xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision d33abe82c7c9847284a23e575e1078cccab540b5)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
424 
425     if (secure) {
426         assert(exc_is_banked(irq));
427         s->sec_vectors[irq].prio = prio;
428     } else {
429         s->vectors[irq].prio = prio;
430     }
431 
432     trace_nvic_set_prio(irq, secure, prio);
433 }
434 
435 /* Return the current raw priority register value.
436  * secure indicates the bank to use for banked exceptions (we assert if
437  * we are passed secure=true for a non-banked exception).
438  */
439 static int get_prio(NVICState *s, unsigned irq, bool secure)
440 {
441     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442     assert(irq < s->num_irq);
443 
444     if (secure) {
445         assert(exc_is_banked(irq));
446         return s->sec_vectors[irq].prio;
447     } else {
448         return s->vectors[irq].prio;
449     }
450 }
451 
452 /* Recompute state and assert irq line accordingly.
453  * Must be called after changes to:
454  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
455  *  prigroup
456  */
457 static void nvic_irq_update(NVICState *s)
458 {
459     int lvl;
460     int pend_prio;
461 
462     nvic_recompute_state(s);
463     pend_prio = nvic_pending_prio(s);
464 
465     /* Raise NVIC output if this IRQ would be taken, except that we
466      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468      * to those CPU registers don't cause us to recalculate the NVIC
469      * pending info.
470      */
471     lvl = (pend_prio < s->exception_prio);
472     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473     qemu_set_irq(s->excpout, lvl);
474 }
475 
476 /**
477  * armv7m_nvic_clear_pending: mark the specified exception as not pending
478  * @opaque: the NVIC
479  * @irq: the exception number to mark as not pending
480  * @secure: false for non-banked exceptions or for the nonsecure
481  * version of a banked exception, true for the secure version of a banked
482  * exception.
483  *
484  * Marks the specified exception as not pending. Note that we will assert()
485  * if @secure is true and @irq does not specify one of the fixed set
486  * of architecturally banked exceptions.
487  */
488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
489 {
490     NVICState *s = (NVICState *)opaque;
491     VecInfo *vec;
492 
493     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
494 
495     if (secure) {
496         assert(exc_is_banked(irq));
497         vec = &s->sec_vectors[irq];
498     } else {
499         vec = &s->vectors[irq];
500     }
501     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
502     if (vec->pending) {
503         vec->pending = 0;
504         nvic_irq_update(s);
505     }
506 }
507 
508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509                                        bool derived)
510 {
511     /* Pend an exception, including possibly escalating it to HardFault.
512      *
513      * This function handles both "normal" pending of interrupts and
514      * exceptions, and also derived exceptions (ones which occur as
515      * a result of trying to take some other exception).
516      *
517      * If derived == true, the caller guarantees that we are part way through
518      * trying to take an exception (but have not yet called
519      * armv7m_nvic_acknowledge_irq() to make it active), and so:
520      *  - s->vectpending is the "original exception" we were trying to take
521      *  - irq is the "derived exception"
522      *  - nvic_exec_prio(s) gives the priority before exception entry
523      * Here we handle the prioritization logic which the pseudocode puts
524      * in the DerivedLateArrival() function.
525      */
526 
527     NVICState *s = (NVICState *)opaque;
528     bool banked = exc_is_banked(irq);
529     VecInfo *vec;
530     bool targets_secure;
531 
532     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
533     assert(!secure || banked);
534 
535     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
536 
537     targets_secure = banked ? secure : exc_targets_secure(s, irq);
538 
539     trace_nvic_set_pending(irq, secure, targets_secure,
540                            derived, vec->enabled, vec->prio);
541 
542     if (derived) {
543         /* Derived exceptions are always synchronous. */
544         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
545 
546         if (irq == ARMV7M_EXCP_DEBUG &&
547             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548             /* DebugMonitorFault, but its priority is lower than the
549              * preempted exception priority: just ignore it.
550              */
551             return;
552         }
553 
554         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555             /* If this is a terminal exception (one which means we cannot
556              * take the original exception, like a failure to read its
557              * vector table entry), then we must take the derived exception.
558              * If the derived exception can't take priority over the
559              * original exception, then we go into Lockup.
560              *
561              * For QEMU, we rely on the fact that a derived exception is
562              * terminal if and only if it's reported to us as HardFault,
563              * which saves having to have an extra argument is_terminal
564              * that we'd only use in one place.
565              */
566             cpu_abort(&s->cpu->parent_obj,
567                       "Lockup: can't take terminal derived exception "
568                       "(original exception priority %d)\n",
569                       s->vectpending_prio);
570         }
571         /* We now continue with the same code as for a normal pending
572          * exception, which will cause us to pend the derived exception.
573          * We'll then take either the original or the derived exception
574          * based on which is higher priority by the usual mechanism
575          * for selecting the highest priority pending interrupt.
576          */
577     }
578 
579     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580         /* If a synchronous exception is pending then it may be
581          * escalated to HardFault if:
582          *  * it is equal or lower priority to current execution
583          *  * it is disabled
584          * (ie we need to take it immediately but we can't do so).
585          * Asynchronous exceptions (and interrupts) simply remain pending.
586          *
587          * For QEMU, we don't have any imprecise (asynchronous) faults,
588          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589          * synchronous.
590          * Debug exceptions are awkward because only Debug exceptions
591          * resulting from the BKPT instruction should be escalated,
592          * but we don't currently implement any Debug exceptions other
593          * than those that result from BKPT, so we treat all debug exceptions
594          * as needing escalation.
595          *
596          * This all means we can identify whether to escalate based only on
597          * the exception number and don't (yet) need the caller to explicitly
598          * tell us whether this exception is synchronous or not.
599          */
600         int running = nvic_exec_prio(s);
601         bool escalate = false;
602 
603         if (exc_group_prio(s, vec->prio, secure) >= running) {
604             trace_nvic_escalate_prio(irq, vec->prio, running);
605             escalate = true;
606         } else if (!vec->enabled) {
607             trace_nvic_escalate_disabled(irq);
608             escalate = true;
609         }
610 
611         if (escalate) {
612 
613             /* We need to escalate this exception to a synchronous HardFault.
614              * If BFHFNMINS is set then we escalate to the banked HF for
615              * the target security state of the original exception; otherwise
616              * we take a Secure HardFault.
617              */
618             irq = ARMV7M_EXCP_HARD;
619             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
620                 (targets_secure ||
621                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622                 vec = &s->sec_vectors[irq];
623             } else {
624                 vec = &s->vectors[irq];
625             }
626             if (running <= vec->prio) {
627                 /* We want to escalate to HardFault but we can't take the
628                  * synchronous HardFault at this point either. This is a
629                  * Lockup condition due to a guest bug. We don't model
630                  * Lockup, so report via cpu_abort() instead.
631                  */
632                 cpu_abort(&s->cpu->parent_obj,
633                           "Lockup: can't escalate %d to HardFault "
634                           "(current priority %d)\n", irq, running);
635             }
636 
637             /* HF may be banked but there is only one shared HFSR */
638             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
639         }
640     }
641 
642     if (!vec->pending) {
643         vec->pending = 1;
644         nvic_irq_update(s);
645     }
646 }
647 
648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
649 {
650     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
651 }
652 
653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
654 {
655     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
656 }
657 
658 /* Make pending IRQ active.  */
659 void armv7m_nvic_acknowledge_irq(void *opaque)
660 {
661     NVICState *s = (NVICState *)opaque;
662     CPUARMState *env = &s->cpu->env;
663     const int pending = s->vectpending;
664     const int running = nvic_exec_prio(s);
665     VecInfo *vec;
666 
667     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
668 
669     if (s->vectpending_is_s_banked) {
670         vec = &s->sec_vectors[pending];
671     } else {
672         vec = &s->vectors[pending];
673     }
674 
675     assert(vec->enabled);
676     assert(vec->pending);
677 
678     assert(s->vectpending_prio < running);
679 
680     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
681 
682     vec->active = 1;
683     vec->pending = 0;
684 
685     write_v7m_exception(env, s->vectpending);
686 
687     nvic_irq_update(s);
688 }
689 
690 void armv7m_nvic_get_pending_irq_info(void *opaque,
691                                       int *pirq, bool *ptargets_secure)
692 {
693     NVICState *s = (NVICState *)opaque;
694     const int pending = s->vectpending;
695     bool targets_secure;
696 
697     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
698 
699     if (s->vectpending_is_s_banked) {
700         targets_secure = true;
701     } else {
702         targets_secure = !exc_is_banked(pending) &&
703             exc_targets_secure(s, pending);
704     }
705 
706     trace_nvic_get_pending_irq_info(pending, targets_secure);
707 
708     *ptargets_secure = targets_secure;
709     *pirq = pending;
710 }
711 
712 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
713 {
714     NVICState *s = (NVICState *)opaque;
715     VecInfo *vec;
716     int ret;
717 
718     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
719 
720     if (secure && exc_is_banked(irq)) {
721         vec = &s->sec_vectors[irq];
722     } else {
723         vec = &s->vectors[irq];
724     }
725 
726     trace_nvic_complete_irq(irq, secure);
727 
728     if (!vec->active) {
729         /* Tell the caller this was an illegal exception return */
730         return -1;
731     }
732 
733     ret = nvic_rettobase(s);
734 
735     vec->active = 0;
736     if (vec->level) {
737         /* Re-pend the exception if it's still held high; only
738          * happens for extenal IRQs
739          */
740         assert(irq >= NVIC_FIRST_IRQ);
741         vec->pending = 1;
742     }
743 
744     nvic_irq_update(s);
745 
746     return ret;
747 }
748 
749 /* callback when external interrupt line is changed */
750 static void set_irq_level(void *opaque, int n, int level)
751 {
752     NVICState *s = opaque;
753     VecInfo *vec;
754 
755     n += NVIC_FIRST_IRQ;
756 
757     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
758 
759     trace_nvic_set_irq_level(n, level);
760 
761     /* The pending status of an external interrupt is
762      * latched on rising edge and exception handler return.
763      *
764      * Pulsing the IRQ will always run the handler
765      * once, and the handler will re-run until the
766      * level is low when the handler completes.
767      */
768     vec = &s->vectors[n];
769     if (level != vec->level) {
770         vec->level = level;
771         if (level) {
772             armv7m_nvic_set_pending(s, n, false);
773         }
774     }
775 }
776 
777 /* callback when external NMI line is changed */
778 static void nvic_nmi_trigger(void *opaque, int n, int level)
779 {
780     NVICState *s = opaque;
781 
782     trace_nvic_set_nmi_level(level);
783 
784     /*
785      * The architecture doesn't specify whether NMI should share
786      * the normal-interrupt behaviour of being resampled on
787      * exception handler return. We choose not to, so just
788      * set NMI pending here and don't track the current level.
789      */
790     if (level) {
791         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
792     }
793 }
794 
795 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
796 {
797     ARMCPU *cpu = s->cpu;
798     uint32_t val;
799 
800     switch (offset) {
801     case 4: /* Interrupt Control Type.  */
802         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
803             goto bad_offset;
804         }
805         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
806     case 0xc: /* CPPWR */
807         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
808             goto bad_offset;
809         }
810         /* We make the IMPDEF choice that nothing can ever go into a
811          * non-retentive power state, which allows us to RAZ/WI this.
812          */
813         return 0;
814     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
815     {
816         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
817         int i;
818 
819         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
820             goto bad_offset;
821         }
822         if (!attrs.secure) {
823             return 0;
824         }
825         val = 0;
826         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
827             if (s->itns[startvec + i]) {
828                 val |= (1 << i);
829             }
830         }
831         return val;
832     }
833     case 0xd00: /* CPUID Base.  */
834         return cpu->midr;
835     case 0xd04: /* Interrupt Control State (ICSR) */
836         /* VECTACTIVE */
837         val = cpu->env.v7m.exception;
838         /* VECTPENDING */
839         val |= (s->vectpending & 0xff) << 12;
840         /* ISRPENDING - set if any external IRQ is pending */
841         if (nvic_isrpending(s)) {
842             val |= (1 << 22);
843         }
844         /* RETTOBASE - set if only one handler is active */
845         if (nvic_rettobase(s)) {
846             val |= (1 << 11);
847         }
848         if (attrs.secure) {
849             /* PENDSTSET */
850             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
851                 val |= (1 << 26);
852             }
853             /* PENDSVSET */
854             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
855                 val |= (1 << 28);
856             }
857         } else {
858             /* PENDSTSET */
859             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
860                 val |= (1 << 26);
861             }
862             /* PENDSVSET */
863             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
864                 val |= (1 << 28);
865             }
866         }
867         /* NMIPENDSET */
868         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
869             && s->vectors[ARMV7M_EXCP_NMI].pending) {
870             val |= (1 << 31);
871         }
872         /* ISRPREEMPT: RES0 when halting debug not implemented */
873         /* STTNS: RES0 for the Main Extension */
874         return val;
875     case 0xd08: /* Vector Table Offset.  */
876         return cpu->env.v7m.vecbase[attrs.secure];
877     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
878         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
879         if (attrs.secure) {
880             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
881             val |= cpu->env.v7m.aircr;
882         } else {
883             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
884                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
885                  * security isn't supported then BFHFNMINS is RAO (and
886                  * the bit in env.v7m.aircr is always set).
887                  */
888                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
889             }
890         }
891         return val;
892     case 0xd10: /* System Control.  */
893         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
894             goto bad_offset;
895         }
896         return cpu->env.v7m.scr[attrs.secure];
897     case 0xd14: /* Configuration Control.  */
898         /* The BFHFNMIGN bit is the only non-banked bit; we
899          * keep it in the non-secure copy of the register.
900          */
901         val = cpu->env.v7m.ccr[attrs.secure];
902         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
903         return val;
904     case 0xd24: /* System Handler Control and State (SHCSR) */
905         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
906             goto bad_offset;
907         }
908         val = 0;
909         if (attrs.secure) {
910             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
911                 val |= (1 << 0);
912             }
913             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
914                 val |= (1 << 2);
915             }
916             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
917                 val |= (1 << 3);
918             }
919             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
920                 val |= (1 << 7);
921             }
922             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
923                 val |= (1 << 10);
924             }
925             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
926                 val |= (1 << 11);
927             }
928             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
929                 val |= (1 << 12);
930             }
931             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
932                 val |= (1 << 13);
933             }
934             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
935                 val |= (1 << 15);
936             }
937             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
938                 val |= (1 << 16);
939             }
940             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
941                 val |= (1 << 18);
942             }
943             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
944                 val |= (1 << 21);
945             }
946             /* SecureFault is not banked but is always RAZ/WI to NS */
947             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
948                 val |= (1 << 4);
949             }
950             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
951                 val |= (1 << 19);
952             }
953             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
954                 val |= (1 << 20);
955             }
956         } else {
957             if (s->vectors[ARMV7M_EXCP_MEM].active) {
958                 val |= (1 << 0);
959             }
960             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
961                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
962                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
963                     val |= (1 << 2);
964                 }
965                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
966                     val |= (1 << 21);
967                 }
968             }
969             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
970                 val |= (1 << 3);
971             }
972             if (s->vectors[ARMV7M_EXCP_SVC].active) {
973                 val |= (1 << 7);
974             }
975             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
976                 val |= (1 << 10);
977             }
978             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
979                 val |= (1 << 11);
980             }
981             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
982                 val |= (1 << 12);
983             }
984             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
985                 val |= (1 << 13);
986             }
987             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
988                 val |= (1 << 15);
989             }
990             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
991                 val |= (1 << 16);
992             }
993             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
994                 val |= (1 << 18);
995             }
996         }
997         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
998             if (s->vectors[ARMV7M_EXCP_BUS].active) {
999                 val |= (1 << 1);
1000             }
1001             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1002                 val |= (1 << 14);
1003             }
1004             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1005                 val |= (1 << 17);
1006             }
1007             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1008                 s->vectors[ARMV7M_EXCP_NMI].active) {
1009                 /* NMIACT is not present in v7M */
1010                 val |= (1 << 5);
1011             }
1012         }
1013 
1014         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1015         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1016             val |= (1 << 8);
1017         }
1018         return val;
1019     case 0xd2c: /* Hard Fault Status.  */
1020         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1021             goto bad_offset;
1022         }
1023         return cpu->env.v7m.hfsr;
1024     case 0xd30: /* Debug Fault Status.  */
1025         return cpu->env.v7m.dfsr;
1026     case 0xd34: /* MMFAR MemManage Fault Address */
1027         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1028             goto bad_offset;
1029         }
1030         return cpu->env.v7m.mmfar[attrs.secure];
1031     case 0xd38: /* Bus Fault Address.  */
1032         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1033             goto bad_offset;
1034         }
1035         return cpu->env.v7m.bfar;
1036     case 0xd3c: /* Aux Fault Status.  */
1037         /* TODO: Implement fault status registers.  */
1038         qemu_log_mask(LOG_UNIMP,
1039                       "Aux Fault status registers unimplemented\n");
1040         return 0;
1041     case 0xd40: /* PFR0.  */
1042         return cpu->id_pfr0;
1043     case 0xd44: /* PFR1.  */
1044         return cpu->id_pfr1;
1045     case 0xd48: /* DFR0.  */
1046         return cpu->id_dfr0;
1047     case 0xd4c: /* AFR0.  */
1048         return cpu->id_afr0;
1049     case 0xd50: /* MMFR0.  */
1050         return cpu->id_mmfr0;
1051     case 0xd54: /* MMFR1.  */
1052         return cpu->id_mmfr1;
1053     case 0xd58: /* MMFR2.  */
1054         return cpu->id_mmfr2;
1055     case 0xd5c: /* MMFR3.  */
1056         return cpu->id_mmfr3;
1057     case 0xd60: /* ISAR0.  */
1058         return cpu->isar.id_isar0;
1059     case 0xd64: /* ISAR1.  */
1060         return cpu->isar.id_isar1;
1061     case 0xd68: /* ISAR2.  */
1062         return cpu->isar.id_isar2;
1063     case 0xd6c: /* ISAR3.  */
1064         return cpu->isar.id_isar3;
1065     case 0xd70: /* ISAR4.  */
1066         return cpu->isar.id_isar4;
1067     case 0xd74: /* ISAR5.  */
1068         return cpu->isar.id_isar5;
1069     case 0xd78: /* CLIDR */
1070         return cpu->clidr;
1071     case 0xd7c: /* CTR */
1072         return cpu->ctr;
1073     case 0xd80: /* CSSIDR */
1074     {
1075         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1076         return cpu->ccsidr[idx];
1077     }
1078     case 0xd84: /* CSSELR */
1079         return cpu->env.v7m.csselr[attrs.secure];
1080     case 0xd88: /* CPACR */
1081         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1082             return 0;
1083         }
1084         return cpu->env.v7m.cpacr[attrs.secure];
1085     case 0xd8c: /* NSACR */
1086         if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1087             return 0;
1088         }
1089         return cpu->env.v7m.nsacr;
1090     /* TODO: Implement debug registers.  */
1091     case 0xd90: /* MPU_TYPE */
1092         /* Unified MPU; if the MPU is not present this value is zero */
1093         return cpu->pmsav7_dregion << 8;
1094         break;
1095     case 0xd94: /* MPU_CTRL */
1096         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1097     case 0xd98: /* MPU_RNR */
1098         return cpu->env.pmsav7.rnr[attrs.secure];
1099     case 0xd9c: /* MPU_RBAR */
1100     case 0xda4: /* MPU_RBAR_A1 */
1101     case 0xdac: /* MPU_RBAR_A2 */
1102     case 0xdb4: /* MPU_RBAR_A3 */
1103     {
1104         int region = cpu->env.pmsav7.rnr[attrs.secure];
1105 
1106         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1107             /* PMSAv8M handling of the aliases is different from v7M:
1108              * aliases A1, A2, A3 override the low two bits of the region
1109              * number in MPU_RNR, and there is no 'region' field in the
1110              * RBAR register.
1111              */
1112             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1113             if (aliasno) {
1114                 region = deposit32(region, 0, 2, aliasno);
1115             }
1116             if (region >= cpu->pmsav7_dregion) {
1117                 return 0;
1118             }
1119             return cpu->env.pmsav8.rbar[attrs.secure][region];
1120         }
1121 
1122         if (region >= cpu->pmsav7_dregion) {
1123             return 0;
1124         }
1125         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1126     }
1127     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1128     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1129     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1130     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1131     {
1132         int region = cpu->env.pmsav7.rnr[attrs.secure];
1133 
1134         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1135             /* PMSAv8M handling of the aliases is different from v7M:
1136              * aliases A1, A2, A3 override the low two bits of the region
1137              * number in MPU_RNR.
1138              */
1139             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1140             if (aliasno) {
1141                 region = deposit32(region, 0, 2, aliasno);
1142             }
1143             if (region >= cpu->pmsav7_dregion) {
1144                 return 0;
1145             }
1146             return cpu->env.pmsav8.rlar[attrs.secure][region];
1147         }
1148 
1149         if (region >= cpu->pmsav7_dregion) {
1150             return 0;
1151         }
1152         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1153             (cpu->env.pmsav7.drsr[region] & 0xffff);
1154     }
1155     case 0xdc0: /* MPU_MAIR0 */
1156         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157             goto bad_offset;
1158         }
1159         return cpu->env.pmsav8.mair0[attrs.secure];
1160     case 0xdc4: /* MPU_MAIR1 */
1161         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1162             goto bad_offset;
1163         }
1164         return cpu->env.pmsav8.mair1[attrs.secure];
1165     case 0xdd0: /* SAU_CTRL */
1166         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1167             goto bad_offset;
1168         }
1169         if (!attrs.secure) {
1170             return 0;
1171         }
1172         return cpu->env.sau.ctrl;
1173     case 0xdd4: /* SAU_TYPE */
1174         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1175             goto bad_offset;
1176         }
1177         if (!attrs.secure) {
1178             return 0;
1179         }
1180         return cpu->sau_sregion;
1181     case 0xdd8: /* SAU_RNR */
1182         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1183             goto bad_offset;
1184         }
1185         if (!attrs.secure) {
1186             return 0;
1187         }
1188         return cpu->env.sau.rnr;
1189     case 0xddc: /* SAU_RBAR */
1190     {
1191         int region = cpu->env.sau.rnr;
1192 
1193         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1194             goto bad_offset;
1195         }
1196         if (!attrs.secure) {
1197             return 0;
1198         }
1199         if (region >= cpu->sau_sregion) {
1200             return 0;
1201         }
1202         return cpu->env.sau.rbar[region];
1203     }
1204     case 0xde0: /* SAU_RLAR */
1205     {
1206         int region = cpu->env.sau.rnr;
1207 
1208         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1209             goto bad_offset;
1210         }
1211         if (!attrs.secure) {
1212             return 0;
1213         }
1214         if (region >= cpu->sau_sregion) {
1215             return 0;
1216         }
1217         return cpu->env.sau.rlar[region];
1218     }
1219     case 0xde4: /* SFSR */
1220         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1221             goto bad_offset;
1222         }
1223         if (!attrs.secure) {
1224             return 0;
1225         }
1226         return cpu->env.v7m.sfsr;
1227     case 0xde8: /* SFAR */
1228         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1229             goto bad_offset;
1230         }
1231         if (!attrs.secure) {
1232             return 0;
1233         }
1234         return cpu->env.v7m.sfar;
1235     case 0xf34: /* FPCCR */
1236         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1237             return 0;
1238         }
1239         if (attrs.secure) {
1240             return cpu->env.v7m.fpccr[M_REG_S];
1241         } else {
1242             /*
1243              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1244              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1245              * other non-banked bits RAZ.
1246              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1247              */
1248             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1249             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1250                 R_V7M_FPCCR_CLRONRET_MASK |
1251                 R_V7M_FPCCR_MONRDY_MASK;
1252 
1253             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1254                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1255             }
1256 
1257             value &= mask;
1258 
1259             value |= cpu->env.v7m.fpccr[M_REG_NS];
1260             return value;
1261         }
1262     case 0xf38: /* FPCAR */
1263         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1264             return 0;
1265         }
1266         return cpu->env.v7m.fpcar[attrs.secure];
1267     case 0xf3c: /* FPDSCR */
1268         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1269             return 0;
1270         }
1271         return cpu->env.v7m.fpdscr[attrs.secure];
1272     case 0xf40: /* MVFR0 */
1273         return cpu->isar.mvfr0;
1274     case 0xf44: /* MVFR1 */
1275         return cpu->isar.mvfr1;
1276     case 0xf48: /* MVFR2 */
1277         return cpu->isar.mvfr2;
1278     default:
1279     bad_offset:
1280         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1281         return 0;
1282     }
1283 }
1284 
1285 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1286                         MemTxAttrs attrs)
1287 {
1288     ARMCPU *cpu = s->cpu;
1289 
1290     switch (offset) {
1291     case 0xc: /* CPPWR */
1292         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1293             goto bad_offset;
1294         }
1295         /* Make the IMPDEF choice to RAZ/WI this. */
1296         break;
1297     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1298     {
1299         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1300         int i;
1301 
1302         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1303             goto bad_offset;
1304         }
1305         if (!attrs.secure) {
1306             break;
1307         }
1308         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1309             s->itns[startvec + i] = (value >> i) & 1;
1310         }
1311         nvic_irq_update(s);
1312         break;
1313     }
1314     case 0xd04: /* Interrupt Control State (ICSR) */
1315         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1316             if (value & (1 << 31)) {
1317                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1318             } else if (value & (1 << 30) &&
1319                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1320                 /* PENDNMICLR didn't exist in v7M */
1321                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1322             }
1323         }
1324         if (value & (1 << 28)) {
1325             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1326         } else if (value & (1 << 27)) {
1327             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1328         }
1329         if (value & (1 << 26)) {
1330             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1331         } else if (value & (1 << 25)) {
1332             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1333         }
1334         break;
1335     case 0xd08: /* Vector Table Offset.  */
1336         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1337         break;
1338     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1339         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1340             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1341                 if (attrs.secure ||
1342                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1343                     qemu_irq_pulse(s->sysresetreq);
1344                 }
1345             }
1346             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1347                 qemu_log_mask(LOG_GUEST_ERROR,
1348                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1349                               "is UNPREDICTABLE\n");
1350             }
1351             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1352                 /* NB: this bit is RES0 in v8M */
1353                 qemu_log_mask(LOG_GUEST_ERROR,
1354                               "Setting VECTRESET when not in DEBUG mode "
1355                               "is UNPREDICTABLE\n");
1356             }
1357             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1358                 s->prigroup[attrs.secure] =
1359                     extract32(value,
1360                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1361                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1362             }
1363             if (attrs.secure) {
1364                 /* These bits are only writable by secure */
1365                 cpu->env.v7m.aircr = value &
1366                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1367                      R_V7M_AIRCR_BFHFNMINS_MASK |
1368                      R_V7M_AIRCR_PRIS_MASK);
1369                 /* BFHFNMINS changes the priority of Secure HardFault, and
1370                  * allows a pending Non-secure HardFault to preempt (which
1371                  * we implement by marking it enabled).
1372                  */
1373                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1374                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1375                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1376                 } else {
1377                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1378                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1379                 }
1380             }
1381             nvic_irq_update(s);
1382         }
1383         break;
1384     case 0xd10: /* System Control.  */
1385         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1386             goto bad_offset;
1387         }
1388         /* We don't implement deep-sleep so these bits are RAZ/WI.
1389          * The other bits in the register are banked.
1390          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1391          * is architecturally permitted.
1392          */
1393         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1394         cpu->env.v7m.scr[attrs.secure] = value;
1395         break;
1396     case 0xd14: /* Configuration Control.  */
1397         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1398             goto bad_offset;
1399         }
1400 
1401         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1402         value &= (R_V7M_CCR_STKALIGN_MASK |
1403                   R_V7M_CCR_BFHFNMIGN_MASK |
1404                   R_V7M_CCR_DIV_0_TRP_MASK |
1405                   R_V7M_CCR_UNALIGN_TRP_MASK |
1406                   R_V7M_CCR_USERSETMPEND_MASK |
1407                   R_V7M_CCR_NONBASETHRDENA_MASK);
1408 
1409         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1410             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1411             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1412                 | R_V7M_CCR_STKALIGN_MASK;
1413         }
1414         if (attrs.secure) {
1415             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1416             cpu->env.v7m.ccr[M_REG_NS] =
1417                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1418                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1419             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1420         }
1421 
1422         cpu->env.v7m.ccr[attrs.secure] = value;
1423         break;
1424     case 0xd24: /* System Handler Control and State (SHCSR) */
1425         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1426             goto bad_offset;
1427         }
1428         if (attrs.secure) {
1429             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1430             /* Secure HardFault active bit cannot be written */
1431             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1432             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1433             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1434                 (value & (1 << 10)) != 0;
1435             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1436                 (value & (1 << 11)) != 0;
1437             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1438                 (value & (1 << 12)) != 0;
1439             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1440             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1441             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1442             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1443             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1444                 (value & (1 << 18)) != 0;
1445             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1446             /* SecureFault not banked, but RAZ/WI to NS */
1447             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1448             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1449             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1450         } else {
1451             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1452             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1453                 /* HARDFAULTPENDED is not present in v7M */
1454                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1455             }
1456             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1457             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1458             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1459             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1460             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1461             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1462             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1463             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1464             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1465         }
1466         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1467             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1468             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1469             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1470         }
1471         /* NMIACT can only be written if the write is of a zero, with
1472          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1473          */
1474         if (!attrs.secure && cpu->env.v7m.secure &&
1475             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1476             (value & (1 << 5)) == 0) {
1477             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1478         }
1479         /* HARDFAULTACT can only be written if the write is of a zero
1480          * to the non-secure HardFault state by the CPU in secure state.
1481          * The only case where we can be targeting the non-secure HF state
1482          * when in secure state is if this is a write via the NS alias
1483          * and BFHFNMINS is 1.
1484          */
1485         if (!attrs.secure && cpu->env.v7m.secure &&
1486             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1487             (value & (1 << 2)) == 0) {
1488             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1489         }
1490 
1491         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1492         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1493         nvic_irq_update(s);
1494         break;
1495     case 0xd2c: /* Hard Fault Status.  */
1496         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1497             goto bad_offset;
1498         }
1499         cpu->env.v7m.hfsr &= ~value; /* W1C */
1500         break;
1501     case 0xd30: /* Debug Fault Status.  */
1502         cpu->env.v7m.dfsr &= ~value; /* W1C */
1503         break;
1504     case 0xd34: /* Mem Manage Address.  */
1505         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1506             goto bad_offset;
1507         }
1508         cpu->env.v7m.mmfar[attrs.secure] = value;
1509         return;
1510     case 0xd38: /* Bus Fault Address.  */
1511         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1512             goto bad_offset;
1513         }
1514         cpu->env.v7m.bfar = value;
1515         return;
1516     case 0xd3c: /* Aux Fault Status.  */
1517         qemu_log_mask(LOG_UNIMP,
1518                       "NVIC: Aux fault status registers unimplemented\n");
1519         break;
1520     case 0xd84: /* CSSELR */
1521         if (!arm_v7m_csselr_razwi(cpu)) {
1522             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1523         }
1524         break;
1525     case 0xd88: /* CPACR */
1526         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1527             /* We implement only the Floating Point extension's CP10/CP11 */
1528             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1529         }
1530         break;
1531     case 0xd8c: /* NSACR */
1532         if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1533             /* We implement only the Floating Point extension's CP10/CP11 */
1534             cpu->env.v7m.nsacr = value & (3 << 10);
1535         }
1536         break;
1537     case 0xd90: /* MPU_TYPE */
1538         return; /* RO */
1539     case 0xd94: /* MPU_CTRL */
1540         if ((value &
1541              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1542             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1543             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1544                           "UNPREDICTABLE\n");
1545         }
1546         cpu->env.v7m.mpu_ctrl[attrs.secure]
1547             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1548                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1549                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1550         tlb_flush(CPU(cpu));
1551         break;
1552     case 0xd98: /* MPU_RNR */
1553         if (value >= cpu->pmsav7_dregion) {
1554             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1555                           PRIu32 "/%" PRIu32 "\n",
1556                           value, cpu->pmsav7_dregion);
1557         } else {
1558             cpu->env.pmsav7.rnr[attrs.secure] = value;
1559         }
1560         break;
1561     case 0xd9c: /* MPU_RBAR */
1562     case 0xda4: /* MPU_RBAR_A1 */
1563     case 0xdac: /* MPU_RBAR_A2 */
1564     case 0xdb4: /* MPU_RBAR_A3 */
1565     {
1566         int region;
1567 
1568         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1569             /* PMSAv8M handling of the aliases is different from v7M:
1570              * aliases A1, A2, A3 override the low two bits of the region
1571              * number in MPU_RNR, and there is no 'region' field in the
1572              * RBAR register.
1573              */
1574             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1575 
1576             region = cpu->env.pmsav7.rnr[attrs.secure];
1577             if (aliasno) {
1578                 region = deposit32(region, 0, 2, aliasno);
1579             }
1580             if (region >= cpu->pmsav7_dregion) {
1581                 return;
1582             }
1583             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1584             tlb_flush(CPU(cpu));
1585             return;
1586         }
1587 
1588         if (value & (1 << 4)) {
1589             /* VALID bit means use the region number specified in this
1590              * value and also update MPU_RNR.REGION with that value.
1591              */
1592             region = extract32(value, 0, 4);
1593             if (region >= cpu->pmsav7_dregion) {
1594                 qemu_log_mask(LOG_GUEST_ERROR,
1595                               "MPU region out of range %u/%" PRIu32 "\n",
1596                               region, cpu->pmsav7_dregion);
1597                 return;
1598             }
1599             cpu->env.pmsav7.rnr[attrs.secure] = region;
1600         } else {
1601             region = cpu->env.pmsav7.rnr[attrs.secure];
1602         }
1603 
1604         if (region >= cpu->pmsav7_dregion) {
1605             return;
1606         }
1607 
1608         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1609         tlb_flush(CPU(cpu));
1610         break;
1611     }
1612     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1613     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1614     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1615     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1616     {
1617         int region = cpu->env.pmsav7.rnr[attrs.secure];
1618 
1619         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1620             /* PMSAv8M handling of the aliases is different from v7M:
1621              * aliases A1, A2, A3 override the low two bits of the region
1622              * number in MPU_RNR.
1623              */
1624             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1625 
1626             region = cpu->env.pmsav7.rnr[attrs.secure];
1627             if (aliasno) {
1628                 region = deposit32(region, 0, 2, aliasno);
1629             }
1630             if (region >= cpu->pmsav7_dregion) {
1631                 return;
1632             }
1633             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1634             tlb_flush(CPU(cpu));
1635             return;
1636         }
1637 
1638         if (region >= cpu->pmsav7_dregion) {
1639             return;
1640         }
1641 
1642         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1643         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1644         tlb_flush(CPU(cpu));
1645         break;
1646     }
1647     case 0xdc0: /* MPU_MAIR0 */
1648         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1649             goto bad_offset;
1650         }
1651         if (cpu->pmsav7_dregion) {
1652             /* Register is RES0 if no MPU regions are implemented */
1653             cpu->env.pmsav8.mair0[attrs.secure] = value;
1654         }
1655         /* We don't need to do anything else because memory attributes
1656          * only affect cacheability, and we don't implement caching.
1657          */
1658         break;
1659     case 0xdc4: /* MPU_MAIR1 */
1660         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1661             goto bad_offset;
1662         }
1663         if (cpu->pmsav7_dregion) {
1664             /* Register is RES0 if no MPU regions are implemented */
1665             cpu->env.pmsav8.mair1[attrs.secure] = value;
1666         }
1667         /* We don't need to do anything else because memory attributes
1668          * only affect cacheability, and we don't implement caching.
1669          */
1670         break;
1671     case 0xdd0: /* SAU_CTRL */
1672         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1673             goto bad_offset;
1674         }
1675         if (!attrs.secure) {
1676             return;
1677         }
1678         cpu->env.sau.ctrl = value & 3;
1679         break;
1680     case 0xdd4: /* SAU_TYPE */
1681         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1682             goto bad_offset;
1683         }
1684         break;
1685     case 0xdd8: /* SAU_RNR */
1686         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1687             goto bad_offset;
1688         }
1689         if (!attrs.secure) {
1690             return;
1691         }
1692         if (value >= cpu->sau_sregion) {
1693             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1694                           PRIu32 "/%" PRIu32 "\n",
1695                           value, cpu->sau_sregion);
1696         } else {
1697             cpu->env.sau.rnr = value;
1698         }
1699         break;
1700     case 0xddc: /* SAU_RBAR */
1701     {
1702         int region = cpu->env.sau.rnr;
1703 
1704         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1705             goto bad_offset;
1706         }
1707         if (!attrs.secure) {
1708             return;
1709         }
1710         if (region >= cpu->sau_sregion) {
1711             return;
1712         }
1713         cpu->env.sau.rbar[region] = value & ~0x1f;
1714         tlb_flush(CPU(cpu));
1715         break;
1716     }
1717     case 0xde0: /* SAU_RLAR */
1718     {
1719         int region = cpu->env.sau.rnr;
1720 
1721         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1722             goto bad_offset;
1723         }
1724         if (!attrs.secure) {
1725             return;
1726         }
1727         if (region >= cpu->sau_sregion) {
1728             return;
1729         }
1730         cpu->env.sau.rlar[region] = value & ~0x1c;
1731         tlb_flush(CPU(cpu));
1732         break;
1733     }
1734     case 0xde4: /* SFSR */
1735         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1736             goto bad_offset;
1737         }
1738         if (!attrs.secure) {
1739             return;
1740         }
1741         cpu->env.v7m.sfsr &= ~value; /* W1C */
1742         break;
1743     case 0xde8: /* SFAR */
1744         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1745             goto bad_offset;
1746         }
1747         if (!attrs.secure) {
1748             return;
1749         }
1750         cpu->env.v7m.sfsr = value;
1751         break;
1752     case 0xf00: /* Software Triggered Interrupt Register */
1753     {
1754         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1755 
1756         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1757             goto bad_offset;
1758         }
1759 
1760         if (excnum < s->num_irq) {
1761             armv7m_nvic_set_pending(s, excnum, false);
1762         }
1763         break;
1764     }
1765     case 0xf34: /* FPCCR */
1766         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1767             /* Not all bits here are banked. */
1768             uint32_t fpccr_s;
1769 
1770             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1771                 /* Don't allow setting of bits not present in v7M */
1772                 value &= (R_V7M_FPCCR_LSPACT_MASK |
1773                           R_V7M_FPCCR_USER_MASK |
1774                           R_V7M_FPCCR_THREAD_MASK |
1775                           R_V7M_FPCCR_HFRDY_MASK |
1776                           R_V7M_FPCCR_MMRDY_MASK |
1777                           R_V7M_FPCCR_BFRDY_MASK |
1778                           R_V7M_FPCCR_MONRDY_MASK |
1779                           R_V7M_FPCCR_LSPEN_MASK |
1780                           R_V7M_FPCCR_ASPEN_MASK);
1781             }
1782             value &= ~R_V7M_FPCCR_RES0_MASK;
1783 
1784             if (!attrs.secure) {
1785                 /* Some non-banked bits are configurably writable by NS */
1786                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1787                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1788                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1789                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1790                 }
1791                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1792                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1793                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1794                 }
1795                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1796                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1797                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1798                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1799                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1800                 }
1801                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1802                 {
1803                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1804                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1805                 }
1806 
1807                 /*
1808                  * All other non-banked bits are RAZ/WI from NS; write
1809                  * just the banked bits to fpccr[M_REG_NS].
1810                  */
1811                 value &= R_V7M_FPCCR_BANKED_MASK;
1812                 cpu->env.v7m.fpccr[M_REG_NS] = value;
1813             } else {
1814                 fpccr_s = value;
1815             }
1816             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
1817         }
1818         break;
1819     case 0xf38: /* FPCAR */
1820         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1821             value &= ~7;
1822             cpu->env.v7m.fpcar[attrs.secure] = value;
1823         }
1824         break;
1825     case 0xf3c: /* FPDSCR */
1826         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1827             value &= 0x07c00000;
1828             cpu->env.v7m.fpdscr[attrs.secure] = value;
1829         }
1830         break;
1831     case 0xf50: /* ICIALLU */
1832     case 0xf58: /* ICIMVAU */
1833     case 0xf5c: /* DCIMVAC */
1834     case 0xf60: /* DCISW */
1835     case 0xf64: /* DCCMVAU */
1836     case 0xf68: /* DCCMVAC */
1837     case 0xf6c: /* DCCSW */
1838     case 0xf70: /* DCCIMVAC */
1839     case 0xf74: /* DCCISW */
1840     case 0xf78: /* BPIALL */
1841         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1842         break;
1843     default:
1844     bad_offset:
1845         qemu_log_mask(LOG_GUEST_ERROR,
1846                       "NVIC: Bad write offset 0x%x\n", offset);
1847     }
1848 }
1849 
1850 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1851 {
1852     /* Return true if unprivileged access to this register is permitted. */
1853     switch (offset) {
1854     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1855         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1856          * controls access even though the CPU is in Secure state (I_QDKX).
1857          */
1858         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1859     default:
1860         /* All other user accesses cause a BusFault unconditionally */
1861         return false;
1862     }
1863 }
1864 
1865 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1866 {
1867     /* Behaviour for the SHPR register field for this exception:
1868      * return M_REG_NS to use the nonsecure vector (including for
1869      * non-banked exceptions), M_REG_S for the secure version of
1870      * a banked exception, and -1 if this field should RAZ/WI.
1871      */
1872     switch (exc) {
1873     case ARMV7M_EXCP_MEM:
1874     case ARMV7M_EXCP_USAGE:
1875     case ARMV7M_EXCP_SVC:
1876     case ARMV7M_EXCP_PENDSV:
1877     case ARMV7M_EXCP_SYSTICK:
1878         /* Banked exceptions */
1879         return attrs.secure;
1880     case ARMV7M_EXCP_BUS:
1881         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1882         if (!attrs.secure &&
1883             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1884             return -1;
1885         }
1886         return M_REG_NS;
1887     case ARMV7M_EXCP_SECURE:
1888         /* Not banked, RAZ/WI from nonsecure */
1889         if (!attrs.secure) {
1890             return -1;
1891         }
1892         return M_REG_NS;
1893     case ARMV7M_EXCP_DEBUG:
1894         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1895         return M_REG_NS;
1896     case 8 ... 10:
1897     case 13:
1898         /* RES0 */
1899         return -1;
1900     default:
1901         /* Not reachable due to decode of SHPR register addresses */
1902         g_assert_not_reached();
1903     }
1904 }
1905 
1906 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1907                                     uint64_t *data, unsigned size,
1908                                     MemTxAttrs attrs)
1909 {
1910     NVICState *s = (NVICState *)opaque;
1911     uint32_t offset = addr;
1912     unsigned i, startvec, end;
1913     uint32_t val;
1914 
1915     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1916         /* Generate BusFault for unprivileged accesses */
1917         return MEMTX_ERROR;
1918     }
1919 
1920     switch (offset) {
1921     /* reads of set and clear both return the status */
1922     case 0x100 ... 0x13f: /* NVIC Set enable */
1923         offset += 0x80;
1924         /* fall through */
1925     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1926         val = 0;
1927         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1928 
1929         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1930             if (s->vectors[startvec + i].enabled &&
1931                 (attrs.secure || s->itns[startvec + i])) {
1932                 val |= (1 << i);
1933             }
1934         }
1935         break;
1936     case 0x200 ... 0x23f: /* NVIC Set pend */
1937         offset += 0x80;
1938         /* fall through */
1939     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1940         val = 0;
1941         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1942         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1943             if (s->vectors[startvec + i].pending &&
1944                 (attrs.secure || s->itns[startvec + i])) {
1945                 val |= (1 << i);
1946             }
1947         }
1948         break;
1949     case 0x300 ... 0x33f: /* NVIC Active */
1950         val = 0;
1951 
1952         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1953             break;
1954         }
1955 
1956         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1957 
1958         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1959             if (s->vectors[startvec + i].active &&
1960                 (attrs.secure || s->itns[startvec + i])) {
1961                 val |= (1 << i);
1962             }
1963         }
1964         break;
1965     case 0x400 ... 0x5ef: /* NVIC Priority */
1966         val = 0;
1967         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1968 
1969         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1970             if (attrs.secure || s->itns[startvec + i]) {
1971                 val |= s->vectors[startvec + i].prio << (8 * i);
1972             }
1973         }
1974         break;
1975     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
1976         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1977             val = 0;
1978             break;
1979         }
1980         /* fall through */
1981     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1982         val = 0;
1983         for (i = 0; i < size; i++) {
1984             unsigned hdlidx = (offset - 0xd14) + i;
1985             int sbank = shpr_bank(s, hdlidx, attrs);
1986 
1987             if (sbank < 0) {
1988                 continue;
1989             }
1990             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1991         }
1992         break;
1993     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1994         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1995             val = 0;
1996             break;
1997         };
1998         /* The BFSR bits [15:8] are shared between security states
1999          * and we store them in the NS copy
2000          */
2001         val = s->cpu->env.v7m.cfsr[attrs.secure];
2002         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2003         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2004         break;
2005     case 0xfe0 ... 0xfff: /* ID.  */
2006         if (offset & 3) {
2007             val = 0;
2008         } else {
2009             val = nvic_id[(offset - 0xfe0) >> 2];
2010         }
2011         break;
2012     default:
2013         if (size == 4) {
2014             val = nvic_readl(s, offset, attrs);
2015         } else {
2016             qemu_log_mask(LOG_GUEST_ERROR,
2017                           "NVIC: Bad read of size %d at offset 0x%x\n",
2018                           size, offset);
2019             val = 0;
2020         }
2021     }
2022 
2023     trace_nvic_sysreg_read(addr, val, size);
2024     *data = val;
2025     return MEMTX_OK;
2026 }
2027 
2028 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2029                                      uint64_t value, unsigned size,
2030                                      MemTxAttrs attrs)
2031 {
2032     NVICState *s = (NVICState *)opaque;
2033     uint32_t offset = addr;
2034     unsigned i, startvec, end;
2035     unsigned setval = 0;
2036 
2037     trace_nvic_sysreg_write(addr, value, size);
2038 
2039     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2040         /* Generate BusFault for unprivileged accesses */
2041         return MEMTX_ERROR;
2042     }
2043 
2044     switch (offset) {
2045     case 0x100 ... 0x13f: /* NVIC Set enable */
2046         offset += 0x80;
2047         setval = 1;
2048         /* fall through */
2049     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2050         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2051 
2052         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2053             if (value & (1 << i) &&
2054                 (attrs.secure || s->itns[startvec + i])) {
2055                 s->vectors[startvec + i].enabled = setval;
2056             }
2057         }
2058         nvic_irq_update(s);
2059         return MEMTX_OK;
2060     case 0x200 ... 0x23f: /* NVIC Set pend */
2061         /* the special logic in armv7m_nvic_set_pending()
2062          * is not needed since IRQs are never escalated
2063          */
2064         offset += 0x80;
2065         setval = 1;
2066         /* fall through */
2067     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2068         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2069 
2070         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2071             if (value & (1 << i) &&
2072                 (attrs.secure || s->itns[startvec + i])) {
2073                 s->vectors[startvec + i].pending = setval;
2074             }
2075         }
2076         nvic_irq_update(s);
2077         return MEMTX_OK;
2078     case 0x300 ... 0x33f: /* NVIC Active */
2079         return MEMTX_OK; /* R/O */
2080     case 0x400 ... 0x5ef: /* NVIC Priority */
2081         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2082 
2083         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2084             if (attrs.secure || s->itns[startvec + i]) {
2085                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2086             }
2087         }
2088         nvic_irq_update(s);
2089         return MEMTX_OK;
2090     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2091         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2092             return MEMTX_OK;
2093         }
2094         /* fall through */
2095     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2096         for (i = 0; i < size; i++) {
2097             unsigned hdlidx = (offset - 0xd14) + i;
2098             int newprio = extract32(value, i * 8, 8);
2099             int sbank = shpr_bank(s, hdlidx, attrs);
2100 
2101             if (sbank < 0) {
2102                 continue;
2103             }
2104             set_prio(s, hdlidx, sbank, newprio);
2105         }
2106         nvic_irq_update(s);
2107         return MEMTX_OK;
2108     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2109         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2110             return MEMTX_OK;
2111         }
2112         /* All bits are W1C, so construct 32 bit value with 0s in
2113          * the parts not written by the access size
2114          */
2115         value <<= ((offset - 0xd28) * 8);
2116 
2117         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2118         if (attrs.secure) {
2119             /* The BFSR bits [15:8] are shared between security states
2120              * and we store them in the NS copy.
2121              */
2122             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2123         }
2124         return MEMTX_OK;
2125     }
2126     if (size == 4) {
2127         nvic_writel(s, offset, value, attrs);
2128         return MEMTX_OK;
2129     }
2130     qemu_log_mask(LOG_GUEST_ERROR,
2131                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2132     /* This is UNPREDICTABLE; treat as RAZ/WI */
2133     return MEMTX_OK;
2134 }
2135 
2136 static const MemoryRegionOps nvic_sysreg_ops = {
2137     .read_with_attrs = nvic_sysreg_read,
2138     .write_with_attrs = nvic_sysreg_write,
2139     .endianness = DEVICE_NATIVE_ENDIAN,
2140 };
2141 
2142 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2143                                         uint64_t value, unsigned size,
2144                                         MemTxAttrs attrs)
2145 {
2146     MemoryRegion *mr = opaque;
2147 
2148     if (attrs.secure) {
2149         /* S accesses to the alias act like NS accesses to the real region */
2150         attrs.secure = 0;
2151         return memory_region_dispatch_write(mr, addr, value, size, attrs);
2152     } else {
2153         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2154         if (attrs.user) {
2155             return MEMTX_ERROR;
2156         }
2157         return MEMTX_OK;
2158     }
2159 }
2160 
2161 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2162                                        uint64_t *data, unsigned size,
2163                                        MemTxAttrs attrs)
2164 {
2165     MemoryRegion *mr = opaque;
2166 
2167     if (attrs.secure) {
2168         /* S accesses to the alias act like NS accesses to the real region */
2169         attrs.secure = 0;
2170         return memory_region_dispatch_read(mr, addr, data, size, attrs);
2171     } else {
2172         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2173         if (attrs.user) {
2174             return MEMTX_ERROR;
2175         }
2176         *data = 0;
2177         return MEMTX_OK;
2178     }
2179 }
2180 
2181 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2182     .read_with_attrs = nvic_sysreg_ns_read,
2183     .write_with_attrs = nvic_sysreg_ns_write,
2184     .endianness = DEVICE_NATIVE_ENDIAN,
2185 };
2186 
2187 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2188                                       uint64_t value, unsigned size,
2189                                       MemTxAttrs attrs)
2190 {
2191     NVICState *s = opaque;
2192     MemoryRegion *mr;
2193 
2194     /* Direct the access to the correct systick */
2195     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2196     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2197 }
2198 
2199 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2200                                      uint64_t *data, unsigned size,
2201                                      MemTxAttrs attrs)
2202 {
2203     NVICState *s = opaque;
2204     MemoryRegion *mr;
2205 
2206     /* Direct the access to the correct systick */
2207     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2208     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2209 }
2210 
2211 static const MemoryRegionOps nvic_systick_ops = {
2212     .read_with_attrs = nvic_systick_read,
2213     .write_with_attrs = nvic_systick_write,
2214     .endianness = DEVICE_NATIVE_ENDIAN,
2215 };
2216 
2217 static int nvic_post_load(void *opaque, int version_id)
2218 {
2219     NVICState *s = opaque;
2220     unsigned i;
2221     int resetprio;
2222 
2223     /* Check for out of range priority settings */
2224     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2225 
2226     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2227         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2228         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2229         return 1;
2230     }
2231     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2232         if (s->vectors[i].prio & ~0xff) {
2233             return 1;
2234         }
2235     }
2236 
2237     nvic_recompute_state(s);
2238 
2239     return 0;
2240 }
2241 
2242 static const VMStateDescription vmstate_VecInfo = {
2243     .name = "armv7m_nvic_info",
2244     .version_id = 1,
2245     .minimum_version_id = 1,
2246     .fields = (VMStateField[]) {
2247         VMSTATE_INT16(prio, VecInfo),
2248         VMSTATE_UINT8(enabled, VecInfo),
2249         VMSTATE_UINT8(pending, VecInfo),
2250         VMSTATE_UINT8(active, VecInfo),
2251         VMSTATE_UINT8(level, VecInfo),
2252         VMSTATE_END_OF_LIST()
2253     }
2254 };
2255 
2256 static bool nvic_security_needed(void *opaque)
2257 {
2258     NVICState *s = opaque;
2259 
2260     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2261 }
2262 
2263 static int nvic_security_post_load(void *opaque, int version_id)
2264 {
2265     NVICState *s = opaque;
2266     int i;
2267 
2268     /* Check for out of range priority settings */
2269     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2270         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2271         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2272          * if the CPU state has been migrated yet; a mismatch won't
2273          * cause the emulation to blow up, though.
2274          */
2275         return 1;
2276     }
2277     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2278         if (s->sec_vectors[i].prio & ~0xff) {
2279             return 1;
2280         }
2281     }
2282     return 0;
2283 }
2284 
2285 static const VMStateDescription vmstate_nvic_security = {
2286     .name = "armv7m_nvic/m-security",
2287     .version_id = 1,
2288     .minimum_version_id = 1,
2289     .needed = nvic_security_needed,
2290     .post_load = &nvic_security_post_load,
2291     .fields = (VMStateField[]) {
2292         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2293                              vmstate_VecInfo, VecInfo),
2294         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2295         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2296         VMSTATE_END_OF_LIST()
2297     }
2298 };
2299 
2300 static const VMStateDescription vmstate_nvic = {
2301     .name = "armv7m_nvic",
2302     .version_id = 4,
2303     .minimum_version_id = 4,
2304     .post_load = &nvic_post_load,
2305     .fields = (VMStateField[]) {
2306         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2307                              vmstate_VecInfo, VecInfo),
2308         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2309         VMSTATE_END_OF_LIST()
2310     },
2311     .subsections = (const VMStateDescription*[]) {
2312         &vmstate_nvic_security,
2313         NULL
2314     }
2315 };
2316 
2317 static Property props_nvic[] = {
2318     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2319     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2320     DEFINE_PROP_END_OF_LIST()
2321 };
2322 
2323 static void armv7m_nvic_reset(DeviceState *dev)
2324 {
2325     int resetprio;
2326     NVICState *s = NVIC(dev);
2327 
2328     memset(s->vectors, 0, sizeof(s->vectors));
2329     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2330     s->prigroup[M_REG_NS] = 0;
2331     s->prigroup[M_REG_S] = 0;
2332 
2333     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2334     /* MEM, BUS, and USAGE are enabled through
2335      * the System Handler Control register
2336      */
2337     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2338     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2339     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2340     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2341 
2342     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2343     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2344     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2345     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2346 
2347     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2348         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2349         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2350         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2351         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2352 
2353         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2354         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2355         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2356         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2357     } else {
2358         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2359     }
2360 
2361     /* Strictly speaking the reset handler should be enabled.
2362      * However, we don't simulate soft resets through the NVIC,
2363      * and the reset vector should never be pended.
2364      * So we leave it disabled to catch logic errors.
2365      */
2366 
2367     s->exception_prio = NVIC_NOEXC_PRIO;
2368     s->vectpending = 0;
2369     s->vectpending_is_s_banked = false;
2370     s->vectpending_prio = NVIC_NOEXC_PRIO;
2371 
2372     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2373         memset(s->itns, 0, sizeof(s->itns));
2374     } else {
2375         /* This state is constant and not guest accessible in a non-security
2376          * NVIC; we set the bits to true to avoid having to do a feature
2377          * bit check in the NVIC enable/pend/etc register accessors.
2378          */
2379         int i;
2380 
2381         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2382             s->itns[i] = true;
2383         }
2384     }
2385 }
2386 
2387 static void nvic_systick_trigger(void *opaque, int n, int level)
2388 {
2389     NVICState *s = opaque;
2390 
2391     if (level) {
2392         /* SysTick just asked us to pend its exception.
2393          * (This is different from an external interrupt line's
2394          * behaviour.)
2395          * n == 0 : NonSecure systick
2396          * n == 1 : Secure systick
2397          */
2398         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2399     }
2400 }
2401 
2402 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2403 {
2404     NVICState *s = NVIC(dev);
2405     Error *err = NULL;
2406     int regionlen;
2407 
2408     /* The armv7m container object will have set our CPU pointer */
2409     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2410         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2411         return;
2412     }
2413 
2414     if (s->num_irq > NVIC_MAX_IRQ) {
2415         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2416         return;
2417     }
2418 
2419     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2420 
2421     /* include space for internal exception vectors */
2422     s->num_irq += NVIC_FIRST_IRQ;
2423 
2424     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2425 
2426     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2427                              "realized", &err);
2428     if (err != NULL) {
2429         error_propagate(errp, err);
2430         return;
2431     }
2432     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2433                        qdev_get_gpio_in_named(dev, "systick-trigger",
2434                                               M_REG_NS));
2435 
2436     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2437         /* We couldn't init the secure systick device in instance_init
2438          * as we didn't know then if the CPU had the security extensions;
2439          * so we have to do it here.
2440          */
2441         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2442                           TYPE_SYSTICK);
2443         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2444 
2445         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2446                                  "realized", &err);
2447         if (err != NULL) {
2448             error_propagate(errp, err);
2449             return;
2450         }
2451         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2452                            qdev_get_gpio_in_named(dev, "systick-trigger",
2453                                                   M_REG_S));
2454     }
2455 
2456     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2457      * and looks like this:
2458      *  0x004 - ICTR
2459      *  0x010 - 0xff - systick
2460      *  0x100..0x7ec - NVIC
2461      *  0x7f0..0xcff - Reserved
2462      *  0xd00..0xd3c - SCS registers
2463      *  0xd40..0xeff - Reserved or Not implemented
2464      *  0xf00 - STIR
2465      *
2466      * Some registers within this space are banked between security states.
2467      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2468      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2469      * to the main SCS range, and non-secure accesses (including when
2470      * the security extension is not implemented) are RAZ/WI.
2471      * Note that both the main SCS range and the alias range are defined
2472      * to be exempt from memory attribution (R_BLJT) and so the memory
2473      * transaction attribute always matches the current CPU security
2474      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2475      * wrappers we change attrs.secure to indicate the NS access; so
2476      * generally code determining which banked register to use should
2477      * use attrs.secure; code determining actual behaviour of the system
2478      * should use env->v7m.secure.
2479      */
2480     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2481     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2482     /* The system register region goes at the bottom of the priority
2483      * stack as it covers the whole page.
2484      */
2485     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2486                           "nvic_sysregs", 0x1000);
2487     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2488 
2489     memory_region_init_io(&s->systickmem, OBJECT(s),
2490                           &nvic_systick_ops, s,
2491                           "nvic_systick", 0xe0);
2492 
2493     memory_region_add_subregion_overlap(&s->container, 0x10,
2494                                         &s->systickmem, 1);
2495 
2496     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2497         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2498                               &nvic_sysreg_ns_ops, &s->sysregmem,
2499                               "nvic_sysregs_ns", 0x1000);
2500         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2501         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2502                               &nvic_sysreg_ns_ops, &s->systickmem,
2503                               "nvic_systick_ns", 0xe0);
2504         memory_region_add_subregion_overlap(&s->container, 0x20010,
2505                                             &s->systick_ns_mem, 1);
2506     }
2507 
2508     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2509 }
2510 
2511 static void armv7m_nvic_instance_init(Object *obj)
2512 {
2513     /* We have a different default value for the num-irq property
2514      * than our superclass. This function runs after qdev init
2515      * has set the defaults from the Property array and before
2516      * any user-specified property setting, so just modify the
2517      * value in the GICState struct.
2518      */
2519     DeviceState *dev = DEVICE(obj);
2520     NVICState *nvic = NVIC(obj);
2521     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2522 
2523     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2524                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2525     /* We can't initialize the secure systick here, as we don't know
2526      * yet if we need it.
2527      */
2528 
2529     sysbus_init_irq(sbd, &nvic->excpout);
2530     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2531     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2532                             M_REG_NUM_BANKS);
2533     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2534 }
2535 
2536 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2537 {
2538     DeviceClass *dc = DEVICE_CLASS(klass);
2539 
2540     dc->vmsd  = &vmstate_nvic;
2541     dc->props = props_nvic;
2542     dc->reset = armv7m_nvic_reset;
2543     dc->realize = armv7m_nvic_realize;
2544 }
2545 
2546 static const TypeInfo armv7m_nvic_info = {
2547     .name          = TYPE_NVIC,
2548     .parent        = TYPE_SYS_BUS_DEVICE,
2549     .instance_init = armv7m_nvic_instance_init,
2550     .instance_size = sizeof(NVICState),
2551     .class_init    = armv7m_nvic_class_init,
2552     .class_size    = sizeof(SysBusDeviceClass),
2553 };
2554 
2555 static void armv7m_nvic_register_types(void)
2556 {
2557     type_register_static(&armv7m_nvic_info);
2558 }
2559 
2560 type_init(armv7m_nvic_register_types)
2561