault Address */ 558 return cpu->env.v7m.mmfar[attrs.secure]; 559 case 0xd38: /* Bus Fault Address. */ 560 return cpu->env.v7m.bfar; 561 case 0xd3c: /* Aux Fault Status. */ 562 /* TODO: Implement fault status registers. */ 563 qemu_log_mask(LOG_UNIMP, 564 "Aux Fault status registers unimplemented\n"); 565 return 0; 566 case 0xd40: /* PFR0. */ 567 return 0x00000030; 568 case 0xd44: /* PRF1. */ 569 return 0x00000200; 570 case 0xd48: /* DFR0. */ 571 return 0x00100000; 572 case 0xd4c: /* AFR0. */ 573 return 0x00000000; 574 case 0xd50: /* MMFR0. */ 575 return 0x00000030; 576 case 0xd54: /* MMFR1. */ 577 return 0x00000000; 578 case 0xd58: /* MMFR2. */ 579 return 0x00000000; 580 case 0xd5c: /* MMFR3. */ 581 return 0x00000000; 582 case 0xd60: /* ISAR0. */ 583 return 0x01141110; 584 case 0xd64: /* ISAR1. */ 585 return 0x02111000; 586 case 0xd68: /* ISAR2. */ 587 return 0x21112231; 588 case 0xd6c: /* ISAR3. */ 589 return 0x01111110; 590 case 0xd70: /* ISAR4. */ 591 return 0x01310102; 592 /* TODO: Implement debug registers. */ 593 case 0xd90: /* MPU_TYPE */ 594 /* Unified MPU; if the MPU is not present this value is zero */ 595 return cpu->pmsav7_dregion << 8; 596 break; 597 case 0xd94: /* MPU_CTRL */ 598 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 599 case 0xd98: /* MPU_RNR */ 600 return cpu->env.pmsav7.rnr[attrs.secure]; 601 case 0xd9c: /* MPU_RBAR */ 602 case 0xda4: /* MPU_RBAR_A1 */ 603 case 0xdac: /* MPU_RBAR_A2 */ 604 case 0xdb4: /* MPU_RBAR_A3 */ 605 { 606 int region = cpu->env.pmsav7.rnr[attrs.secure]; 607 608 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 609 /* PMSAv8M handling of the aliases is different from v7M: 610 * aliases A1, A2, A3 override the low two bits of the region 611 * number in MPU_RNR, and there is no 'region' field in the 612 * RBAR register. 613 */ 614 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 615 if (aliasno) { 616 region = deposit32(region, 0, 2, aliasno); 617 } 618 if (region >= cpu->pmsav7_dregion) { 619 return 0; 620 } 621 return cpu->env.pmsav8.rbar[attrs.secure][region]; 622 } 623 624 if (region >= cpu->pmsav7_dregion) { 625 return 0; 626 } 627 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 628 } 629 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 630 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 631 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 632 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 633 { 634 int region = cpu->env.pmsav7.rnr[attrs.secure]; 635 636 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 637 /* PMSAv8M handling of the aliases is different from v7M: 638 * aliases A1, A2, A3 override the low two bits of the region 639 * number in MPU_RNR. 640 */ 641 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 642 if (aliasno) { 643 region = deposit32(region, 0, 2, aliasno); 644 } 645 if (region >= cpu->pmsav7_dregion) { 646 return 0; 647 } 648 return cpu->env.pmsav8.rlar[attrs.secure][region]; 649 } 650 651 if (region >= cpu->pmsav7_dregion) { 652 return 0; 653 } 654 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 655 (cpu->env.pmsav7.drsr[region] & 0xffff); 656 } 657 case 0xdc0: /* MPU_MAIR0 */ 658 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 659 goto bad_offset; 660 } 661 return cpu->env.pmsav8.mair0[attrs.secure]; 662 case 0xdc4: /* MPU_MAIR1 */ 663 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 664 goto bad_offset; 665 } 666 return cpu->env.pmsav8.mair1[attrs.secure]; 667 default: 668 bad_offset: 669 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 670 return 0; 671 } 672 } 673 674 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 675 MemTxAttrs attrs) 676 { 677 ARMCPU *cpu = s->cpu; 678 679 switch (offset) { 680 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 681 { 682 int startvec = 32 * (offset - 0x380) + NVIC_FIRST_IRQ; 683 int i; 684 685 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 686 goto bad_offset; 687 } 688 if (!attrs.secure) { 689 break; 690 } 691 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 692 s->itns[startvec + i] = (value >> i) & 1; 693 } 694 nvic_irq_update(s); 695 break; 696 } 697 case 0xd04: /* Interrupt Control State. */ 698 if (value & (1 << 31)) { 699 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 700 } 701 if (value & (1 << 28)) { 702 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 703 } else if (value & (1 << 27)) { 704 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 705 } 706 if (value & (1 << 26)) { 707 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 708 } else if (value & (1 << 25)) { 709 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 710 } 711 break; 712 case 0xd08: /* Vector Table Offset. */ 713 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 714 break; 715 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 716 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 717 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 718 if (attrs.secure || 719 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 720 qemu_irq_pulse(s->sysresetreq); 721 } 722 } 723 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 724 qemu_log_mask(LOG_GUEST_ERROR, 725 "Setting VECTCLRACTIVE when not in DEBUG mode " 726 "is UNPREDICTABLE\n"); 727 } 728 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 729 /* NB: this bit is RES0 in v8M */ 730 qemu_log_mask(LOG_GUEST_ERROR, 731 "Setting VECTRESET when not in DEBUG mode " 732 "is UNPREDICTABLE\n"); 733 } 734 s->prigroup[attrs.secure] = extract32(value, 735 R_V7M_AIRCR_PRIGROUP_SHIFT, 736 R_V7M_AIRCR_PRIGROUP_LENGTH); 737 if (attrs.secure) { 738 /* These bits are only writable by secure */ 739 cpu->env.v7m.aircr = value & 740 (R_V7M_AIRCR_SYSRESETREQS_MASK | 741 R_V7M_AIRCR_BFHFNMINS_MASK | 742 R_V7M_AIRCR_PRIS_MASK); 743 } 744 nvic_irq_update(s); 745 } 746 break; 747 case 0xd10: /* System Control. */ 748 /* TODO: Implement control registers. */ 749 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 750 break; 751 case 0xd14: /* Configuration Control. */ 752 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 753 value &= (R_V7M_CCR_STKALIGN_MASK | 754 R_V7M_CCR_BFHFNMIGN_MASK | 755 R_V7M_CCR_DIV_0_TRP_MASK | 756 R_V7M_CCR_UNALIGN_TRP_MASK | 757 R_V7M_CCR_USERSETMPEND_MASK | 758 R_V7M_CCR_NONBASETHRDENA_MASK); 759 760 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 761 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 762 value |= R_V7M_CCR_NONBASETHRDENA_MASK 763 | R_V7M_CCR_STKALIGN_MASK; 764 } 765 if (attrs.secure) { 766 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 767 cpu->env.v7m.ccr[M_REG_NS] = 768 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 769 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 770 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 771 } 772 773 cpu->env.v7m.ccr[attrs.secure] = value; 774 break; 775 case 0xd24: /* System Handler Control. */ 776 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 777 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 778 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 779 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 780 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 781 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 782 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 783 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 784 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 785 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 786 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 787 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 788 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 789 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 790 nvic_irq_update(s); 791 break; 792 case 0xd28: /* Configurable Fault Status. */ 793 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */ 794 if (attrs.secure) { 795 /* The BFSR bits [15:8] are shared between security states 796 * and we store them in the NS copy. 797 */ 798 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 799 } 800 break; 801 case 0xd2c: /* Hard Fault Status. */ 802 cpu->env.v7m.hfsr &= ~value; /* W1C */ 803 break; 804 case 0xd30: /* Debug Fault Status. */ 805 cpu->env.v7m.dfsr &= ~value; /* W1C */ 806 break; 807 case 0xd34: /* Mem Manage Address. */ 808 cpu->env.v7m.mmfar[attrs.secure] = value; 809 return; 810 case 0xd38: /* Bus Fault Address. */ 811 cpu->env.v7m.bfar = value; 812 return; 813 case 0xd3c: /* Aux Fault Status. */ 814 qemu_log_mask(LOG_UNIMP, 815 "NVIC: Aux fault status registers unimplemented\n"); 816 break; 817 case 0xd90: /* MPU_TYPE */ 818 return; /* RO */ 819 case 0xd94: /* MPU_CTRL */ 820 if ((value & 821 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 822 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 823 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 824 "UNPREDICTABLE\n"); 825 } 826 cpu->env.v7m.mpu_ctrl[attrs.secure] 827 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 828 R_V7M_MPU_CTRL_HFNMIENA_MASK | 829 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 830 tlb_flush(CPU(cpu)); 831 break; 832 case 0xd98: /* MPU_RNR */ 833 if (value >= cpu->pmsav7_dregion) { 834 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 835 PRIu32 "/%" PRIu32 "\n", 836 value, cpu->pmsav7_dregion); 837 } else { 838 cpu->env.pmsav7.rnr[attrs.secure] = value; 839 } 840 break; 841 case 0xd9c: /* MPU_RBAR */ 842 case 0xda4: /* MPU_RBAR_A1 */ 843 case 0xdac: /* MPU_RBAR_A2 */ 844 case 0xdb4: /* MPU_RBAR_A3 */ 845 { 846 int region; 847 848 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 849 /* PMSAv8M handling of the aliases is different from v7M: 850 * aliases A1, A2, A3 override the low two bits of the region 851 * number in MPU_RNR, and there is no 'region' field in the 852 * RBAR register. 853 */ 854 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 855 856 region = cpu->env.pmsav7.rnr[attrs.secure]; 857 if (aliasno) { 858 region = deposit32(region, 0, 2, aliasno); 859 } 860 if (region >= cpu->pmsav7_dregion) { 861 return; 862 } 863 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 864 tlb_flush(CPU(cpu)); 865 return; 866 } 867 868 if (value & (1 << 4)) { 869 /* VALID bit means use the region number specified in this 870 * value and also update MPU_RNR.REGION with that value. 871 */ 872 region = extract32(value, 0, 4); 873 if (region >= cpu->pmsav7_dregion) { 874 qemu_log_mask(LOG_GUEST_ERROR, 875 "MPU region out of range %u/%" PRIu32 "\n", 876 region, cpu->pmsav7_dregion); 877 return; 878 } 879 cpu->env.pmsav7.rnr[attrs.secure] = region; 880 } else { 881 region = cpu->env.pmsav7.rnr[attrs.secure]; 882 } 883 884 if (region >= cpu->pmsav7_dregion) { 885 return; 886 } 887 888 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 889 tlb_flush(CPU(cpu)); 890 break; 891 } 892 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 893 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 894 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 895 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 896 { 897 int region = cpu->env.pmsav7.rnr[attrs.secure]; 898 899 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 900 /* PMSAv8M handling of the aliases is different from v7M: 901 * aliases A1, A2, A3 override the low two bits of the region 902 * number in MPU_RNR. 903 */ 904 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 905 906 region = cpu->env.pmsav7.rnr[attrs.secure]; 907 if (aliasno) { 908 region = deposit32(region, 0, 2, aliasno); 909 } 910 if (region >= cpu->pmsav7_dregion) { 911 return; 912 } 913 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 914 tlb_flush(CPU(cpu)); 915 return; 916 } 917 918 if (region >= cpu->pmsav7_dregion) { 919 return; 920 } 921 922 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 923 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 924 tlb_flush(CPU(cpu)); 925 break; 926 } 927 case 0xdc0: /* MPU_MAIR0 */ 928 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 929 goto bad_offset; 930 } 931 if (cpu->pmsav7_dregion) { 932 /* Register is RES0 if no MPU regions are implemented */ 933 cpu->env.pmsav8.mair0[attrs.secure] = value; 934 } 935 /* We don't need to do anything else because memory attributes 936 * only affect cacheability, and we don't implement caching. 937 */ 938 break; 939 case 0xdc4: /* MPU_MAIR1 */ 940 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 941 goto bad_offset; 942 } 943 if (cpu->pmsav7_dregion) { 944 /* Register is RES0 if no MPU regions are implemented */ 945 cpu->env.pmsav8.mair1[attrs.secure] = value; 946 } 947 /* We don't need to do anything else because memory attributes 948 * only affect cacheability, and we don't implement caching. 949 */ 950 break; 951 case 0xf00: /* Software Triggered Interrupt Register */ 952 { 953 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 954 if (excnum < s->num_irq) { 955 armv7m_nvic_set_pending(s, excnum); 956 } 957 break; 958 } 959 default: 960 bad_offset: 961 qemu_log_mask(LOG_GUEST_ERROR, 962 "NVIC: Bad write offset 0x%x\n", offset); 963 } 964 } 965 966 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 967 { 968 /* Return true if unprivileged access to this register is permitted. */ 969 switch (offset) { 970 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 971 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 972 * controls access even though the CPU is in Secure state (I_QDKX). 973 */ 974 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 975 default: 976 /* All other user accesses cause a BusFault unconditionally */ 977 return false; 978 } 979 } 980 981 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 982 uint64_t *data, unsigned size, 983 MemTxAttrs attrs) 984 { 985 NVICState *s = (NVICState *)opaque; 986 uint32_t offset = addr; 987 unsigned i, startvec, end; 988 uint32_t val; 989 990 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 991 /* Generate BusFault for unprivileged accesses */ 992 return MEMTX_ERROR; 993 } 994 995 switch (offset) { 996 /* reads of set and clear both return the status */ 997 case 0x100 ... 0x13f: /* NVIC Set enable */ 998 offset += 0x80; 999 /* fall through */ 1000 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1001 val = 0; 1002 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 1003 1004 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1005 if (s->vectors[startvec + i].enabled && 1006 (attrs.secure || s->itns[startvec + i])) { 1007 val |= (1 << i); 1008 } 1009 } 1010 break; 1011 case 0x200 ... 0x23f: /* NVIC Set pend */ 1012 offset += 0x80; 1013 /* fall through */ 1014 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1015 val = 0; 1016 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 1017 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1018 if (s->vectors[startvec + i].pending && 1019 (attrs.secure || s->itns[startvec + i])) { 1020 val |= (1 << i); 1021 } 1022 } 1023 break; 1024 case 0x300 ... 0x33f: /* NVIC Active */ 1025 val = 0; 1026 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 1027 1028 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1029 if (s->vectors[startvec + i].active && 1030 (attrs.secure || s->itns[startvec + i])) { 1031 val |= (1 << i); 1032 } 1033 } 1034 break; 1035 case 0x400 ... 0x5ef: /* NVIC Priority */ 1036 val = 0; 1037 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1038 1039 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1040 if (attrs.secure || s->itns[startvec + i]) { 1041 val |= s->vectors[startvec + i].prio << (8 * i); 1042 } 1043 } 1044 break; 1045 case 0xd18 ... 0xd23: /* System Handler Priority. */ 1046 val = 0; 1047 for (i = 0; i < size; i++) { 1048 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 1049 } 1050 break; 1051 case 0xfe0 ... 0xfff: /* ID. */ 1052 if (offset & 3) { 1053 val = 0; 1054 } else { 1055 val = nvic_id[(offset - 0xfe0) >> 2]; 1056 } 1057 break; 1058 default: 1059 if (size == 4) { 1060 val = nvic_readl(s, offset, attrs); 1061 } else { 1062 qemu_log_mask(LOG_GUEST_ERROR, 1063 "NVIC: Bad read of size %d at offset 0x%x\n", 1064 size, offset); 1065 val = 0; 1066 } 1067 } 1068 1069 trace_nvic_sysreg_read(addr, val, size); 1070 *data = val; 1071 return MEMTX_OK; 1072 } 1073 1074 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1075 uint64_t value, unsigned size, 1076 MemTxAttrs attrs) 1077 { 1078 NVICState *s = (NVICState *)opaque; 1079 uint32_t offset = addr; 1080 unsigned i, startvec, end; 1081 unsigned setval = 0; 1082 1083 trace_nvic_sysreg_write(addr, value, size); 1084 1085 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1086 /* Generate BusFault for unprivileged accesses */ 1087 return MEMTX_ERROR; 1088 } 1089 1090 switch (offset) { 1091 case 0x100 ... 0x13f: /* NVIC Set enable */ 1092 offset += 0x80; 1093 setval = 1; 1094 /* fall through */ 1095 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1096 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1097 1098 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1099 if (value & (1 << i) && 1100 (attrs.secure || s->itns[startvec + i])) { 1101 s->vectors[startvec + i].enabled = setval; 1102 } 1103 } 1104 nvic_irq_update(s); 1105 return MEMTX_OK; 1106 case 0x200 ... 0x23f: /* NVIC Set pend */ 1107 /* the special logic in armv7m_nvic_set_pending() 1108 * is not needed since IRQs are never escalated 1109 */ 1110 offset += 0x80; 1111 setval = 1; 1112 /* fall through */ 1113 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1114 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1115 1116 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1117 if (value & (1 << i) && 1118 (attrs.secure || s->itns[startvec + i])) { 1119 s->vectors[startvec + i].pending = setval; 1120 } 1121 } 1122 nvic_irq_update(s); 1123 return MEMTX_OK; 1124 case 0x300 ... 0x33f: /* NVIC Active */ 1125 return MEMTX_OK; /* R/O */ 1126 case 0x400 ... 0x5ef: /* NVIC Priority */ 1127 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1128 1129 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1130 if (attrs.secure || s->itns[startvec + i]) { 1131 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 1132 } 1133 } 1134 nvic_irq_update(s); 1135 return MEMTX_OK; 1136 case 0xd18 ... 0xd23: /* System Handler Priority. */ 1137 for (i = 0; i < size; i++) { 1138 unsigned hdlidx = (offset - 0xd14) + i; 1139 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 1140 } 1141 nvic_irq_update(s); 1142 return MEMTX_OK; 1143 } 1144 if (size == 4) { 1145 nvic_writel(s, offset, value, attrs); 1146 return MEMTX_OK; 1147 } 1148 qemu_log_mask(LOG_GUEST_ERROR, 1149 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1150 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1151 return MEMTX_OK; 1152 } 1153 1154 static const MemoryRegionOps nvic_sysreg_ops = { 1155 .read_with_attrs = nvic_sysreg_read, 1156 .write_with_attrs = nvic_sysreg_write, 1157 .endianness = DEVICE_NATIVE_ENDIAN, 1158 }; 1159 1160 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1161 uint64_t value, unsigned size, 1162 MemTxAttrs attrs) 1163 { 1164 if (attrs.secure) { 1165 /* S accesses to the alias act like NS accesses to the real region */ 1166 attrs.secure = 0; 1167 return nvic_sysreg_write(opaque, addr, value, size, attrs); 1168 } else { 1169 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1170 if (attrs.user) { 1171 return MEMTX_ERROR; 1172 } 1173 return MEMTX_OK; 1174 } 1175 } 1176 1177 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1178 uint64_t *data, unsigned size, 1179 MemTxAttrs attrs) 1180 { 1181 if (attrs.secure) { 1182 /* S accesses to the alias act like NS accesses to the real region */ 1183 attrs.secure = 0; 1184 return nvic_sysreg_read(opaque, addr, data, size, attrs); 1185 } else { 1186 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1187 if (attrs.user) { 1188 return MEMTX_ERROR; 1189 } 1190 *data = 0; 1191 return MEMTX_OK; 1192 } 1193 } 1194 1195 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1196 .read_with_attrs = nvic_sysreg_ns_read, 1197 .write_with_attrs = nvic_sysreg_ns_write, 1198 .endianness = DEVICE_NATIVE_ENDIAN, 1199 }; 1200 1201 static int nvic_post_load(void *opaque, int version_id) 1202 { 1203 NVICState *s = opaque; 1204 unsigned i; 1205 1206 /* Check for out of range priority settings */ 1207 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 1208 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1209 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1210 return 1; 1211 } 1212 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1213 if (s->vectors[i].prio & ~0xff) { 1214 return 1; 1215 } 1216 } 1217 1218 nvic_recompute_state(s); 1219 1220 return 0; 1221 } 1222 1223 static const VMStateDescription vmstate_VecInfo = { 1224 .name = "armv7m_nvic_info", 1225 .version_id = 1, 1226 .minimum_version_id = 1, 1227 .fields = (VMStateField[]) { 1228 VMSTATE_INT16(prio, VecInfo), 1229 VMSTATE_UINT8(enabled, VecInfo), 1230 VMSTATE_UINT8(pending, VecInfo), 1231 VMSTATE_UINT8(active, VecInfo), 1232 VMSTATE_UINT8(level, VecInfo), 1233 VMSTATE_END_OF_LIST() 1234 } 1235 }; 1236 1237 static bool nvic_security_needed(void *opaque) 1238 { 1239 NVICState *s = opaque; 1240 1241 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 1242 } 1243 1244 static int nvic_security_post_load(void *opaque, int version_id) 1245 { 1246 NVICState *s = opaque; 1247 int i; 1248 1249 /* Check for out of range priority settings */ 1250 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1) { 1251 return 1; 1252 } 1253 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 1254 if (s->sec_vectors[i].prio & ~0xff) { 1255 return 1; 1256 } 1257 } 1258 return 0; 1259 } 1260 1261 static const VMStateDescription vmstate_nvic_security = { 1262 .name = "nvic/m-security", 1263 .version_id = 1, 1264 .minimum_version_id = 1, 1265 .needed = nvic_security_needed, 1266 .post_load = &nvic_security_post_load, 1267 .fields = (VMStateField[]) { 1268 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 1269 vmstate_VecInfo, VecInfo), 1270 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 1271 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 1272 VMSTATE_END_OF_LIST() 1273 } 1274 }; 1275 1276 static const VMStateDescription vmstate_nvic = { 1277 .name = "armv7m_nvic", 1278 .version_id = 4, 1279 .minimum_version_id = 4, 1280 .post_load = &nvic_post_load, 1281 .fields = (VMStateField[]) { 1282 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1283 vmstate_VecInfo, VecInfo), 1284 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 1285 VMSTATE_END_OF_LIST() 1286 }, 1287 .subsections = (const VMStateDescription*[]) { 1288 &vmstate_nvic_security, 1289 NULL 1290 } 1291 }; 1292 1293 static Property props_nvic[] = { 1294 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1295 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1296 DEFINE_PROP_END_OF_LIST() 1297 }; 1298 1299 static void armv7m_nvic_reset(DeviceState *dev) 1300 { 1301 NVICState *s = NVIC(dev); 1302 1303 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1304 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1305 /* MEM, BUS, and USAGE are enabled through 1306 * the System Handler Control register 1307 */ 1308 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1309 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1310 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1311 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1312 1313 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 1314 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1315 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1316 1317 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1318 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 1319 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 1320 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1321 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1322 1323 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 1324 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1325 } 1326 1327 /* Strictly speaking the reset handler should be enabled. 1328 * However, we don't simulate soft resets through the NVIC, 1329 * and the reset vector should never be pended. 1330 * So we leave it disabled to catch logic errors. 1331 */ 1332 1333 s->exception_prio = NVIC_NOEXC_PRIO; 1334 s->vectpending = 0; 1335 s->vectpending_is_s_banked = false; 1336 s->vectpending_prio = NVIC_NOEXC_PRIO; 1337 1338 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1339 memset(s->itns, 0, sizeof(s->itns)); 1340 } else { 1341 /* This state is constant and not guest accessible in a non-security 1342 * NVIC; we set the bits to true to avoid having to do a feature 1343 * bit check in the NVIC enable/pend/etc register accessors. 1344 */ 1345 int i; 1346 1347 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 1348 s->itns[i] = true; 1349 } 1350 } 1351 } 1352 1353 static void nvic_systick_trigger(void *opaque, int n, int level) 1354 { 1355 NVICState *s = opaque; 1356 1357 if (level) { 1358 /* SysTick just asked us to pend its exception. 1359 * (This is different from an external interrupt line's 1360 * behaviour.) 1361 */ 1362 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 1363 } 1364 } 1365 1366 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 1367 { 1368 NVICState *s = NVIC(dev); 1369 SysBusDevice *systick_sbd; 1370 Error *err = NULL; 1371 int regionlen; 1372 1373 s->cpu = ARM_CPU(qemu_get_cpu(0)); 1374 assert(s->cpu); 1375 1376 if (s->num_irq > NVIC_MAX_IRQ) { 1377 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 1378 return; 1379 } 1380 1381 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 1382 1383 /* include space for internal exception vectors */ 1384 s->num_irq += NVIC_FIRST_IRQ; 1385 1386 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 1387 if (err != NULL) { 1388 error_propagate(errp, err); 1389 return; 1390 } 1391 systick_sbd = SYS_BUS_DEVICE(&s->systick); 1392 sysbus_connect_irq(systick_sbd, 0, 1393 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 1394 1395 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 1396 * and looks like this: 1397 * 0x004 - ICTR 1398 * 0x010 - 0xff - systick 1399 * 0x100..0x7ec - NVIC 1400 * 0x7f0..0xcff - Reserved 1401 * 0xd00..0xd3c - SCS registers 1402 * 0xd40..0xeff - Reserved or Not implemented 1403 * 0xf00 - STIR 1404 * 1405 * Some registers within this space are banked between security states. 1406 * In v8M there is a second range 0xe002e000..0xe002efff which is the 1407 * NonSecure alias SCS; secure accesses to this behave like NS accesses 1408 * to the main SCS range, and non-secure accesses (including when 1409 * the security extension is not implemented) are RAZ/WI. 1410 * Note that both the main SCS range and the alias range are defined 1411 * to be exempt from memory attribution (R_BLJT) and so the memory 1412 * transaction attribute always matches the current CPU security 1413 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 1414 * wrappers we change attrs.secure to indicate the NS access; so 1415 * generally code determining which banked register to use should 1416 * use attrs.secure; code determining actual behaviour of the system 1417 * should use env->v7m.secure. 1418 */ 1419 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 1420 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 1421 /* The system register region goes at the bottom of the priority 1422 * stack as it covers the whole page. 1423 */ 1424 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 1425 "nvic_sysregs", 0x1000); 1426 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 1427 memory_region_add_subregion_overlap(&s->container, 0x10, 1428 sysbus_mmio_get_region(systick_sbd, 0), 1429 1); 1430 1431 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 1432 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 1433 &nvic_sysreg_ns_ops, s, 1434 "nvic_sysregs_ns", 0x1000); 1435 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 1436 } 1437 1438 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 1439 } 1440 1441 static void armv7m_nvic_instance_init(Object *obj) 1442 { 1443 /* We have a different default value for the num-irq property 1444 * than our superclass. This function runs after qdev init 1445 * has set the defaults from the Property array and before 1446 * any user-specified property setting, so just modify the 1447 * value in the GICState struct. 1448 */ 1449 DeviceState *dev = DEVICE(obj); 1450 NVICState *nvic = NVIC(obj); 1451 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1452 1453 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 1454 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 1455 1456 sysbus_init_irq(sbd, &nvic->excpout); 1457 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 1458 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 1459 } 1460 1461 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 1462 { 1463 DeviceClass *dc = DEVICE_CLASS(klass); 1464 1465 dc->vmsd = &vmstate_nvic; 1466 dc->props = props_nvic; 1467 dc->reset = armv7m_nvic_reset; 1468 dc->realize = armv7m_nvic_realize; 1469 } 1470 1471 static const TypeInfo armv7m_nvic_info = { 1472 .name = TYPE_NVIC, 1473 .parent = TYPE_SYS_BUS_DEVICE, 1474 .instance_init = armv7m_nvic_instance_init, 1475 .instance_size = sizeof(NVICState), 1476 .class_init = armv7m_nvic_class_init, 1477 .class_size = sizeof(SysBusDeviceClass), 1478 }; 1479 1480 static void armv7m_nvic_register_types(void) 1481 { 1482 type_register_static(&armv7m_nvic_info); 1483 } 1484 1485 type_init(armv7m_nvic_register_types) 1486