1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 507 bool derived) 508 { 509 /* Pend an exception, including possibly escalating it to HardFault. 510 * 511 * This function handles both "normal" pending of interrupts and 512 * exceptions, and also derived exceptions (ones which occur as 513 * a result of trying to take some other exception). 514 * 515 * If derived == true, the caller guarantees that we are part way through 516 * trying to take an exception (but have not yet called 517 * armv7m_nvic_acknowledge_irq() to make it active), and so: 518 * - s->vectpending is the "original exception" we were trying to take 519 * - irq is the "derived exception" 520 * - nvic_exec_prio(s) gives the priority before exception entry 521 * Here we handle the prioritization logic which the pseudocode puts 522 * in the DerivedLateArrival() function. 523 */ 524 525 NVICState *s = (NVICState *)opaque; 526 bool banked = exc_is_banked(irq); 527 VecInfo *vec; 528 529 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 530 assert(!secure || banked); 531 532 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 533 534 trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio); 535 536 if (derived) { 537 /* Derived exceptions are always synchronous. */ 538 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 539 540 if (irq == ARMV7M_EXCP_DEBUG && 541 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 542 /* DebugMonitorFault, but its priority is lower than the 543 * preempted exception priority: just ignore it. 544 */ 545 return; 546 } 547 548 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 549 /* If this is a terminal exception (one which means we cannot 550 * take the original exception, like a failure to read its 551 * vector table entry), then we must take the derived exception. 552 * If the derived exception can't take priority over the 553 * original exception, then we go into Lockup. 554 * 555 * For QEMU, we rely on the fact that a derived exception is 556 * terminal if and only if it's reported to us as HardFault, 557 * which saves having to have an extra argument is_terminal 558 * that we'd only use in one place. 559 */ 560 cpu_abort(&s->cpu->parent_obj, 561 "Lockup: can't take terminal derived exception " 562 "(original exception priority %d)\n", 563 s->vectpending_prio); 564 } 565 /* We now continue with the same code as for a normal pending 566 * exception, which will cause us to pend the derived exception. 567 * We'll then take either the original or the derived exception 568 * based on which is higher priority by the usual mechanism 569 * for selecting the highest priority pending interrupt. 570 */ 571 } 572 573 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 574 /* If a synchronous exception is pending then it may be 575 * escalated to HardFault if: 576 * * it is equal or lower priority to current execution 577 * * it is disabled 578 * (ie we need to take it immediately but we can't do so). 579 * Asynchronous exceptions (and interrupts) simply remain pending. 580 * 581 * For QEMU, we don't have any imprecise (asynchronous) faults, 582 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 583 * synchronous. 584 * Debug exceptions are awkward because only Debug exceptions 585 * resulting from the BKPT instruction should be escalated, 586 * but we don't currently implement any Debug exceptions other 587 * than those that result from BKPT, so we treat all debug exceptions 588 * as needing escalation. 589 * 590 * This all means we can identify whether to escalate based only on 591 * the exception number and don't (yet) need the caller to explicitly 592 * tell us whether this exception is synchronous or not. 593 */ 594 int running = nvic_exec_prio(s); 595 bool escalate = false; 596 597 if (exc_group_prio(s, vec->prio, secure) >= running) { 598 trace_nvic_escalate_prio(irq, vec->prio, running); 599 escalate = true; 600 } else if (!vec->enabled) { 601 trace_nvic_escalate_disabled(irq); 602 escalate = true; 603 } 604 605 if (escalate) { 606 607 /* We need to escalate this exception to a synchronous HardFault. 608 * If BFHFNMINS is set then we escalate to the banked HF for 609 * the target security state of the original exception; otherwise 610 * we take a Secure HardFault. 611 */ 612 irq = ARMV7M_EXCP_HARD; 613 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 614 (secure || 615 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 616 vec = &s->sec_vectors[irq]; 617 } else { 618 vec = &s->vectors[irq]; 619 } 620 if (running <= vec->prio) { 621 /* We want to escalate to HardFault but we can't take the 622 * synchronous HardFault at this point either. This is a 623 * Lockup condition due to a guest bug. We don't model 624 * Lockup, so report via cpu_abort() instead. 625 */ 626 cpu_abort(&s->cpu->parent_obj, 627 "Lockup: can't escalate %d to HardFault " 628 "(current priority %d)\n", irq, running); 629 } 630 631 /* HF may be banked but there is only one shared HFSR */ 632 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 633 } 634 } 635 636 if (!vec->pending) { 637 vec->pending = 1; 638 nvic_irq_update(s); 639 } 640 } 641 642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 643 { 644 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 645 } 646 647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 648 { 649 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 650 } 651 652 /* Make pending IRQ active. */ 653 void armv7m_nvic_acknowledge_irq(void *opaque) 654 { 655 NVICState *s = (NVICState *)opaque; 656 CPUARMState *env = &s->cpu->env; 657 const int pending = s->vectpending; 658 const int running = nvic_exec_prio(s); 659 VecInfo *vec; 660 661 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 662 663 if (s->vectpending_is_s_banked) { 664 vec = &s->sec_vectors[pending]; 665 } else { 666 vec = &s->vectors[pending]; 667 } 668 669 assert(vec->enabled); 670 assert(vec->pending); 671 672 assert(s->vectpending_prio < running); 673 674 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 675 676 vec->active = 1; 677 vec->pending = 0; 678 679 write_v7m_exception(env, s->vectpending); 680 681 nvic_irq_update(s); 682 } 683 684 void armv7m_nvic_get_pending_irq_info(void *opaque, 685 int *pirq, bool *ptargets_secure) 686 { 687 NVICState *s = (NVICState *)opaque; 688 const int pending = s->vectpending; 689 bool targets_secure; 690 691 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 692 693 if (s->vectpending_is_s_banked) { 694 targets_secure = true; 695 } else { 696 targets_secure = !exc_is_banked(pending) && 697 exc_targets_secure(s, pending); 698 } 699 700 trace_nvic_get_pending_irq_info(pending, targets_secure); 701 702 *ptargets_secure = targets_secure; 703 *pirq = pending; 704 } 705 706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 707 { 708 NVICState *s = (NVICState *)opaque; 709 VecInfo *vec; 710 int ret; 711 712 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 713 714 if (secure && exc_is_banked(irq)) { 715 vec = &s->sec_vectors[irq]; 716 } else { 717 vec = &s->vectors[irq]; 718 } 719 720 trace_nvic_complete_irq(irq, secure); 721 722 if (!vec->active) { 723 /* Tell the caller this was an illegal exception return */ 724 return -1; 725 } 726 727 ret = nvic_rettobase(s); 728 729 vec->active = 0; 730 if (vec->level) { 731 /* Re-pend the exception if it's still held high; only 732 * happens for extenal IRQs 733 */ 734 assert(irq >= NVIC_FIRST_IRQ); 735 vec->pending = 1; 736 } 737 738 nvic_irq_update(s); 739 740 return ret; 741 } 742 743 /* callback when external interrupt line is changed */ 744 static void set_irq_level(void *opaque, int n, int level) 745 { 746 NVICState *s = opaque; 747 VecInfo *vec; 748 749 n += NVIC_FIRST_IRQ; 750 751 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 752 753 trace_nvic_set_irq_level(n, level); 754 755 /* The pending status of an external interrupt is 756 * latched on rising edge and exception handler return. 757 * 758 * Pulsing the IRQ will always run the handler 759 * once, and the handler will re-run until the 760 * level is low when the handler completes. 761 */ 762 vec = &s->vectors[n]; 763 if (level != vec->level) { 764 vec->level = level; 765 if (level) { 766 armv7m_nvic_set_pending(s, n, false); 767 } 768 } 769 } 770 771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 772 { 773 ARMCPU *cpu = s->cpu; 774 uint32_t val; 775 776 switch (offset) { 777 case 4: /* Interrupt Control Type. */ 778 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 779 case 0xc: /* CPPWR */ 780 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 781 goto bad_offset; 782 } 783 /* We make the IMPDEF choice that nothing can ever go into a 784 * non-retentive power state, which allows us to RAZ/WI this. 785 */ 786 return 0; 787 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 788 { 789 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 790 int i; 791 792 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 793 goto bad_offset; 794 } 795 if (!attrs.secure) { 796 return 0; 797 } 798 val = 0; 799 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 800 if (s->itns[startvec + i]) { 801 val |= (1 << i); 802 } 803 } 804 return val; 805 } 806 case 0xd00: /* CPUID Base. */ 807 return cpu->midr; 808 case 0xd04: /* Interrupt Control State (ICSR) */ 809 /* VECTACTIVE */ 810 val = cpu->env.v7m.exception; 811 /* VECTPENDING */ 812 val |= (s->vectpending & 0xff) << 12; 813 /* ISRPENDING - set if any external IRQ is pending */ 814 if (nvic_isrpending(s)) { 815 val |= (1 << 22); 816 } 817 /* RETTOBASE - set if only one handler is active */ 818 if (nvic_rettobase(s)) { 819 val |= (1 << 11); 820 } 821 if (attrs.secure) { 822 /* PENDSTSET */ 823 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 824 val |= (1 << 26); 825 } 826 /* PENDSVSET */ 827 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 828 val |= (1 << 28); 829 } 830 } else { 831 /* PENDSTSET */ 832 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 833 val |= (1 << 26); 834 } 835 /* PENDSVSET */ 836 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 837 val |= (1 << 28); 838 } 839 } 840 /* NMIPENDSET */ 841 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 842 && s->vectors[ARMV7M_EXCP_NMI].pending) { 843 val |= (1 << 31); 844 } 845 /* ISRPREEMPT: RES0 when halting debug not implemented */ 846 /* STTNS: RES0 for the Main Extension */ 847 return val; 848 case 0xd08: /* Vector Table Offset. */ 849 return cpu->env.v7m.vecbase[attrs.secure]; 850 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 851 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 852 if (attrs.secure) { 853 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 854 val |= cpu->env.v7m.aircr; 855 } else { 856 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 857 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 858 * security isn't supported then BFHFNMINS is RAO (and 859 * the bit in env.v7m.aircr is always set). 860 */ 861 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 862 } 863 } 864 return val; 865 case 0xd10: /* System Control. */ 866 return cpu->env.v7m.scr[attrs.secure]; 867 case 0xd14: /* Configuration Control. */ 868 /* The BFHFNMIGN bit is the only non-banked bit; we 869 * keep it in the non-secure copy of the register. 870 */ 871 val = cpu->env.v7m.ccr[attrs.secure]; 872 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 873 return val; 874 case 0xd24: /* System Handler Control and State (SHCSR) */ 875 val = 0; 876 if (attrs.secure) { 877 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 878 val |= (1 << 0); 879 } 880 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 881 val |= (1 << 2); 882 } 883 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 884 val |= (1 << 3); 885 } 886 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 887 val |= (1 << 7); 888 } 889 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 890 val |= (1 << 10); 891 } 892 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 893 val |= (1 << 11); 894 } 895 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 896 val |= (1 << 12); 897 } 898 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 899 val |= (1 << 13); 900 } 901 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 902 val |= (1 << 15); 903 } 904 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 905 val |= (1 << 16); 906 } 907 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 908 val |= (1 << 18); 909 } 910 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 911 val |= (1 << 21); 912 } 913 /* SecureFault is not banked but is always RAZ/WI to NS */ 914 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 915 val |= (1 << 4); 916 } 917 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 918 val |= (1 << 19); 919 } 920 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 921 val |= (1 << 20); 922 } 923 } else { 924 if (s->vectors[ARMV7M_EXCP_MEM].active) { 925 val |= (1 << 0); 926 } 927 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 928 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 929 if (s->vectors[ARMV7M_EXCP_HARD].active) { 930 val |= (1 << 2); 931 } 932 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 933 val |= (1 << 21); 934 } 935 } 936 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 937 val |= (1 << 3); 938 } 939 if (s->vectors[ARMV7M_EXCP_SVC].active) { 940 val |= (1 << 7); 941 } 942 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 943 val |= (1 << 10); 944 } 945 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 946 val |= (1 << 11); 947 } 948 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 949 val |= (1 << 12); 950 } 951 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 952 val |= (1 << 13); 953 } 954 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 955 val |= (1 << 15); 956 } 957 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 958 val |= (1 << 16); 959 } 960 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 961 val |= (1 << 18); 962 } 963 } 964 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 965 if (s->vectors[ARMV7M_EXCP_BUS].active) { 966 val |= (1 << 1); 967 } 968 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 969 val |= (1 << 14); 970 } 971 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 972 val |= (1 << 17); 973 } 974 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 975 s->vectors[ARMV7M_EXCP_NMI].active) { 976 /* NMIACT is not present in v7M */ 977 val |= (1 << 5); 978 } 979 } 980 981 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 982 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 983 val |= (1 << 8); 984 } 985 return val; 986 case 0xd2c: /* Hard Fault Status. */ 987 return cpu->env.v7m.hfsr; 988 case 0xd30: /* Debug Fault Status. */ 989 return cpu->env.v7m.dfsr; 990 case 0xd34: /* MMFAR MemManage Fault Address */ 991 return cpu->env.v7m.mmfar[attrs.secure]; 992 case 0xd38: /* Bus Fault Address. */ 993 return cpu->env.v7m.bfar; 994 case 0xd3c: /* Aux Fault Status. */ 995 /* TODO: Implement fault status registers. */ 996 qemu_log_mask(LOG_UNIMP, 997 "Aux Fault status registers unimplemented\n"); 998 return 0; 999 case 0xd40: /* PFR0. */ 1000 return cpu->id_pfr0; 1001 case 0xd44: /* PFR1. */ 1002 return cpu->id_pfr1; 1003 case 0xd48: /* DFR0. */ 1004 return cpu->id_dfr0; 1005 case 0xd4c: /* AFR0. */ 1006 return cpu->id_afr0; 1007 case 0xd50: /* MMFR0. */ 1008 return cpu->id_mmfr0; 1009 case 0xd54: /* MMFR1. */ 1010 return cpu->id_mmfr1; 1011 case 0xd58: /* MMFR2. */ 1012 return cpu->id_mmfr2; 1013 case 0xd5c: /* MMFR3. */ 1014 return cpu->id_mmfr3; 1015 case 0xd60: /* ISAR0. */ 1016 return cpu->id_isar0; 1017 case 0xd64: /* ISAR1. */ 1018 return cpu->id_isar1; 1019 case 0xd68: /* ISAR2. */ 1020 return cpu->id_isar2; 1021 case 0xd6c: /* ISAR3. */ 1022 return cpu->id_isar3; 1023 case 0xd70: /* ISAR4. */ 1024 return cpu->id_isar4; 1025 case 0xd74: /* ISAR5. */ 1026 return cpu->id_isar5; 1027 case 0xd78: /* CLIDR */ 1028 return cpu->clidr; 1029 case 0xd7c: /* CTR */ 1030 return cpu->ctr; 1031 case 0xd80: /* CSSIDR */ 1032 { 1033 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1034 return cpu->ccsidr[idx]; 1035 } 1036 case 0xd84: /* CSSELR */ 1037 return cpu->env.v7m.csselr[attrs.secure]; 1038 /* TODO: Implement debug registers. */ 1039 case 0xd90: /* MPU_TYPE */ 1040 /* Unified MPU; if the MPU is not present this value is zero */ 1041 return cpu->pmsav7_dregion << 8; 1042 break; 1043 case 0xd94: /* MPU_CTRL */ 1044 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1045 case 0xd98: /* MPU_RNR */ 1046 return cpu->env.pmsav7.rnr[attrs.secure]; 1047 case 0xd9c: /* MPU_RBAR */ 1048 case 0xda4: /* MPU_RBAR_A1 */ 1049 case 0xdac: /* MPU_RBAR_A2 */ 1050 case 0xdb4: /* MPU_RBAR_A3 */ 1051 { 1052 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1053 1054 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1055 /* PMSAv8M handling of the aliases is different from v7M: 1056 * aliases A1, A2, A3 override the low two bits of the region 1057 * number in MPU_RNR, and there is no 'region' field in the 1058 * RBAR register. 1059 */ 1060 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1061 if (aliasno) { 1062 region = deposit32(region, 0, 2, aliasno); 1063 } 1064 if (region >= cpu->pmsav7_dregion) { 1065 return 0; 1066 } 1067 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1068 } 1069 1070 if (region >= cpu->pmsav7_dregion) { 1071 return 0; 1072 } 1073 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1074 } 1075 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1076 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1077 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1078 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1079 { 1080 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1081 1082 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1083 /* PMSAv8M handling of the aliases is different from v7M: 1084 * aliases A1, A2, A3 override the low two bits of the region 1085 * number in MPU_RNR. 1086 */ 1087 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1088 if (aliasno) { 1089 region = deposit32(region, 0, 2, aliasno); 1090 } 1091 if (region >= cpu->pmsav7_dregion) { 1092 return 0; 1093 } 1094 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1095 } 1096 1097 if (region >= cpu->pmsav7_dregion) { 1098 return 0; 1099 } 1100 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1101 (cpu->env.pmsav7.drsr[region] & 0xffff); 1102 } 1103 case 0xdc0: /* MPU_MAIR0 */ 1104 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1105 goto bad_offset; 1106 } 1107 return cpu->env.pmsav8.mair0[attrs.secure]; 1108 case 0xdc4: /* MPU_MAIR1 */ 1109 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1110 goto bad_offset; 1111 } 1112 return cpu->env.pmsav8.mair1[attrs.secure]; 1113 case 0xdd0: /* SAU_CTRL */ 1114 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1115 goto bad_offset; 1116 } 1117 if (!attrs.secure) { 1118 return 0; 1119 } 1120 return cpu->env.sau.ctrl; 1121 case 0xdd4: /* SAU_TYPE */ 1122 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1123 goto bad_offset; 1124 } 1125 if (!attrs.secure) { 1126 return 0; 1127 } 1128 return cpu->sau_sregion; 1129 case 0xdd8: /* SAU_RNR */ 1130 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1131 goto bad_offset; 1132 } 1133 if (!attrs.secure) { 1134 return 0; 1135 } 1136 return cpu->env.sau.rnr; 1137 case 0xddc: /* SAU_RBAR */ 1138 { 1139 int region = cpu->env.sau.rnr; 1140 1141 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1142 goto bad_offset; 1143 } 1144 if (!attrs.secure) { 1145 return 0; 1146 } 1147 if (region >= cpu->sau_sregion) { 1148 return 0; 1149 } 1150 return cpu->env.sau.rbar[region]; 1151 } 1152 case 0xde0: /* SAU_RLAR */ 1153 { 1154 int region = cpu->env.sau.rnr; 1155 1156 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1157 goto bad_offset; 1158 } 1159 if (!attrs.secure) { 1160 return 0; 1161 } 1162 if (region >= cpu->sau_sregion) { 1163 return 0; 1164 } 1165 return cpu->env.sau.rlar[region]; 1166 } 1167 case 0xde4: /* SFSR */ 1168 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1169 goto bad_offset; 1170 } 1171 if (!attrs.secure) { 1172 return 0; 1173 } 1174 return cpu->env.v7m.sfsr; 1175 case 0xde8: /* SFAR */ 1176 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1177 goto bad_offset; 1178 } 1179 if (!attrs.secure) { 1180 return 0; 1181 } 1182 return cpu->env.v7m.sfar; 1183 default: 1184 bad_offset: 1185 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1186 return 0; 1187 } 1188 } 1189 1190 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1191 MemTxAttrs attrs) 1192 { 1193 ARMCPU *cpu = s->cpu; 1194 1195 switch (offset) { 1196 case 0xc: /* CPPWR */ 1197 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1198 goto bad_offset; 1199 } 1200 /* Make the IMPDEF choice to RAZ/WI this. */ 1201 break; 1202 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1203 { 1204 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1205 int i; 1206 1207 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1208 goto bad_offset; 1209 } 1210 if (!attrs.secure) { 1211 break; 1212 } 1213 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1214 s->itns[startvec + i] = (value >> i) & 1; 1215 } 1216 nvic_irq_update(s); 1217 break; 1218 } 1219 case 0xd04: /* Interrupt Control State (ICSR) */ 1220 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1221 if (value & (1 << 31)) { 1222 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1223 } else if (value & (1 << 30) && 1224 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1225 /* PENDNMICLR didn't exist in v7M */ 1226 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1227 } 1228 } 1229 if (value & (1 << 28)) { 1230 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1231 } else if (value & (1 << 27)) { 1232 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1233 } 1234 if (value & (1 << 26)) { 1235 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1236 } else if (value & (1 << 25)) { 1237 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1238 } 1239 break; 1240 case 0xd08: /* Vector Table Offset. */ 1241 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1242 break; 1243 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1244 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1245 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1246 if (attrs.secure || 1247 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1248 qemu_irq_pulse(s->sysresetreq); 1249 } 1250 } 1251 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1252 qemu_log_mask(LOG_GUEST_ERROR, 1253 "Setting VECTCLRACTIVE when not in DEBUG mode " 1254 "is UNPREDICTABLE\n"); 1255 } 1256 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1257 /* NB: this bit is RES0 in v8M */ 1258 qemu_log_mask(LOG_GUEST_ERROR, 1259 "Setting VECTRESET when not in DEBUG mode " 1260 "is UNPREDICTABLE\n"); 1261 } 1262 s->prigroup[attrs.secure] = extract32(value, 1263 R_V7M_AIRCR_PRIGROUP_SHIFT, 1264 R_V7M_AIRCR_PRIGROUP_LENGTH); 1265 if (attrs.secure) { 1266 /* These bits are only writable by secure */ 1267 cpu->env.v7m.aircr = value & 1268 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1269 R_V7M_AIRCR_BFHFNMINS_MASK | 1270 R_V7M_AIRCR_PRIS_MASK); 1271 /* BFHFNMINS changes the priority of Secure HardFault, and 1272 * allows a pending Non-secure HardFault to preempt (which 1273 * we implement by marking it enabled). 1274 */ 1275 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1276 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1277 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1278 } else { 1279 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1280 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1281 } 1282 } 1283 nvic_irq_update(s); 1284 } 1285 break; 1286 case 0xd10: /* System Control. */ 1287 /* We don't implement deep-sleep so these bits are RAZ/WI. 1288 * The other bits in the register are banked. 1289 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1290 * is architecturally permitted. 1291 */ 1292 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1293 cpu->env.v7m.scr[attrs.secure] = value; 1294 break; 1295 case 0xd14: /* Configuration Control. */ 1296 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1297 value &= (R_V7M_CCR_STKALIGN_MASK | 1298 R_V7M_CCR_BFHFNMIGN_MASK | 1299 R_V7M_CCR_DIV_0_TRP_MASK | 1300 R_V7M_CCR_UNALIGN_TRP_MASK | 1301 R_V7M_CCR_USERSETMPEND_MASK | 1302 R_V7M_CCR_NONBASETHRDENA_MASK); 1303 1304 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1305 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1306 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1307 | R_V7M_CCR_STKALIGN_MASK; 1308 } 1309 if (attrs.secure) { 1310 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1311 cpu->env.v7m.ccr[M_REG_NS] = 1312 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1313 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1314 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1315 } 1316 1317 cpu->env.v7m.ccr[attrs.secure] = value; 1318 break; 1319 case 0xd24: /* System Handler Control and State (SHCSR) */ 1320 if (attrs.secure) { 1321 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1322 /* Secure HardFault active bit cannot be written */ 1323 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1324 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1325 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1326 (value & (1 << 10)) != 0; 1327 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1328 (value & (1 << 11)) != 0; 1329 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1330 (value & (1 << 12)) != 0; 1331 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1332 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1333 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1334 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1335 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1336 (value & (1 << 18)) != 0; 1337 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1338 /* SecureFault not banked, but RAZ/WI to NS */ 1339 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1340 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1341 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1342 } else { 1343 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1344 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1345 /* HARDFAULTPENDED is not present in v7M */ 1346 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1347 } 1348 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1349 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1350 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1351 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1352 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1353 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1354 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1355 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1356 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1357 } 1358 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1359 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1360 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1361 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1362 } 1363 /* NMIACT can only be written if the write is of a zero, with 1364 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1365 */ 1366 if (!attrs.secure && cpu->env.v7m.secure && 1367 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1368 (value & (1 << 5)) == 0) { 1369 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1370 } 1371 /* HARDFAULTACT can only be written if the write is of a zero 1372 * to the non-secure HardFault state by the CPU in secure state. 1373 * The only case where we can be targeting the non-secure HF state 1374 * when in secure state is if this is a write via the NS alias 1375 * and BFHFNMINS is 1. 1376 */ 1377 if (!attrs.secure && cpu->env.v7m.secure && 1378 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1379 (value & (1 << 2)) == 0) { 1380 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1381 } 1382 1383 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1384 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1385 nvic_irq_update(s); 1386 break; 1387 case 0xd2c: /* Hard Fault Status. */ 1388 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1389 break; 1390 case 0xd30: /* Debug Fault Status. */ 1391 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1392 break; 1393 case 0xd34: /* Mem Manage Address. */ 1394 cpu->env.v7m.mmfar[attrs.secure] = value; 1395 return; 1396 case 0xd38: /* Bus Fault Address. */ 1397 cpu->env.v7m.bfar = value; 1398 return; 1399 case 0xd3c: /* Aux Fault Status. */ 1400 qemu_log_mask(LOG_UNIMP, 1401 "NVIC: Aux fault status registers unimplemented\n"); 1402 break; 1403 case 0xd84: /* CSSELR */ 1404 if (!arm_v7m_csselr_razwi(cpu)) { 1405 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1406 } 1407 break; 1408 case 0xd90: /* MPU_TYPE */ 1409 return; /* RO */ 1410 case 0xd94: /* MPU_CTRL */ 1411 if ((value & 1412 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1413 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1414 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1415 "UNPREDICTABLE\n"); 1416 } 1417 cpu->env.v7m.mpu_ctrl[attrs.secure] 1418 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1419 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1420 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1421 tlb_flush(CPU(cpu)); 1422 break; 1423 case 0xd98: /* MPU_RNR */ 1424 if (value >= cpu->pmsav7_dregion) { 1425 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1426 PRIu32 "/%" PRIu32 "\n", 1427 value, cpu->pmsav7_dregion); 1428 } else { 1429 cpu->env.pmsav7.rnr[attrs.secure] = value; 1430 } 1431 break; 1432 case 0xd9c: /* MPU_RBAR */ 1433 case 0xda4: /* MPU_RBAR_A1 */ 1434 case 0xdac: /* MPU_RBAR_A2 */ 1435 case 0xdb4: /* MPU_RBAR_A3 */ 1436 { 1437 int region; 1438 1439 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1440 /* PMSAv8M handling of the aliases is different from v7M: 1441 * aliases A1, A2, A3 override the low two bits of the region 1442 * number in MPU_RNR, and there is no 'region' field in the 1443 * RBAR register. 1444 */ 1445 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1446 1447 region = cpu->env.pmsav7.rnr[attrs.secure]; 1448 if (aliasno) { 1449 region = deposit32(region, 0, 2, aliasno); 1450 } 1451 if (region >= cpu->pmsav7_dregion) { 1452 return; 1453 } 1454 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1455 tlb_flush(CPU(cpu)); 1456 return; 1457 } 1458 1459 if (value & (1 << 4)) { 1460 /* VALID bit means use the region number specified in this 1461 * value and also update MPU_RNR.REGION with that value. 1462 */ 1463 region = extract32(value, 0, 4); 1464 if (region >= cpu->pmsav7_dregion) { 1465 qemu_log_mask(LOG_GUEST_ERROR, 1466 "MPU region out of range %u/%" PRIu32 "\n", 1467 region, cpu->pmsav7_dregion); 1468 return; 1469 } 1470 cpu->env.pmsav7.rnr[attrs.secure] = region; 1471 } else { 1472 region = cpu->env.pmsav7.rnr[attrs.secure]; 1473 } 1474 1475 if (region >= cpu->pmsav7_dregion) { 1476 return; 1477 } 1478 1479 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1480 tlb_flush(CPU(cpu)); 1481 break; 1482 } 1483 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1484 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1485 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1486 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1487 { 1488 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1489 1490 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1491 /* PMSAv8M handling of the aliases is different from v7M: 1492 * aliases A1, A2, A3 override the low two bits of the region 1493 * number in MPU_RNR. 1494 */ 1495 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1496 1497 region = cpu->env.pmsav7.rnr[attrs.secure]; 1498 if (aliasno) { 1499 region = deposit32(region, 0, 2, aliasno); 1500 } 1501 if (region >= cpu->pmsav7_dregion) { 1502 return; 1503 } 1504 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1505 tlb_flush(CPU(cpu)); 1506 return; 1507 } 1508 1509 if (region >= cpu->pmsav7_dregion) { 1510 return; 1511 } 1512 1513 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1514 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1515 tlb_flush(CPU(cpu)); 1516 break; 1517 } 1518 case 0xdc0: /* MPU_MAIR0 */ 1519 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1520 goto bad_offset; 1521 } 1522 if (cpu->pmsav7_dregion) { 1523 /* Register is RES0 if no MPU regions are implemented */ 1524 cpu->env.pmsav8.mair0[attrs.secure] = value; 1525 } 1526 /* We don't need to do anything else because memory attributes 1527 * only affect cacheability, and we don't implement caching. 1528 */ 1529 break; 1530 case 0xdc4: /* MPU_MAIR1 */ 1531 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1532 goto bad_offset; 1533 } 1534 if (cpu->pmsav7_dregion) { 1535 /* Register is RES0 if no MPU regions are implemented */ 1536 cpu->env.pmsav8.mair1[attrs.secure] = value; 1537 } 1538 /* We don't need to do anything else because memory attributes 1539 * only affect cacheability, and we don't implement caching. 1540 */ 1541 break; 1542 case 0xdd0: /* SAU_CTRL */ 1543 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1544 goto bad_offset; 1545 } 1546 if (!attrs.secure) { 1547 return; 1548 } 1549 cpu->env.sau.ctrl = value & 3; 1550 break; 1551 case 0xdd4: /* SAU_TYPE */ 1552 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1553 goto bad_offset; 1554 } 1555 break; 1556 case 0xdd8: /* SAU_RNR */ 1557 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1558 goto bad_offset; 1559 } 1560 if (!attrs.secure) { 1561 return; 1562 } 1563 if (value >= cpu->sau_sregion) { 1564 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1565 PRIu32 "/%" PRIu32 "\n", 1566 value, cpu->sau_sregion); 1567 } else { 1568 cpu->env.sau.rnr = value; 1569 } 1570 break; 1571 case 0xddc: /* SAU_RBAR */ 1572 { 1573 int region = cpu->env.sau.rnr; 1574 1575 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1576 goto bad_offset; 1577 } 1578 if (!attrs.secure) { 1579 return; 1580 } 1581 if (region >= cpu->sau_sregion) { 1582 return; 1583 } 1584 cpu->env.sau.rbar[region] = value & ~0x1f; 1585 tlb_flush(CPU(cpu)); 1586 break; 1587 } 1588 case 0xde0: /* SAU_RLAR */ 1589 { 1590 int region = cpu->env.sau.rnr; 1591 1592 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1593 goto bad_offset; 1594 } 1595 if (!attrs.secure) { 1596 return; 1597 } 1598 if (region >= cpu->sau_sregion) { 1599 return; 1600 } 1601 cpu->env.sau.rlar[region] = value & ~0x1c; 1602 tlb_flush(CPU(cpu)); 1603 break; 1604 } 1605 case 0xde4: /* SFSR */ 1606 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1607 goto bad_offset; 1608 } 1609 if (!attrs.secure) { 1610 return; 1611 } 1612 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1613 break; 1614 case 0xde8: /* SFAR */ 1615 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1616 goto bad_offset; 1617 } 1618 if (!attrs.secure) { 1619 return; 1620 } 1621 cpu->env.v7m.sfsr = value; 1622 break; 1623 case 0xf00: /* Software Triggered Interrupt Register */ 1624 { 1625 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1626 if (excnum < s->num_irq) { 1627 armv7m_nvic_set_pending(s, excnum, false); 1628 } 1629 break; 1630 } 1631 case 0xf50: /* ICIALLU */ 1632 case 0xf58: /* ICIMVAU */ 1633 case 0xf5c: /* DCIMVAC */ 1634 case 0xf60: /* DCISW */ 1635 case 0xf64: /* DCCMVAU */ 1636 case 0xf68: /* DCCMVAC */ 1637 case 0xf6c: /* DCCSW */ 1638 case 0xf70: /* DCCIMVAC */ 1639 case 0xf74: /* DCCISW */ 1640 case 0xf78: /* BPIALL */ 1641 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 1642 break; 1643 default: 1644 bad_offset: 1645 qemu_log_mask(LOG_GUEST_ERROR, 1646 "NVIC: Bad write offset 0x%x\n", offset); 1647 } 1648 } 1649 1650 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1651 { 1652 /* Return true if unprivileged access to this register is permitted. */ 1653 switch (offset) { 1654 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1655 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1656 * controls access even though the CPU is in Secure state (I_QDKX). 1657 */ 1658 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1659 default: 1660 /* All other user accesses cause a BusFault unconditionally */ 1661 return false; 1662 } 1663 } 1664 1665 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1666 { 1667 /* Behaviour for the SHPR register field for this exception: 1668 * return M_REG_NS to use the nonsecure vector (including for 1669 * non-banked exceptions), M_REG_S for the secure version of 1670 * a banked exception, and -1 if this field should RAZ/WI. 1671 */ 1672 switch (exc) { 1673 case ARMV7M_EXCP_MEM: 1674 case ARMV7M_EXCP_USAGE: 1675 case ARMV7M_EXCP_SVC: 1676 case ARMV7M_EXCP_PENDSV: 1677 case ARMV7M_EXCP_SYSTICK: 1678 /* Banked exceptions */ 1679 return attrs.secure; 1680 case ARMV7M_EXCP_BUS: 1681 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1682 if (!attrs.secure && 1683 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1684 return -1; 1685 } 1686 return M_REG_NS; 1687 case ARMV7M_EXCP_SECURE: 1688 /* Not banked, RAZ/WI from nonsecure */ 1689 if (!attrs.secure) { 1690 return -1; 1691 } 1692 return M_REG_NS; 1693 case ARMV7M_EXCP_DEBUG: 1694 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1695 return M_REG_NS; 1696 case 8 ... 10: 1697 case 13: 1698 /* RES0 */ 1699 return -1; 1700 default: 1701 /* Not reachable due to decode of SHPR register addresses */ 1702 g_assert_not_reached(); 1703 } 1704 } 1705 1706 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1707 uint64_t *data, unsigned size, 1708 MemTxAttrs attrs) 1709 { 1710 NVICState *s = (NVICState *)opaque; 1711 uint32_t offset = addr; 1712 unsigned i, startvec, end; 1713 uint32_t val; 1714 1715 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1716 /* Generate BusFault for unprivileged accesses */ 1717 return MEMTX_ERROR; 1718 } 1719 1720 switch (offset) { 1721 /* reads of set and clear both return the status */ 1722 case 0x100 ... 0x13f: /* NVIC Set enable */ 1723 offset += 0x80; 1724 /* fall through */ 1725 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1726 val = 0; 1727 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 1728 1729 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1730 if (s->vectors[startvec + i].enabled && 1731 (attrs.secure || s->itns[startvec + i])) { 1732 val |= (1 << i); 1733 } 1734 } 1735 break; 1736 case 0x200 ... 0x23f: /* NVIC Set pend */ 1737 offset += 0x80; 1738 /* fall through */ 1739 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1740 val = 0; 1741 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1742 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1743 if (s->vectors[startvec + i].pending && 1744 (attrs.secure || s->itns[startvec + i])) { 1745 val |= (1 << i); 1746 } 1747 } 1748 break; 1749 case 0x300 ... 0x33f: /* NVIC Active */ 1750 val = 0; 1751 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 1752 1753 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1754 if (s->vectors[startvec + i].active && 1755 (attrs.secure || s->itns[startvec + i])) { 1756 val |= (1 << i); 1757 } 1758 } 1759 break; 1760 case 0x400 ... 0x5ef: /* NVIC Priority */ 1761 val = 0; 1762 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1763 1764 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1765 if (attrs.secure || s->itns[startvec + i]) { 1766 val |= s->vectors[startvec + i].prio << (8 * i); 1767 } 1768 } 1769 break; 1770 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1771 val = 0; 1772 for (i = 0; i < size; i++) { 1773 unsigned hdlidx = (offset - 0xd14) + i; 1774 int sbank = shpr_bank(s, hdlidx, attrs); 1775 1776 if (sbank < 0) { 1777 continue; 1778 } 1779 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1780 } 1781 break; 1782 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1783 /* The BFSR bits [15:8] are shared between security states 1784 * and we store them in the NS copy 1785 */ 1786 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1787 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1788 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1789 break; 1790 case 0xfe0 ... 0xfff: /* ID. */ 1791 if (offset & 3) { 1792 val = 0; 1793 } else { 1794 val = nvic_id[(offset - 0xfe0) >> 2]; 1795 } 1796 break; 1797 default: 1798 if (size == 4) { 1799 val = nvic_readl(s, offset, attrs); 1800 } else { 1801 qemu_log_mask(LOG_GUEST_ERROR, 1802 "NVIC: Bad read of size %d at offset 0x%x\n", 1803 size, offset); 1804 val = 0; 1805 } 1806 } 1807 1808 trace_nvic_sysreg_read(addr, val, size); 1809 *data = val; 1810 return MEMTX_OK; 1811 } 1812 1813 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1814 uint64_t value, unsigned size, 1815 MemTxAttrs attrs) 1816 { 1817 NVICState *s = (NVICState *)opaque; 1818 uint32_t offset = addr; 1819 unsigned i, startvec, end; 1820 unsigned setval = 0; 1821 1822 trace_nvic_sysreg_write(addr, value, size); 1823 1824 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1825 /* Generate BusFault for unprivileged accesses */ 1826 return MEMTX_ERROR; 1827 } 1828 1829 switch (offset) { 1830 case 0x100 ... 0x13f: /* NVIC Set enable */ 1831 offset += 0x80; 1832 setval = 1; 1833 /* fall through */ 1834 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1835 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1836 1837 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1838 if (value & (1 << i) && 1839 (attrs.secure || s->itns[startvec + i])) { 1840 s->vectors[startvec + i].enabled = setval; 1841 } 1842 } 1843 nvic_irq_update(s); 1844 return MEMTX_OK; 1845 case 0x200 ... 0x23f: /* NVIC Set pend */ 1846 /* the special logic in armv7m_nvic_set_pending() 1847 * is not needed since IRQs are never escalated 1848 */ 1849 offset += 0x80; 1850 setval = 1; 1851 /* fall through */ 1852 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1853 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1854 1855 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1856 if (value & (1 << i) && 1857 (attrs.secure || s->itns[startvec + i])) { 1858 s->vectors[startvec + i].pending = setval; 1859 } 1860 } 1861 nvic_irq_update(s); 1862 return MEMTX_OK; 1863 case 0x300 ... 0x33f: /* NVIC Active */ 1864 return MEMTX_OK; /* R/O */ 1865 case 0x400 ... 0x5ef: /* NVIC Priority */ 1866 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1867 1868 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1869 if (attrs.secure || s->itns[startvec + i]) { 1870 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1871 } 1872 } 1873 nvic_irq_update(s); 1874 return MEMTX_OK; 1875 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1876 for (i = 0; i < size; i++) { 1877 unsigned hdlidx = (offset - 0xd14) + i; 1878 int newprio = extract32(value, i * 8, 8); 1879 int sbank = shpr_bank(s, hdlidx, attrs); 1880 1881 if (sbank < 0) { 1882 continue; 1883 } 1884 set_prio(s, hdlidx, sbank, newprio); 1885 } 1886 nvic_irq_update(s); 1887 return MEMTX_OK; 1888 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1889 /* All bits are W1C, so construct 32 bit value with 0s in 1890 * the parts not written by the access size 1891 */ 1892 value <<= ((offset - 0xd28) * 8); 1893 1894 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1895 if (attrs.secure) { 1896 /* The BFSR bits [15:8] are shared between security states 1897 * and we store them in the NS copy. 1898 */ 1899 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1900 } 1901 return MEMTX_OK; 1902 } 1903 if (size == 4) { 1904 nvic_writel(s, offset, value, attrs); 1905 return MEMTX_OK; 1906 } 1907 qemu_log_mask(LOG_GUEST_ERROR, 1908 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1909 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1910 return MEMTX_OK; 1911 } 1912 1913 static const MemoryRegionOps nvic_sysreg_ops = { 1914 .read_with_attrs = nvic_sysreg_read, 1915 .write_with_attrs = nvic_sysreg_write, 1916 .endianness = DEVICE_NATIVE_ENDIAN, 1917 }; 1918 1919 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1920 uint64_t value, unsigned size, 1921 MemTxAttrs attrs) 1922 { 1923 MemoryRegion *mr = opaque; 1924 1925 if (attrs.secure) { 1926 /* S accesses to the alias act like NS accesses to the real region */ 1927 attrs.secure = 0; 1928 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1929 } else { 1930 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1931 if (attrs.user) { 1932 return MEMTX_ERROR; 1933 } 1934 return MEMTX_OK; 1935 } 1936 } 1937 1938 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1939 uint64_t *data, unsigned size, 1940 MemTxAttrs attrs) 1941 { 1942 MemoryRegion *mr = opaque; 1943 1944 if (attrs.secure) { 1945 /* S accesses to the alias act like NS accesses to the real region */ 1946 attrs.secure = 0; 1947 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1948 } else { 1949 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1950 if (attrs.user) { 1951 return MEMTX_ERROR; 1952 } 1953 *data = 0; 1954 return MEMTX_OK; 1955 } 1956 } 1957 1958 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1959 .read_with_attrs = nvic_sysreg_ns_read, 1960 .write_with_attrs = nvic_sysreg_ns_write, 1961 .endianness = DEVICE_NATIVE_ENDIAN, 1962 }; 1963 1964 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 1965 uint64_t value, unsigned size, 1966 MemTxAttrs attrs) 1967 { 1968 NVICState *s = opaque; 1969 MemoryRegion *mr; 1970 1971 /* Direct the access to the correct systick */ 1972 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1973 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1974 } 1975 1976 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 1977 uint64_t *data, unsigned size, 1978 MemTxAttrs attrs) 1979 { 1980 NVICState *s = opaque; 1981 MemoryRegion *mr; 1982 1983 /* Direct the access to the correct systick */ 1984 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1985 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1986 } 1987 1988 static const MemoryRegionOps nvic_systick_ops = { 1989 .read_with_attrs = nvic_systick_read, 1990 .write_with_attrs = nvic_systick_write, 1991 .endianness = DEVICE_NATIVE_ENDIAN, 1992 }; 1993 1994 static int nvic_post_load(void *opaque, int version_id) 1995 { 1996 NVICState *s = opaque; 1997 unsigned i; 1998 int resetprio; 1999 2000 /* Check for out of range priority settings */ 2001 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2002 2003 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2004 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2005 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2006 return 1; 2007 } 2008 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2009 if (s->vectors[i].prio & ~0xff) { 2010 return 1; 2011 } 2012 } 2013 2014 nvic_recompute_state(s); 2015 2016 return 0; 2017 } 2018 2019 static const VMStateDescription vmstate_VecInfo = { 2020 .name = "armv7m_nvic_info", 2021 .version_id = 1, 2022 .minimum_version_id = 1, 2023 .fields = (VMStateField[]) { 2024 VMSTATE_INT16(prio, VecInfo), 2025 VMSTATE_UINT8(enabled, VecInfo), 2026 VMSTATE_UINT8(pending, VecInfo), 2027 VMSTATE_UINT8(active, VecInfo), 2028 VMSTATE_UINT8(level, VecInfo), 2029 VMSTATE_END_OF_LIST() 2030 } 2031 }; 2032 2033 static bool nvic_security_needed(void *opaque) 2034 { 2035 NVICState *s = opaque; 2036 2037 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2038 } 2039 2040 static int nvic_security_post_load(void *opaque, int version_id) 2041 { 2042 NVICState *s = opaque; 2043 int i; 2044 2045 /* Check for out of range priority settings */ 2046 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2047 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2048 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2049 * if the CPU state has been migrated yet; a mismatch won't 2050 * cause the emulation to blow up, though. 2051 */ 2052 return 1; 2053 } 2054 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2055 if (s->sec_vectors[i].prio & ~0xff) { 2056 return 1; 2057 } 2058 } 2059 return 0; 2060 } 2061 2062 static const VMStateDescription vmstate_nvic_security = { 2063 .name = "nvic/m-security", 2064 .version_id = 1, 2065 .minimum_version_id = 1, 2066 .needed = nvic_security_needed, 2067 .post_load = &nvic_security_post_load, 2068 .fields = (VMStateField[]) { 2069 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2070 vmstate_VecInfo, VecInfo), 2071 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2072 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2073 VMSTATE_END_OF_LIST() 2074 } 2075 }; 2076 2077 static const VMStateDescription vmstate_nvic = { 2078 .name = "armv7m_nvic", 2079 .version_id = 4, 2080 .minimum_version_id = 4, 2081 .post_load = &nvic_post_load, 2082 .fields = (VMStateField[]) { 2083 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2084 vmstate_VecInfo, VecInfo), 2085 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2086 VMSTATE_END_OF_LIST() 2087 }, 2088 .subsections = (const VMStateDescription*[]) { 2089 &vmstate_nvic_security, 2090 NULL 2091 } 2092 }; 2093 2094 static Property props_nvic[] = { 2095 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2096 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2097 DEFINE_PROP_END_OF_LIST() 2098 }; 2099 2100 static void armv7m_nvic_reset(DeviceState *dev) 2101 { 2102 int resetprio; 2103 NVICState *s = NVIC(dev); 2104 2105 memset(s->vectors, 0, sizeof(s->vectors)); 2106 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2107 s->prigroup[M_REG_NS] = 0; 2108 s->prigroup[M_REG_S] = 0; 2109 2110 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2111 /* MEM, BUS, and USAGE are enabled through 2112 * the System Handler Control register 2113 */ 2114 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2115 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 2116 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2117 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2118 2119 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2120 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2121 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2122 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2123 2124 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2125 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2126 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2127 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2128 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2129 2130 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2131 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2132 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2133 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2134 } else { 2135 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2136 } 2137 2138 /* Strictly speaking the reset handler should be enabled. 2139 * However, we don't simulate soft resets through the NVIC, 2140 * and the reset vector should never be pended. 2141 * So we leave it disabled to catch logic errors. 2142 */ 2143 2144 s->exception_prio = NVIC_NOEXC_PRIO; 2145 s->vectpending = 0; 2146 s->vectpending_is_s_banked = false; 2147 s->vectpending_prio = NVIC_NOEXC_PRIO; 2148 2149 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2150 memset(s->itns, 0, sizeof(s->itns)); 2151 } else { 2152 /* This state is constant and not guest accessible in a non-security 2153 * NVIC; we set the bits to true to avoid having to do a feature 2154 * bit check in the NVIC enable/pend/etc register accessors. 2155 */ 2156 int i; 2157 2158 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2159 s->itns[i] = true; 2160 } 2161 } 2162 } 2163 2164 static void nvic_systick_trigger(void *opaque, int n, int level) 2165 { 2166 NVICState *s = opaque; 2167 2168 if (level) { 2169 /* SysTick just asked us to pend its exception. 2170 * (This is different from an external interrupt line's 2171 * behaviour.) 2172 * n == 0 : NonSecure systick 2173 * n == 1 : Secure systick 2174 */ 2175 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2176 } 2177 } 2178 2179 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2180 { 2181 NVICState *s = NVIC(dev); 2182 Error *err = NULL; 2183 int regionlen; 2184 2185 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2186 assert(s->cpu); 2187 2188 if (s->num_irq > NVIC_MAX_IRQ) { 2189 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2190 return; 2191 } 2192 2193 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2194 2195 /* include space for internal exception vectors */ 2196 s->num_irq += NVIC_FIRST_IRQ; 2197 2198 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2199 "realized", &err); 2200 if (err != NULL) { 2201 error_propagate(errp, err); 2202 return; 2203 } 2204 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2205 qdev_get_gpio_in_named(dev, "systick-trigger", 2206 M_REG_NS)); 2207 2208 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2209 /* We couldn't init the secure systick device in instance_init 2210 * as we didn't know then if the CPU had the security extensions; 2211 * so we have to do it here. 2212 */ 2213 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2214 TYPE_SYSTICK); 2215 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2216 2217 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2218 "realized", &err); 2219 if (err != NULL) { 2220 error_propagate(errp, err); 2221 return; 2222 } 2223 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2224 qdev_get_gpio_in_named(dev, "systick-trigger", 2225 M_REG_S)); 2226 } 2227 2228 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2229 * and looks like this: 2230 * 0x004 - ICTR 2231 * 0x010 - 0xff - systick 2232 * 0x100..0x7ec - NVIC 2233 * 0x7f0..0xcff - Reserved 2234 * 0xd00..0xd3c - SCS registers 2235 * 0xd40..0xeff - Reserved or Not implemented 2236 * 0xf00 - STIR 2237 * 2238 * Some registers within this space are banked between security states. 2239 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2240 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2241 * to the main SCS range, and non-secure accesses (including when 2242 * the security extension is not implemented) are RAZ/WI. 2243 * Note that both the main SCS range and the alias range are defined 2244 * to be exempt from memory attribution (R_BLJT) and so the memory 2245 * transaction attribute always matches the current CPU security 2246 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2247 * wrappers we change attrs.secure to indicate the NS access; so 2248 * generally code determining which banked register to use should 2249 * use attrs.secure; code determining actual behaviour of the system 2250 * should use env->v7m.secure. 2251 */ 2252 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2253 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2254 /* The system register region goes at the bottom of the priority 2255 * stack as it covers the whole page. 2256 */ 2257 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2258 "nvic_sysregs", 0x1000); 2259 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2260 2261 memory_region_init_io(&s->systickmem, OBJECT(s), 2262 &nvic_systick_ops, s, 2263 "nvic_systick", 0xe0); 2264 2265 memory_region_add_subregion_overlap(&s->container, 0x10, 2266 &s->systickmem, 1); 2267 2268 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2269 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2270 &nvic_sysreg_ns_ops, &s->sysregmem, 2271 "nvic_sysregs_ns", 0x1000); 2272 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2273 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2274 &nvic_sysreg_ns_ops, &s->systickmem, 2275 "nvic_systick_ns", 0xe0); 2276 memory_region_add_subregion_overlap(&s->container, 0x20010, 2277 &s->systick_ns_mem, 1); 2278 } 2279 2280 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2281 } 2282 2283 static void armv7m_nvic_instance_init(Object *obj) 2284 { 2285 /* We have a different default value for the num-irq property 2286 * than our superclass. This function runs after qdev init 2287 * has set the defaults from the Property array and before 2288 * any user-specified property setting, so just modify the 2289 * value in the GICState struct. 2290 */ 2291 DeviceState *dev = DEVICE(obj); 2292 NVICState *nvic = NVIC(obj); 2293 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2294 2295 object_initialize(&nvic->systick[M_REG_NS], 2296 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2297 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default()); 2298 /* We can't initialize the secure systick here, as we don't know 2299 * yet if we need it. 2300 */ 2301 2302 sysbus_init_irq(sbd, &nvic->excpout); 2303 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2304 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2305 M_REG_NUM_BANKS); 2306 } 2307 2308 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2309 { 2310 DeviceClass *dc = DEVICE_CLASS(klass); 2311 2312 dc->vmsd = &vmstate_nvic; 2313 dc->props = props_nvic; 2314 dc->reset = armv7m_nvic_reset; 2315 dc->realize = armv7m_nvic_realize; 2316 } 2317 2318 static const TypeInfo armv7m_nvic_info = { 2319 .name = TYPE_NVIC, 2320 .parent = TYPE_SYS_BUS_DEVICE, 2321 .instance_init = armv7m_nvic_instance_init, 2322 .instance_size = sizeof(NVICState), 2323 .class_init = armv7m_nvic_class_init, 2324 .class_size = sizeof(SysBusDeviceClass), 2325 }; 2326 2327 static void armv7m_nvic_register_types(void) 2328 { 2329 type_register_static(&armv7m_nvic_info); 2330 } 2331 2332 type_init(armv7m_nvic_register_types) 2333