xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision cb45adb654bb34de9de6301b6981972dd107e342)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* IRQ number counting:
31  *
32  * the num-irq property counts the number of external IRQ lines
33  *
34  * NVICState::num_irq counts the total number of exceptions
35  * (external IRQs, the 15 internal exceptions including reset,
36  * and one for the unused exception number 0).
37  *
38  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39  *
40  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41  *
42  * Iterating through all exceptions should typically be done with
43  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44  *
45  * The external qemu_irq lines are the NVIC's external IRQ lines,
46  * so line 0 is exception 16.
47  *
48  * In the terminology of the architecture manual, "interrupts" are
49  * a subcategory of exception referring to the external interrupts
50  * (which are exception numbers NVIC_FIRST_IRQ and upward).
51  * For historical reasons QEMU tends to use "interrupt" and
52  * "exception" more or less interchangeably.
53  */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56 
57 /* Effective running priority of the CPU when no exception is active
58  * (higher than the highest possible priority value)
59  */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63 
64 static const uint8_t nvic_id[] = {
65     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67 
68 static void signal_sysresetreq(NVICState *s)
69 {
70     if (qemu_irq_is_connected(s->sysresetreq)) {
71         qemu_irq_pulse(s->sysresetreq);
72     } else {
73         /*
74          * Default behaviour if the SoC doesn't need to wire up
75          * SYSRESETREQ (eg to a system reset controller of some kind):
76          * perform a system reset via the usual QEMU API.
77          */
78         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79     }
80 }
81 
82 static int nvic_pending_prio(NVICState *s)
83 {
84     /* return the group priority of the current pending interrupt,
85      * or NVIC_NOEXC_PRIO if no interrupt is pending
86      */
87     return s->vectpending_prio;
88 }
89 
90 /* Return the value of the ISCR RETTOBASE bit:
91  * 1 if there is exactly one active exception
92  * 0 if there is more than one active exception
93  * UNKNOWN if there are no active exceptions (we choose 1,
94  * which matches the choice Cortex-M3 is documented as making).
95  *
96  * NB: some versions of the documentation talk about this
97  * counting "active exceptions other than the one shown by IPSR";
98  * this is only different in the obscure corner case where guest
99  * code has manually deactivated an exception and is about
100  * to fail an exception-return integrity check. The definition
101  * above is the one from the v8M ARM ARM and is also in line
102  * with the behaviour documented for the Cortex-M3.
103  */
104 static bool nvic_rettobase(NVICState *s)
105 {
106     int irq, nhand = 0;
107     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108 
109     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110         if (s->vectors[irq].active ||
111             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112              s->sec_vectors[irq].active)) {
113             nhand++;
114             if (nhand == 2) {
115                 return 0;
116             }
117         }
118     }
119 
120     return 1;
121 }
122 
123 /* Return the value of the ISCR ISRPENDING bit:
124  * 1 if an external interrupt is pending
125  * 0 if no external interrupt is pending
126  */
127 static bool nvic_isrpending(NVICState *s)
128 {
129     int irq;
130 
131     /* We can shortcut if the highest priority pending interrupt
132      * happens to be external or if there is nothing pending.
133      */
134     if (s->vectpending > NVIC_FIRST_IRQ) {
135         return true;
136     }
137     if (s->vectpending == 0) {
138         return false;
139     }
140 
141     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142         if (s->vectors[irq].pending) {
143             return true;
144         }
145     }
146     return false;
147 }
148 
149 static bool exc_is_banked(int exc)
150 {
151     /* Return true if this is one of the limited set of exceptions which
152      * are banked (and thus have state in sec_vectors[])
153      */
154     return exc == ARMV7M_EXCP_HARD ||
155         exc == ARMV7M_EXCP_MEM ||
156         exc == ARMV7M_EXCP_USAGE ||
157         exc == ARMV7M_EXCP_SVC ||
158         exc == ARMV7M_EXCP_PENDSV ||
159         exc == ARMV7M_EXCP_SYSTICK;
160 }
161 
162 /* Return a mask word which clears the subpriority bits from
163  * a priority value for an M-profile exception, leaving only
164  * the group priority.
165  */
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168     return ~0U << (s->prigroup[secure] + 1);
169 }
170 
171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173     /* Return true if this non-banked exception targets Secure state. */
174     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175         return false;
176     }
177 
178     if (exc >= NVIC_FIRST_IRQ) {
179         return !s->itns[exc];
180     }
181 
182     /* Function shouldn't be called for banked exceptions. */
183     assert(!exc_is_banked(exc));
184 
185     switch (exc) {
186     case ARMV7M_EXCP_NMI:
187     case ARMV7M_EXCP_BUS:
188         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189     case ARMV7M_EXCP_SECURE:
190         return true;
191     case ARMV7M_EXCP_DEBUG:
192         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193         return false;
194     default:
195         /* reset, and reserved (unused) low exception numbers.
196          * We'll get called by code that loops through all the exception
197          * numbers, but it doesn't matter what we return here as these
198          * non-existent exceptions will never be pended or active.
199          */
200         return true;
201     }
202 }
203 
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206     /* Return the group priority for this exception, given its raw
207      * (group-and-subgroup) priority value and whether it is targeting
208      * secure state or not.
209      */
210     if (rawprio < 0) {
211         return rawprio;
212     }
213     rawprio &= nvic_gprio_mask(s, targets_secure);
214     /* AIRCR.PRIS causes us to squash all NS priorities into the
215      * lower half of the total range
216      */
217     if (!targets_secure &&
218         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220     }
221     return rawprio;
222 }
223 
224 /* Recompute vectpending and exception_prio for a CPU which implements
225  * the Security extension
226  */
227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229     int i, bank;
230     int pend_prio = NVIC_NOEXC_PRIO;
231     int active_prio = NVIC_NOEXC_PRIO;
232     int pend_irq = 0;
233     bool pending_is_s_banked = false;
234     int pend_subprio = 0;
235 
236     /* R_CQRV: precedence is by:
237      *  - lowest group priority; if both the same then
238      *  - lowest subpriority; if both the same then
239      *  - lowest exception number; if both the same (ie banked) then
240      *  - secure exception takes precedence
241      * Compare pseudocode RawExecutionPriority.
242      * Annoyingly, now we have two prigroup values (for S and NS)
243      * we can't do the loop comparison on raw priority values.
244      */
245     for (i = 1; i < s->num_irq; i++) {
246         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247             VecInfo *vec;
248             int prio, subprio;
249             bool targets_secure;
250 
251             if (bank == M_REG_S) {
252                 if (!exc_is_banked(i)) {
253                     continue;
254                 }
255                 vec = &s->sec_vectors[i];
256                 targets_secure = true;
257             } else {
258                 vec = &s->vectors[i];
259                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260             }
261 
262             prio = exc_group_prio(s, vec->prio, targets_secure);
263             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264             if (vec->enabled && vec->pending &&
265                 ((prio < pend_prio) ||
266                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267                 pend_prio = prio;
268                 pend_subprio = subprio;
269                 pend_irq = i;
270                 pending_is_s_banked = (bank == M_REG_S);
271             }
272             if (vec->active && prio < active_prio) {
273                 active_prio = prio;
274             }
275         }
276     }
277 
278     s->vectpending_is_s_banked = pending_is_s_banked;
279     s->vectpending = pend_irq;
280     s->vectpending_prio = pend_prio;
281     s->exception_prio = active_prio;
282 
283     trace_nvic_recompute_state_secure(s->vectpending,
284                                       s->vectpending_is_s_banked,
285                                       s->vectpending_prio,
286                                       s->exception_prio);
287 }
288 
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
291 {
292     int i;
293     int pend_prio = NVIC_NOEXC_PRIO;
294     int active_prio = NVIC_NOEXC_PRIO;
295     int pend_irq = 0;
296 
297     /* In theory we could write one function that handled both
298      * the "security extension present" and "not present"; however
299      * the security related changes significantly complicate the
300      * recomputation just by themselves and mixing both cases together
301      * would be even worse, so we retain a separate non-secure-only
302      * version for CPUs which don't implement the security extension.
303      */
304     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305         nvic_recompute_state_secure(s);
306         return;
307     }
308 
309     for (i = 1; i < s->num_irq; i++) {
310         VecInfo *vec = &s->vectors[i];
311 
312         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313             pend_prio = vec->prio;
314             pend_irq = i;
315         }
316         if (vec->active && vec->prio < active_prio) {
317             active_prio = vec->prio;
318         }
319     }
320 
321     if (active_prio > 0) {
322         active_prio &= nvic_gprio_mask(s, false);
323     }
324 
325     if (pend_prio > 0) {
326         pend_prio &= nvic_gprio_mask(s, false);
327     }
328 
329     s->vectpending = pend_irq;
330     s->vectpending_prio = pend_prio;
331     s->exception_prio = active_prio;
332 
333     trace_nvic_recompute_state(s->vectpending,
334                                s->vectpending_prio,
335                                s->exception_prio);
336 }
337 
338 /* Return the current execution priority of the CPU
339  * (equivalent to the pseudocode ExecutionPriority function).
340  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341  */
342 static inline int nvic_exec_prio(NVICState *s)
343 {
344     CPUARMState *env = &s->cpu->env;
345     int running = NVIC_NOEXC_PRIO;
346 
347     if (env->v7m.basepri[M_REG_NS] > 0) {
348         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349     }
350 
351     if (env->v7m.basepri[M_REG_S] > 0) {
352         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353         if (running > basepri) {
354             running = basepri;
355         }
356     }
357 
358     if (env->v7m.primask[M_REG_NS]) {
359         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360             if (running > NVIC_NS_PRIO_LIMIT) {
361                 running = NVIC_NS_PRIO_LIMIT;
362             }
363         } else {
364             running = 0;
365         }
366     }
367 
368     if (env->v7m.primask[M_REG_S]) {
369         running = 0;
370     }
371 
372     if (env->v7m.faultmask[M_REG_NS]) {
373         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374             running = -1;
375         } else {
376             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377                 if (running > NVIC_NS_PRIO_LIMIT) {
378                     running = NVIC_NS_PRIO_LIMIT;
379                 }
380             } else {
381                 running = 0;
382             }
383         }
384     }
385 
386     if (env->v7m.faultmask[M_REG_S]) {
387         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388     }
389 
390     /* consider priority of active handler */
391     return MIN(running, s->exception_prio);
392 }
393 
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
395 {
396     /* Return true if the requested execution priority is negative
397      * for the specified security state, ie that security state
398      * has an active NMI or HardFault or has set its FAULTMASK.
399      * Note that this is not the same as whether the execution
400      * priority is actually negative (for instance AIRCR.PRIS may
401      * mean we don't allow FAULTMASK_NS to actually make the execution
402      * priority negative). Compare pseudocode IsReqExcPriNeg().
403      */
404     NVICState *s = opaque;
405 
406     if (s->cpu->env.v7m.faultmask[secure]) {
407         return true;
408     }
409 
410     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411         s->vectors[ARMV7M_EXCP_HARD].active) {
412         return true;
413     }
414 
415     if (s->vectors[ARMV7M_EXCP_NMI].active &&
416         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417         return true;
418     }
419 
420     return false;
421 }
422 
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
424 {
425     NVICState *s = opaque;
426 
427     return nvic_exec_prio(s) > nvic_pending_prio(s);
428 }
429 
430 int armv7m_nvic_raw_execution_priority(void *opaque)
431 {
432     NVICState *s = opaque;
433 
434     return s->exception_prio;
435 }
436 
437 /* caller must call nvic_irq_update() after this.
438  * secure indicates the bank to use for banked exceptions (we assert if
439  * we are passed secure=true for a non-banked exception).
440  */
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
442 {
443     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444     assert(irq < s->num_irq);
445 
446     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         s->sec_vectors[irq].prio = prio;
451     } else {
452         s->vectors[irq].prio = prio;
453     }
454 
455     trace_nvic_set_prio(irq, secure, prio);
456 }
457 
458 /* Return the current raw priority register value.
459  * secure indicates the bank to use for banked exceptions (we assert if
460  * we are passed secure=true for a non-banked exception).
461  */
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
463 {
464     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465     assert(irq < s->num_irq);
466 
467     if (secure) {
468         assert(exc_is_banked(irq));
469         return s->sec_vectors[irq].prio;
470     } else {
471         return s->vectors[irq].prio;
472     }
473 }
474 
475 /* Recompute state and assert irq line accordingly.
476  * Must be called after changes to:
477  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
478  *  prigroup
479  */
480 static void nvic_irq_update(NVICState *s)
481 {
482     int lvl;
483     int pend_prio;
484 
485     nvic_recompute_state(s);
486     pend_prio = nvic_pending_prio(s);
487 
488     /* Raise NVIC output if this IRQ would be taken, except that we
489      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491      * to those CPU registers don't cause us to recalculate the NVIC
492      * pending info.
493      */
494     lvl = (pend_prio < s->exception_prio);
495     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496     qemu_set_irq(s->excpout, lvl);
497 }
498 
499 /**
500  * armv7m_nvic_clear_pending: mark the specified exception as not pending
501  * @opaque: the NVIC
502  * @irq: the exception number to mark as not pending
503  * @secure: false for non-banked exceptions or for the nonsecure
504  * version of a banked exception, true for the secure version of a banked
505  * exception.
506  *
507  * Marks the specified exception as not pending. Note that we will assert()
508  * if @secure is true and @irq does not specify one of the fixed set
509  * of architecturally banked exceptions.
510  */
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
512 {
513     NVICState *s = (NVICState *)opaque;
514     VecInfo *vec;
515 
516     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
517 
518     if (secure) {
519         assert(exc_is_banked(irq));
520         vec = &s->sec_vectors[irq];
521     } else {
522         vec = &s->vectors[irq];
523     }
524     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525     if (vec->pending) {
526         vec->pending = 0;
527         nvic_irq_update(s);
528     }
529 }
530 
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532                                        bool derived)
533 {
534     /* Pend an exception, including possibly escalating it to HardFault.
535      *
536      * This function handles both "normal" pending of interrupts and
537      * exceptions, and also derived exceptions (ones which occur as
538      * a result of trying to take some other exception).
539      *
540      * If derived == true, the caller guarantees that we are part way through
541      * trying to take an exception (but have not yet called
542      * armv7m_nvic_acknowledge_irq() to make it active), and so:
543      *  - s->vectpending is the "original exception" we were trying to take
544      *  - irq is the "derived exception"
545      *  - nvic_exec_prio(s) gives the priority before exception entry
546      * Here we handle the prioritization logic which the pseudocode puts
547      * in the DerivedLateArrival() function.
548      */
549 
550     NVICState *s = (NVICState *)opaque;
551     bool banked = exc_is_banked(irq);
552     VecInfo *vec;
553     bool targets_secure;
554 
555     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556     assert(!secure || banked);
557 
558     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
559 
560     targets_secure = banked ? secure : exc_targets_secure(s, irq);
561 
562     trace_nvic_set_pending(irq, secure, targets_secure,
563                            derived, vec->enabled, vec->prio);
564 
565     if (derived) {
566         /* Derived exceptions are always synchronous. */
567         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
568 
569         if (irq == ARMV7M_EXCP_DEBUG &&
570             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571             /* DebugMonitorFault, but its priority is lower than the
572              * preempted exception priority: just ignore it.
573              */
574             return;
575         }
576 
577         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578             /* If this is a terminal exception (one which means we cannot
579              * take the original exception, like a failure to read its
580              * vector table entry), then we must take the derived exception.
581              * If the derived exception can't take priority over the
582              * original exception, then we go into Lockup.
583              *
584              * For QEMU, we rely on the fact that a derived exception is
585              * terminal if and only if it's reported to us as HardFault,
586              * which saves having to have an extra argument is_terminal
587              * that we'd only use in one place.
588              */
589             cpu_abort(&s->cpu->parent_obj,
590                       "Lockup: can't take terminal derived exception "
591                       "(original exception priority %d)\n",
592                       s->vectpending_prio);
593         }
594         /* We now continue with the same code as for a normal pending
595          * exception, which will cause us to pend the derived exception.
596          * We'll then take either the original or the derived exception
597          * based on which is higher priority by the usual mechanism
598          * for selecting the highest priority pending interrupt.
599          */
600     }
601 
602     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603         /* If a synchronous exception is pending then it may be
604          * escalated to HardFault if:
605          *  * it is equal or lower priority to current execution
606          *  * it is disabled
607          * (ie we need to take it immediately but we can't do so).
608          * Asynchronous exceptions (and interrupts) simply remain pending.
609          *
610          * For QEMU, we don't have any imprecise (asynchronous) faults,
611          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612          * synchronous.
613          * Debug exceptions are awkward because only Debug exceptions
614          * resulting from the BKPT instruction should be escalated,
615          * but we don't currently implement any Debug exceptions other
616          * than those that result from BKPT, so we treat all debug exceptions
617          * as needing escalation.
618          *
619          * This all means we can identify whether to escalate based only on
620          * the exception number and don't (yet) need the caller to explicitly
621          * tell us whether this exception is synchronous or not.
622          */
623         int running = nvic_exec_prio(s);
624         bool escalate = false;
625 
626         if (exc_group_prio(s, vec->prio, secure) >= running) {
627             trace_nvic_escalate_prio(irq, vec->prio, running);
628             escalate = true;
629         } else if (!vec->enabled) {
630             trace_nvic_escalate_disabled(irq);
631             escalate = true;
632         }
633 
634         if (escalate) {
635 
636             /* We need to escalate this exception to a synchronous HardFault.
637              * If BFHFNMINS is set then we escalate to the banked HF for
638              * the target security state of the original exception; otherwise
639              * we take a Secure HardFault.
640              */
641             irq = ARMV7M_EXCP_HARD;
642             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643                 (targets_secure ||
644                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645                 vec = &s->sec_vectors[irq];
646             } else {
647                 vec = &s->vectors[irq];
648             }
649             if (running <= vec->prio) {
650                 /* We want to escalate to HardFault but we can't take the
651                  * synchronous HardFault at this point either. This is a
652                  * Lockup condition due to a guest bug. We don't model
653                  * Lockup, so report via cpu_abort() instead.
654                  */
655                 cpu_abort(&s->cpu->parent_obj,
656                           "Lockup: can't escalate %d to HardFault "
657                           "(current priority %d)\n", irq, running);
658             }
659 
660             /* HF may be banked but there is only one shared HFSR */
661             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
662         }
663     }
664 
665     if (!vec->pending) {
666         vec->pending = 1;
667         nvic_irq_update(s);
668     }
669 }
670 
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
672 {
673     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
674 }
675 
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
677 {
678     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
679 }
680 
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
682 {
683     /*
684      * Pend an exception during lazy FP stacking. This differs
685      * from the usual exception pending because the logic for
686      * whether we should escalate depends on the saved context
687      * in the FPCCR register, not on the current state of the CPU/NVIC.
688      */
689     NVICState *s = (NVICState *)opaque;
690     bool banked = exc_is_banked(irq);
691     VecInfo *vec;
692     bool targets_secure;
693     bool escalate = false;
694     /*
695      * We will only look at bits in fpccr if this is a banked exception
696      * (in which case 'secure' tells us whether it is the S or NS version).
697      * All the bits for the non-banked exceptions are in fpccr_s.
698      */
699     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
701 
702     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703     assert(!secure || banked);
704 
705     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
706 
707     targets_secure = banked ? secure : exc_targets_secure(s, irq);
708 
709     switch (irq) {
710     case ARMV7M_EXCP_DEBUG:
711         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712             /* Ignore DebugMonitor exception */
713             return;
714         }
715         break;
716     case ARMV7M_EXCP_MEM:
717         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718         break;
719     case ARMV7M_EXCP_USAGE:
720         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721         break;
722     case ARMV7M_EXCP_BUS:
723         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724         break;
725     case ARMV7M_EXCP_SECURE:
726         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727         break;
728     default:
729         g_assert_not_reached();
730     }
731 
732     if (escalate) {
733         /*
734          * Escalate to HardFault: faults that initially targeted Secure
735          * continue to do so, even if HF normally targets NonSecure.
736          */
737         irq = ARMV7M_EXCP_HARD;
738         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739             (targets_secure ||
740              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741             vec = &s->sec_vectors[irq];
742         } else {
743             vec = &s->vectors[irq];
744         }
745     }
746 
747     if (!vec->enabled ||
748         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
750             /*
751              * We want to escalate to HardFault but the context the
752              * FP state belongs to prevents the exception pre-empting.
753              */
754             cpu_abort(&s->cpu->parent_obj,
755                       "Lockup: can't escalate to HardFault during "
756                       "lazy FP register stacking\n");
757         }
758     }
759 
760     if (escalate) {
761         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
762     }
763     if (!vec->pending) {
764         vec->pending = 1;
765         /*
766          * We do not call nvic_irq_update(), because we know our caller
767          * is going to handle causing us to take the exception by
768          * raising EXCP_LAZYFP, so raising the IRQ line would be
769          * pointless extra work. We just need to recompute the
770          * priorities so that armv7m_nvic_can_take_pending_exception()
771          * returns the right answer.
772          */
773         nvic_recompute_state(s);
774     }
775 }
776 
777 /* Make pending IRQ active.  */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
779 {
780     NVICState *s = (NVICState *)opaque;
781     CPUARMState *env = &s->cpu->env;
782     const int pending = s->vectpending;
783     const int running = nvic_exec_prio(s);
784     VecInfo *vec;
785 
786     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
787 
788     if (s->vectpending_is_s_banked) {
789         vec = &s->sec_vectors[pending];
790     } else {
791         vec = &s->vectors[pending];
792     }
793 
794     assert(vec->enabled);
795     assert(vec->pending);
796 
797     assert(s->vectpending_prio < running);
798 
799     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
800 
801     vec->active = 1;
802     vec->pending = 0;
803 
804     write_v7m_exception(env, s->vectpending);
805 
806     nvic_irq_update(s);
807 }
808 
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810                                       int *pirq, bool *ptargets_secure)
811 {
812     NVICState *s = (NVICState *)opaque;
813     const int pending = s->vectpending;
814     bool targets_secure;
815 
816     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817 
818     if (s->vectpending_is_s_banked) {
819         targets_secure = true;
820     } else {
821         targets_secure = !exc_is_banked(pending) &&
822             exc_targets_secure(s, pending);
823     }
824 
825     trace_nvic_get_pending_irq_info(pending, targets_secure);
826 
827     *ptargets_secure = targets_secure;
828     *pirq = pending;
829 }
830 
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
832 {
833     NVICState *s = (NVICState *)opaque;
834     VecInfo *vec = NULL;
835     int ret;
836 
837     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
838 
839     /*
840      * For negative priorities, v8M will forcibly deactivate the appropriate
841      * NMI or HardFault regardless of what interrupt we're being asked to
842      * deactivate (compare the DeActivate() pseudocode). This is a guard
843      * against software returning from NMI or HardFault with a corrupted
844      * IPSR and leaving the CPU in a negative-priority state.
845      * v7M does not do this, but simply deactivates the requested interrupt.
846      */
847     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
848         switch (armv7m_nvic_raw_execution_priority(s)) {
849         case -1:
850             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
851                 vec = &s->vectors[ARMV7M_EXCP_HARD];
852             } else {
853                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
854             }
855             break;
856         case -2:
857             vec = &s->vectors[ARMV7M_EXCP_NMI];
858             break;
859         case -3:
860             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
861             break;
862         default:
863             break;
864         }
865     }
866 
867     if (!vec) {
868         if (secure && exc_is_banked(irq)) {
869             vec = &s->sec_vectors[irq];
870         } else {
871             vec = &s->vectors[irq];
872         }
873     }
874 
875     trace_nvic_complete_irq(irq, secure);
876 
877     if (!vec->active) {
878         /* Tell the caller this was an illegal exception return */
879         return -1;
880     }
881 
882     /*
883      * If this is a configurable exception and it is currently
884      * targeting the opposite security state from the one we're trying
885      * to complete it for, this counts as an illegal exception return.
886      * We still need to deactivate whatever vector the logic above has
887      * selected, though, as it might not be the same as the one for the
888      * requested exception number.
889      */
890     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
891         ret = -1;
892     } else {
893         ret = nvic_rettobase(s);
894     }
895 
896     vec->active = 0;
897     if (vec->level) {
898         /* Re-pend the exception if it's still held high; only
899          * happens for extenal IRQs
900          */
901         assert(irq >= NVIC_FIRST_IRQ);
902         vec->pending = 1;
903     }
904 
905     nvic_irq_update(s);
906 
907     return ret;
908 }
909 
910 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
911 {
912     /*
913      * Return whether an exception is "ready", i.e. it is enabled and is
914      * configured at a priority which would allow it to interrupt the
915      * current execution priority.
916      *
917      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
918      * for non-banked exceptions secure is always false; for banked exceptions
919      * it indicates which of the exceptions is required.
920      */
921     NVICState *s = (NVICState *)opaque;
922     bool banked = exc_is_banked(irq);
923     VecInfo *vec;
924     int running = nvic_exec_prio(s);
925 
926     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
927     assert(!secure || banked);
928 
929     /*
930      * HardFault is an odd special case: we always check against -1,
931      * even if we're secure and HardFault has priority -3; we never
932      * need to check for enabled state.
933      */
934     if (irq == ARMV7M_EXCP_HARD) {
935         return running > -1;
936     }
937 
938     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
939 
940     return vec->enabled &&
941         exc_group_prio(s, vec->prio, secure) < running;
942 }
943 
944 /* callback when external interrupt line is changed */
945 static void set_irq_level(void *opaque, int n, int level)
946 {
947     NVICState *s = opaque;
948     VecInfo *vec;
949 
950     n += NVIC_FIRST_IRQ;
951 
952     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
953 
954     trace_nvic_set_irq_level(n, level);
955 
956     /* The pending status of an external interrupt is
957      * latched on rising edge and exception handler return.
958      *
959      * Pulsing the IRQ will always run the handler
960      * once, and the handler will re-run until the
961      * level is low when the handler completes.
962      */
963     vec = &s->vectors[n];
964     if (level != vec->level) {
965         vec->level = level;
966         if (level) {
967             armv7m_nvic_set_pending(s, n, false);
968         }
969     }
970 }
971 
972 /* callback when external NMI line is changed */
973 static void nvic_nmi_trigger(void *opaque, int n, int level)
974 {
975     NVICState *s = opaque;
976 
977     trace_nvic_set_nmi_level(level);
978 
979     /*
980      * The architecture doesn't specify whether NMI should share
981      * the normal-interrupt behaviour of being resampled on
982      * exception handler return. We choose not to, so just
983      * set NMI pending here and don't track the current level.
984      */
985     if (level) {
986         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
987     }
988 }
989 
990 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
991 {
992     ARMCPU *cpu = s->cpu;
993     uint32_t val;
994 
995     switch (offset) {
996     case 4: /* Interrupt Control Type.  */
997         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
998             goto bad_offset;
999         }
1000         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1001     case 0xc: /* CPPWR */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1003             goto bad_offset;
1004         }
1005         /* We make the IMPDEF choice that nothing can ever go into a
1006          * non-retentive power state, which allows us to RAZ/WI this.
1007          */
1008         return 0;
1009     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1010     {
1011         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1012         int i;
1013 
1014         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015             goto bad_offset;
1016         }
1017         if (!attrs.secure) {
1018             return 0;
1019         }
1020         val = 0;
1021         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1022             if (s->itns[startvec + i]) {
1023                 val |= (1 << i);
1024             }
1025         }
1026         return val;
1027     }
1028     case 0xcfc:
1029         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1030             goto bad_offset;
1031         }
1032         return cpu->revidr;
1033     case 0xd00: /* CPUID Base.  */
1034         return cpu->midr;
1035     case 0xd04: /* Interrupt Control State (ICSR) */
1036         /* VECTACTIVE */
1037         val = cpu->env.v7m.exception;
1038         /* VECTPENDING */
1039         val |= (s->vectpending & 0xff) << 12;
1040         /* ISRPENDING - set if any external IRQ is pending */
1041         if (nvic_isrpending(s)) {
1042             val |= (1 << 22);
1043         }
1044         /* RETTOBASE - set if only one handler is active */
1045         if (nvic_rettobase(s)) {
1046             val |= (1 << 11);
1047         }
1048         if (attrs.secure) {
1049             /* PENDSTSET */
1050             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1051                 val |= (1 << 26);
1052             }
1053             /* PENDSVSET */
1054             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1055                 val |= (1 << 28);
1056             }
1057         } else {
1058             /* PENDSTSET */
1059             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1060                 val |= (1 << 26);
1061             }
1062             /* PENDSVSET */
1063             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1064                 val |= (1 << 28);
1065             }
1066         }
1067         /* NMIPENDSET */
1068         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1069             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1070             val |= (1 << 31);
1071         }
1072         /* ISRPREEMPT: RES0 when halting debug not implemented */
1073         /* STTNS: RES0 for the Main Extension */
1074         return val;
1075     case 0xd08: /* Vector Table Offset.  */
1076         return cpu->env.v7m.vecbase[attrs.secure];
1077     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1078         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1079         if (attrs.secure) {
1080             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1081             val |= cpu->env.v7m.aircr;
1082         } else {
1083             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1084                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1085                  * security isn't supported then BFHFNMINS is RAO (and
1086                  * the bit in env.v7m.aircr is always set).
1087                  */
1088                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1089             }
1090         }
1091         return val;
1092     case 0xd10: /* System Control.  */
1093         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1094             goto bad_offset;
1095         }
1096         return cpu->env.v7m.scr[attrs.secure];
1097     case 0xd14: /* Configuration Control.  */
1098         /* The BFHFNMIGN bit is the only non-banked bit; we
1099          * keep it in the non-secure copy of the register.
1100          */
1101         val = cpu->env.v7m.ccr[attrs.secure];
1102         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1103         return val;
1104     case 0xd24: /* System Handler Control and State (SHCSR) */
1105         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1106             goto bad_offset;
1107         }
1108         val = 0;
1109         if (attrs.secure) {
1110             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1111                 val |= (1 << 0);
1112             }
1113             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1114                 val |= (1 << 2);
1115             }
1116             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1117                 val |= (1 << 3);
1118             }
1119             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1120                 val |= (1 << 7);
1121             }
1122             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1123                 val |= (1 << 10);
1124             }
1125             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1126                 val |= (1 << 11);
1127             }
1128             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1129                 val |= (1 << 12);
1130             }
1131             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1132                 val |= (1 << 13);
1133             }
1134             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1135                 val |= (1 << 15);
1136             }
1137             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1138                 val |= (1 << 16);
1139             }
1140             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1141                 val |= (1 << 18);
1142             }
1143             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1144                 val |= (1 << 21);
1145             }
1146             /* SecureFault is not banked but is always RAZ/WI to NS */
1147             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1148                 val |= (1 << 4);
1149             }
1150             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1151                 val |= (1 << 19);
1152             }
1153             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1154                 val |= (1 << 20);
1155             }
1156         } else {
1157             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1158                 val |= (1 << 0);
1159             }
1160             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1161                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1162                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1163                     val |= (1 << 2);
1164                 }
1165                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1166                     val |= (1 << 21);
1167                 }
1168             }
1169             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1170                 val |= (1 << 3);
1171             }
1172             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1173                 val |= (1 << 7);
1174             }
1175             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1176                 val |= (1 << 10);
1177             }
1178             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1179                 val |= (1 << 11);
1180             }
1181             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1182                 val |= (1 << 12);
1183             }
1184             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1185                 val |= (1 << 13);
1186             }
1187             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1188                 val |= (1 << 15);
1189             }
1190             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1191                 val |= (1 << 16);
1192             }
1193             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1194                 val |= (1 << 18);
1195             }
1196         }
1197         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1198             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1199                 val |= (1 << 1);
1200             }
1201             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1202                 val |= (1 << 14);
1203             }
1204             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1205                 val |= (1 << 17);
1206             }
1207             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1208                 s->vectors[ARMV7M_EXCP_NMI].active) {
1209                 /* NMIACT is not present in v7M */
1210                 val |= (1 << 5);
1211             }
1212         }
1213 
1214         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1215         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1216             val |= (1 << 8);
1217         }
1218         return val;
1219     case 0xd2c: /* Hard Fault Status.  */
1220         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1221             goto bad_offset;
1222         }
1223         return cpu->env.v7m.hfsr;
1224     case 0xd30: /* Debug Fault Status.  */
1225         return cpu->env.v7m.dfsr;
1226     case 0xd34: /* MMFAR MemManage Fault Address */
1227         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1228             goto bad_offset;
1229         }
1230         return cpu->env.v7m.mmfar[attrs.secure];
1231     case 0xd38: /* Bus Fault Address.  */
1232         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1233             goto bad_offset;
1234         }
1235         if (!attrs.secure &&
1236             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1237             return 0;
1238         }
1239         return cpu->env.v7m.bfar;
1240     case 0xd3c: /* Aux Fault Status.  */
1241         /* TODO: Implement fault status registers.  */
1242         qemu_log_mask(LOG_UNIMP,
1243                       "Aux Fault status registers unimplemented\n");
1244         return 0;
1245     case 0xd40: /* PFR0.  */
1246         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1247             goto bad_offset;
1248         }
1249         return cpu->isar.id_pfr0;
1250     case 0xd44: /* PFR1.  */
1251         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1252             goto bad_offset;
1253         }
1254         return cpu->isar.id_pfr1;
1255     case 0xd48: /* DFR0.  */
1256         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1257             goto bad_offset;
1258         }
1259         return cpu->isar.id_dfr0;
1260     case 0xd4c: /* AFR0.  */
1261         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1262             goto bad_offset;
1263         }
1264         return cpu->id_afr0;
1265     case 0xd50: /* MMFR0.  */
1266         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1267             goto bad_offset;
1268         }
1269         return cpu->isar.id_mmfr0;
1270     case 0xd54: /* MMFR1.  */
1271         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1272             goto bad_offset;
1273         }
1274         return cpu->isar.id_mmfr1;
1275     case 0xd58: /* MMFR2.  */
1276         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1277             goto bad_offset;
1278         }
1279         return cpu->isar.id_mmfr2;
1280     case 0xd5c: /* MMFR3.  */
1281         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1282             goto bad_offset;
1283         }
1284         return cpu->isar.id_mmfr3;
1285     case 0xd60: /* ISAR0.  */
1286         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1287             goto bad_offset;
1288         }
1289         return cpu->isar.id_isar0;
1290     case 0xd64: /* ISAR1.  */
1291         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1292             goto bad_offset;
1293         }
1294         return cpu->isar.id_isar1;
1295     case 0xd68: /* ISAR2.  */
1296         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1297             goto bad_offset;
1298         }
1299         return cpu->isar.id_isar2;
1300     case 0xd6c: /* ISAR3.  */
1301         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1302             goto bad_offset;
1303         }
1304         return cpu->isar.id_isar3;
1305     case 0xd70: /* ISAR4.  */
1306         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1307             goto bad_offset;
1308         }
1309         return cpu->isar.id_isar4;
1310     case 0xd74: /* ISAR5.  */
1311         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1312             goto bad_offset;
1313         }
1314         return cpu->isar.id_isar5;
1315     case 0xd78: /* CLIDR */
1316         return cpu->clidr;
1317     case 0xd7c: /* CTR */
1318         return cpu->ctr;
1319     case 0xd80: /* CSSIDR */
1320     {
1321         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1322         return cpu->ccsidr[idx];
1323     }
1324     case 0xd84: /* CSSELR */
1325         return cpu->env.v7m.csselr[attrs.secure];
1326     case 0xd88: /* CPACR */
1327         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1328             return 0;
1329         }
1330         return cpu->env.v7m.cpacr[attrs.secure];
1331     case 0xd8c: /* NSACR */
1332         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1333             return 0;
1334         }
1335         return cpu->env.v7m.nsacr;
1336     /* TODO: Implement debug registers.  */
1337     case 0xd90: /* MPU_TYPE */
1338         /* Unified MPU; if the MPU is not present this value is zero */
1339         return cpu->pmsav7_dregion << 8;
1340     case 0xd94: /* MPU_CTRL */
1341         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1342     case 0xd98: /* MPU_RNR */
1343         return cpu->env.pmsav7.rnr[attrs.secure];
1344     case 0xd9c: /* MPU_RBAR */
1345     case 0xda4: /* MPU_RBAR_A1 */
1346     case 0xdac: /* MPU_RBAR_A2 */
1347     case 0xdb4: /* MPU_RBAR_A3 */
1348     {
1349         int region = cpu->env.pmsav7.rnr[attrs.secure];
1350 
1351         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1352             /* PMSAv8M handling of the aliases is different from v7M:
1353              * aliases A1, A2, A3 override the low two bits of the region
1354              * number in MPU_RNR, and there is no 'region' field in the
1355              * RBAR register.
1356              */
1357             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1358             if (aliasno) {
1359                 region = deposit32(region, 0, 2, aliasno);
1360             }
1361             if (region >= cpu->pmsav7_dregion) {
1362                 return 0;
1363             }
1364             return cpu->env.pmsav8.rbar[attrs.secure][region];
1365         }
1366 
1367         if (region >= cpu->pmsav7_dregion) {
1368             return 0;
1369         }
1370         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1371     }
1372     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1373     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1374     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1375     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1376     {
1377         int region = cpu->env.pmsav7.rnr[attrs.secure];
1378 
1379         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1380             /* PMSAv8M handling of the aliases is different from v7M:
1381              * aliases A1, A2, A3 override the low two bits of the region
1382              * number in MPU_RNR.
1383              */
1384             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1385             if (aliasno) {
1386                 region = deposit32(region, 0, 2, aliasno);
1387             }
1388             if (region >= cpu->pmsav7_dregion) {
1389                 return 0;
1390             }
1391             return cpu->env.pmsav8.rlar[attrs.secure][region];
1392         }
1393 
1394         if (region >= cpu->pmsav7_dregion) {
1395             return 0;
1396         }
1397         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1398             (cpu->env.pmsav7.drsr[region] & 0xffff);
1399     }
1400     case 0xdc0: /* MPU_MAIR0 */
1401         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1402             goto bad_offset;
1403         }
1404         return cpu->env.pmsav8.mair0[attrs.secure];
1405     case 0xdc4: /* MPU_MAIR1 */
1406         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1407             goto bad_offset;
1408         }
1409         return cpu->env.pmsav8.mair1[attrs.secure];
1410     case 0xdd0: /* SAU_CTRL */
1411         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1412             goto bad_offset;
1413         }
1414         if (!attrs.secure) {
1415             return 0;
1416         }
1417         return cpu->env.sau.ctrl;
1418     case 0xdd4: /* SAU_TYPE */
1419         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1420             goto bad_offset;
1421         }
1422         if (!attrs.secure) {
1423             return 0;
1424         }
1425         return cpu->sau_sregion;
1426     case 0xdd8: /* SAU_RNR */
1427         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1428             goto bad_offset;
1429         }
1430         if (!attrs.secure) {
1431             return 0;
1432         }
1433         return cpu->env.sau.rnr;
1434     case 0xddc: /* SAU_RBAR */
1435     {
1436         int region = cpu->env.sau.rnr;
1437 
1438         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1439             goto bad_offset;
1440         }
1441         if (!attrs.secure) {
1442             return 0;
1443         }
1444         if (region >= cpu->sau_sregion) {
1445             return 0;
1446         }
1447         return cpu->env.sau.rbar[region];
1448     }
1449     case 0xde0: /* SAU_RLAR */
1450     {
1451         int region = cpu->env.sau.rnr;
1452 
1453         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1454             goto bad_offset;
1455         }
1456         if (!attrs.secure) {
1457             return 0;
1458         }
1459         if (region >= cpu->sau_sregion) {
1460             return 0;
1461         }
1462         return cpu->env.sau.rlar[region];
1463     }
1464     case 0xde4: /* SFSR */
1465         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1466             goto bad_offset;
1467         }
1468         if (!attrs.secure) {
1469             return 0;
1470         }
1471         return cpu->env.v7m.sfsr;
1472     case 0xde8: /* SFAR */
1473         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1474             goto bad_offset;
1475         }
1476         if (!attrs.secure) {
1477             return 0;
1478         }
1479         return cpu->env.v7m.sfar;
1480     case 0xf34: /* FPCCR */
1481         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1482             return 0;
1483         }
1484         if (attrs.secure) {
1485             return cpu->env.v7m.fpccr[M_REG_S];
1486         } else {
1487             /*
1488              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1489              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1490              * other non-banked bits RAZ.
1491              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1492              */
1493             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1494             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1495                 R_V7M_FPCCR_CLRONRET_MASK |
1496                 R_V7M_FPCCR_MONRDY_MASK;
1497 
1498             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1499                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1500             }
1501 
1502             value &= mask;
1503 
1504             value |= cpu->env.v7m.fpccr[M_REG_NS];
1505             return value;
1506         }
1507     case 0xf38: /* FPCAR */
1508         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1509             return 0;
1510         }
1511         return cpu->env.v7m.fpcar[attrs.secure];
1512     case 0xf3c: /* FPDSCR */
1513         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1514             return 0;
1515         }
1516         return cpu->env.v7m.fpdscr[attrs.secure];
1517     case 0xf40: /* MVFR0 */
1518         return cpu->isar.mvfr0;
1519     case 0xf44: /* MVFR1 */
1520         return cpu->isar.mvfr1;
1521     case 0xf48: /* MVFR2 */
1522         return cpu->isar.mvfr2;
1523     default:
1524     bad_offset:
1525         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1526         return 0;
1527     }
1528 }
1529 
1530 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1531                         MemTxAttrs attrs)
1532 {
1533     ARMCPU *cpu = s->cpu;
1534 
1535     switch (offset) {
1536     case 0xc: /* CPPWR */
1537         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1538             goto bad_offset;
1539         }
1540         /* Make the IMPDEF choice to RAZ/WI this. */
1541         break;
1542     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1543     {
1544         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1545         int i;
1546 
1547         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1548             goto bad_offset;
1549         }
1550         if (!attrs.secure) {
1551             break;
1552         }
1553         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1554             s->itns[startvec + i] = (value >> i) & 1;
1555         }
1556         nvic_irq_update(s);
1557         break;
1558     }
1559     case 0xd04: /* Interrupt Control State (ICSR) */
1560         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1561             if (value & (1 << 31)) {
1562                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1563             } else if (value & (1 << 30) &&
1564                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1565                 /* PENDNMICLR didn't exist in v7M */
1566                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1567             }
1568         }
1569         if (value & (1 << 28)) {
1570             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1571         } else if (value & (1 << 27)) {
1572             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1573         }
1574         if (value & (1 << 26)) {
1575             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1576         } else if (value & (1 << 25)) {
1577             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1578         }
1579         break;
1580     case 0xd08: /* Vector Table Offset.  */
1581         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1582         break;
1583     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1584         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1585             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1586                 if (attrs.secure ||
1587                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1588                     signal_sysresetreq(s);
1589                 }
1590             }
1591             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1592                 qemu_log_mask(LOG_GUEST_ERROR,
1593                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1594                               "is UNPREDICTABLE\n");
1595             }
1596             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1597                 /* NB: this bit is RES0 in v8M */
1598                 qemu_log_mask(LOG_GUEST_ERROR,
1599                               "Setting VECTRESET when not in DEBUG mode "
1600                               "is UNPREDICTABLE\n");
1601             }
1602             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1603                 s->prigroup[attrs.secure] =
1604                     extract32(value,
1605                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1606                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1607             }
1608             if (attrs.secure) {
1609                 /* These bits are only writable by secure */
1610                 cpu->env.v7m.aircr = value &
1611                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1612                      R_V7M_AIRCR_BFHFNMINS_MASK |
1613                      R_V7M_AIRCR_PRIS_MASK);
1614                 /* BFHFNMINS changes the priority of Secure HardFault, and
1615                  * allows a pending Non-secure HardFault to preempt (which
1616                  * we implement by marking it enabled).
1617                  */
1618                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1619                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1620                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1621                 } else {
1622                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1623                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1624                 }
1625             }
1626             nvic_irq_update(s);
1627         }
1628         break;
1629     case 0xd10: /* System Control.  */
1630         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1631             goto bad_offset;
1632         }
1633         /* We don't implement deep-sleep so these bits are RAZ/WI.
1634          * The other bits in the register are banked.
1635          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1636          * is architecturally permitted.
1637          */
1638         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1639         cpu->env.v7m.scr[attrs.secure] = value;
1640         break;
1641     case 0xd14: /* Configuration Control.  */
1642         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1643             goto bad_offset;
1644         }
1645 
1646         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1647         value &= (R_V7M_CCR_STKALIGN_MASK |
1648                   R_V7M_CCR_BFHFNMIGN_MASK |
1649                   R_V7M_CCR_DIV_0_TRP_MASK |
1650                   R_V7M_CCR_UNALIGN_TRP_MASK |
1651                   R_V7M_CCR_USERSETMPEND_MASK |
1652                   R_V7M_CCR_NONBASETHRDENA_MASK);
1653 
1654         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1655             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1656             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1657                 | R_V7M_CCR_STKALIGN_MASK;
1658         }
1659         if (attrs.secure) {
1660             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1661             cpu->env.v7m.ccr[M_REG_NS] =
1662                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1663                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1664             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1665         }
1666 
1667         cpu->env.v7m.ccr[attrs.secure] = value;
1668         break;
1669     case 0xd24: /* System Handler Control and State (SHCSR) */
1670         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1671             goto bad_offset;
1672         }
1673         if (attrs.secure) {
1674             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1675             /* Secure HardFault active bit cannot be written */
1676             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1677             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1678             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1679                 (value & (1 << 10)) != 0;
1680             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1681                 (value & (1 << 11)) != 0;
1682             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1683                 (value & (1 << 12)) != 0;
1684             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1685             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1686             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1687             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1688             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1689                 (value & (1 << 18)) != 0;
1690             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1691             /* SecureFault not banked, but RAZ/WI to NS */
1692             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1693             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1694             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1695         } else {
1696             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1697             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1698                 /* HARDFAULTPENDED is not present in v7M */
1699                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1700             }
1701             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1702             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1703             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1704             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1705             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1706             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1707             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1708             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1709             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1710         }
1711         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1712             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1713             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1714             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1715         }
1716         /* NMIACT can only be written if the write is of a zero, with
1717          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1718          */
1719         if (!attrs.secure && cpu->env.v7m.secure &&
1720             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1721             (value & (1 << 5)) == 0) {
1722             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1723         }
1724         /* HARDFAULTACT can only be written if the write is of a zero
1725          * to the non-secure HardFault state by the CPU in secure state.
1726          * The only case where we can be targeting the non-secure HF state
1727          * when in secure state is if this is a write via the NS alias
1728          * and BFHFNMINS is 1.
1729          */
1730         if (!attrs.secure && cpu->env.v7m.secure &&
1731             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1732             (value & (1 << 2)) == 0) {
1733             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1734         }
1735 
1736         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1737         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1738         nvic_irq_update(s);
1739         break;
1740     case 0xd2c: /* Hard Fault Status.  */
1741         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1742             goto bad_offset;
1743         }
1744         cpu->env.v7m.hfsr &= ~value; /* W1C */
1745         break;
1746     case 0xd30: /* Debug Fault Status.  */
1747         cpu->env.v7m.dfsr &= ~value; /* W1C */
1748         break;
1749     case 0xd34: /* Mem Manage Address.  */
1750         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1751             goto bad_offset;
1752         }
1753         cpu->env.v7m.mmfar[attrs.secure] = value;
1754         return;
1755     case 0xd38: /* Bus Fault Address.  */
1756         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1757             goto bad_offset;
1758         }
1759         if (!attrs.secure &&
1760             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1761             return;
1762         }
1763         cpu->env.v7m.bfar = value;
1764         return;
1765     case 0xd3c: /* Aux Fault Status.  */
1766         qemu_log_mask(LOG_UNIMP,
1767                       "NVIC: Aux fault status registers unimplemented\n");
1768         break;
1769     case 0xd84: /* CSSELR */
1770         if (!arm_v7m_csselr_razwi(cpu)) {
1771             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1772         }
1773         break;
1774     case 0xd88: /* CPACR */
1775         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1776             /* We implement only the Floating Point extension's CP10/CP11 */
1777             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1778         }
1779         break;
1780     case 0xd8c: /* NSACR */
1781         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1782             /* We implement only the Floating Point extension's CP10/CP11 */
1783             cpu->env.v7m.nsacr = value & (3 << 10);
1784         }
1785         break;
1786     case 0xd90: /* MPU_TYPE */
1787         return; /* RO */
1788     case 0xd94: /* MPU_CTRL */
1789         if ((value &
1790              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1791             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1792             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1793                           "UNPREDICTABLE\n");
1794         }
1795         cpu->env.v7m.mpu_ctrl[attrs.secure]
1796             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1797                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1798                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1799         tlb_flush(CPU(cpu));
1800         break;
1801     case 0xd98: /* MPU_RNR */
1802         if (value >= cpu->pmsav7_dregion) {
1803             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1804                           PRIu32 "/%" PRIu32 "\n",
1805                           value, cpu->pmsav7_dregion);
1806         } else {
1807             cpu->env.pmsav7.rnr[attrs.secure] = value;
1808         }
1809         break;
1810     case 0xd9c: /* MPU_RBAR */
1811     case 0xda4: /* MPU_RBAR_A1 */
1812     case 0xdac: /* MPU_RBAR_A2 */
1813     case 0xdb4: /* MPU_RBAR_A3 */
1814     {
1815         int region;
1816 
1817         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1818             /* PMSAv8M handling of the aliases is different from v7M:
1819              * aliases A1, A2, A3 override the low two bits of the region
1820              * number in MPU_RNR, and there is no 'region' field in the
1821              * RBAR register.
1822              */
1823             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1824 
1825             region = cpu->env.pmsav7.rnr[attrs.secure];
1826             if (aliasno) {
1827                 region = deposit32(region, 0, 2, aliasno);
1828             }
1829             if (region >= cpu->pmsav7_dregion) {
1830                 return;
1831             }
1832             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1833             tlb_flush(CPU(cpu));
1834             return;
1835         }
1836 
1837         if (value & (1 << 4)) {
1838             /* VALID bit means use the region number specified in this
1839              * value and also update MPU_RNR.REGION with that value.
1840              */
1841             region = extract32(value, 0, 4);
1842             if (region >= cpu->pmsav7_dregion) {
1843                 qemu_log_mask(LOG_GUEST_ERROR,
1844                               "MPU region out of range %u/%" PRIu32 "\n",
1845                               region, cpu->pmsav7_dregion);
1846                 return;
1847             }
1848             cpu->env.pmsav7.rnr[attrs.secure] = region;
1849         } else {
1850             region = cpu->env.pmsav7.rnr[attrs.secure];
1851         }
1852 
1853         if (region >= cpu->pmsav7_dregion) {
1854             return;
1855         }
1856 
1857         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1858         tlb_flush(CPU(cpu));
1859         break;
1860     }
1861     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1862     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1863     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1864     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1865     {
1866         int region = cpu->env.pmsav7.rnr[attrs.secure];
1867 
1868         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1869             /* PMSAv8M handling of the aliases is different from v7M:
1870              * aliases A1, A2, A3 override the low two bits of the region
1871              * number in MPU_RNR.
1872              */
1873             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1874 
1875             region = cpu->env.pmsav7.rnr[attrs.secure];
1876             if (aliasno) {
1877                 region = deposit32(region, 0, 2, aliasno);
1878             }
1879             if (region >= cpu->pmsav7_dregion) {
1880                 return;
1881             }
1882             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1883             tlb_flush(CPU(cpu));
1884             return;
1885         }
1886 
1887         if (region >= cpu->pmsav7_dregion) {
1888             return;
1889         }
1890 
1891         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1892         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1893         tlb_flush(CPU(cpu));
1894         break;
1895     }
1896     case 0xdc0: /* MPU_MAIR0 */
1897         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1898             goto bad_offset;
1899         }
1900         if (cpu->pmsav7_dregion) {
1901             /* Register is RES0 if no MPU regions are implemented */
1902             cpu->env.pmsav8.mair0[attrs.secure] = value;
1903         }
1904         /* We don't need to do anything else because memory attributes
1905          * only affect cacheability, and we don't implement caching.
1906          */
1907         break;
1908     case 0xdc4: /* MPU_MAIR1 */
1909         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1910             goto bad_offset;
1911         }
1912         if (cpu->pmsav7_dregion) {
1913             /* Register is RES0 if no MPU regions are implemented */
1914             cpu->env.pmsav8.mair1[attrs.secure] = value;
1915         }
1916         /* We don't need to do anything else because memory attributes
1917          * only affect cacheability, and we don't implement caching.
1918          */
1919         break;
1920     case 0xdd0: /* SAU_CTRL */
1921         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1922             goto bad_offset;
1923         }
1924         if (!attrs.secure) {
1925             return;
1926         }
1927         cpu->env.sau.ctrl = value & 3;
1928         break;
1929     case 0xdd4: /* SAU_TYPE */
1930         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1931             goto bad_offset;
1932         }
1933         break;
1934     case 0xdd8: /* SAU_RNR */
1935         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1936             goto bad_offset;
1937         }
1938         if (!attrs.secure) {
1939             return;
1940         }
1941         if (value >= cpu->sau_sregion) {
1942             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1943                           PRIu32 "/%" PRIu32 "\n",
1944                           value, cpu->sau_sregion);
1945         } else {
1946             cpu->env.sau.rnr = value;
1947         }
1948         break;
1949     case 0xddc: /* SAU_RBAR */
1950     {
1951         int region = cpu->env.sau.rnr;
1952 
1953         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1954             goto bad_offset;
1955         }
1956         if (!attrs.secure) {
1957             return;
1958         }
1959         if (region >= cpu->sau_sregion) {
1960             return;
1961         }
1962         cpu->env.sau.rbar[region] = value & ~0x1f;
1963         tlb_flush(CPU(cpu));
1964         break;
1965     }
1966     case 0xde0: /* SAU_RLAR */
1967     {
1968         int region = cpu->env.sau.rnr;
1969 
1970         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1971             goto bad_offset;
1972         }
1973         if (!attrs.secure) {
1974             return;
1975         }
1976         if (region >= cpu->sau_sregion) {
1977             return;
1978         }
1979         cpu->env.sau.rlar[region] = value & ~0x1c;
1980         tlb_flush(CPU(cpu));
1981         break;
1982     }
1983     case 0xde4: /* SFSR */
1984         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1985             goto bad_offset;
1986         }
1987         if (!attrs.secure) {
1988             return;
1989         }
1990         cpu->env.v7m.sfsr &= ~value; /* W1C */
1991         break;
1992     case 0xde8: /* SFAR */
1993         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1994             goto bad_offset;
1995         }
1996         if (!attrs.secure) {
1997             return;
1998         }
1999         cpu->env.v7m.sfsr = value;
2000         break;
2001     case 0xf00: /* Software Triggered Interrupt Register */
2002     {
2003         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2004 
2005         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2006             goto bad_offset;
2007         }
2008 
2009         if (excnum < s->num_irq) {
2010             armv7m_nvic_set_pending(s, excnum, false);
2011         }
2012         break;
2013     }
2014     case 0xf34: /* FPCCR */
2015         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2016             /* Not all bits here are banked. */
2017             uint32_t fpccr_s;
2018 
2019             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2020                 /* Don't allow setting of bits not present in v7M */
2021                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2022                           R_V7M_FPCCR_USER_MASK |
2023                           R_V7M_FPCCR_THREAD_MASK |
2024                           R_V7M_FPCCR_HFRDY_MASK |
2025                           R_V7M_FPCCR_MMRDY_MASK |
2026                           R_V7M_FPCCR_BFRDY_MASK |
2027                           R_V7M_FPCCR_MONRDY_MASK |
2028                           R_V7M_FPCCR_LSPEN_MASK |
2029                           R_V7M_FPCCR_ASPEN_MASK);
2030             }
2031             value &= ~R_V7M_FPCCR_RES0_MASK;
2032 
2033             if (!attrs.secure) {
2034                 /* Some non-banked bits are configurably writable by NS */
2035                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2036                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2037                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2038                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2039                 }
2040                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2041                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2042                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2043                 }
2044                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2045                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2046                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2047                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2048                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2049                 }
2050                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2051                 {
2052                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2053                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2054                 }
2055 
2056                 /*
2057                  * All other non-banked bits are RAZ/WI from NS; write
2058                  * just the banked bits to fpccr[M_REG_NS].
2059                  */
2060                 value &= R_V7M_FPCCR_BANKED_MASK;
2061                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2062             } else {
2063                 fpccr_s = value;
2064             }
2065             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2066         }
2067         break;
2068     case 0xf38: /* FPCAR */
2069         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2070             value &= ~7;
2071             cpu->env.v7m.fpcar[attrs.secure] = value;
2072         }
2073         break;
2074     case 0xf3c: /* FPDSCR */
2075         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2076             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2077             if (cpu_isar_feature(any_fp16, cpu)) {
2078                 mask |= FPCR_FZ16;
2079             }
2080             value &= mask;
2081             if (cpu_isar_feature(aa32_lob, cpu)) {
2082                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2083             }
2084             cpu->env.v7m.fpdscr[attrs.secure] = value;
2085         }
2086         break;
2087     case 0xf50: /* ICIALLU */
2088     case 0xf58: /* ICIMVAU */
2089     case 0xf5c: /* DCIMVAC */
2090     case 0xf60: /* DCISW */
2091     case 0xf64: /* DCCMVAU */
2092     case 0xf68: /* DCCMVAC */
2093     case 0xf6c: /* DCCSW */
2094     case 0xf70: /* DCCIMVAC */
2095     case 0xf74: /* DCCISW */
2096     case 0xf78: /* BPIALL */
2097         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2098         break;
2099     default:
2100     bad_offset:
2101         qemu_log_mask(LOG_GUEST_ERROR,
2102                       "NVIC: Bad write offset 0x%x\n", offset);
2103     }
2104 }
2105 
2106 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2107 {
2108     /* Return true if unprivileged access to this register is permitted. */
2109     switch (offset) {
2110     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2111         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2112          * controls access even though the CPU is in Secure state (I_QDKX).
2113          */
2114         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2115     default:
2116         /* All other user accesses cause a BusFault unconditionally */
2117         return false;
2118     }
2119 }
2120 
2121 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2122 {
2123     /* Behaviour for the SHPR register field for this exception:
2124      * return M_REG_NS to use the nonsecure vector (including for
2125      * non-banked exceptions), M_REG_S for the secure version of
2126      * a banked exception, and -1 if this field should RAZ/WI.
2127      */
2128     switch (exc) {
2129     case ARMV7M_EXCP_MEM:
2130     case ARMV7M_EXCP_USAGE:
2131     case ARMV7M_EXCP_SVC:
2132     case ARMV7M_EXCP_PENDSV:
2133     case ARMV7M_EXCP_SYSTICK:
2134         /* Banked exceptions */
2135         return attrs.secure;
2136     case ARMV7M_EXCP_BUS:
2137         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2138         if (!attrs.secure &&
2139             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2140             return -1;
2141         }
2142         return M_REG_NS;
2143     case ARMV7M_EXCP_SECURE:
2144         /* Not banked, RAZ/WI from nonsecure */
2145         if (!attrs.secure) {
2146             return -1;
2147         }
2148         return M_REG_NS;
2149     case ARMV7M_EXCP_DEBUG:
2150         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2151         return M_REG_NS;
2152     case 8 ... 10:
2153     case 13:
2154         /* RES0 */
2155         return -1;
2156     default:
2157         /* Not reachable due to decode of SHPR register addresses */
2158         g_assert_not_reached();
2159     }
2160 }
2161 
2162 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2163                                     uint64_t *data, unsigned size,
2164                                     MemTxAttrs attrs)
2165 {
2166     NVICState *s = (NVICState *)opaque;
2167     uint32_t offset = addr;
2168     unsigned i, startvec, end;
2169     uint32_t val;
2170 
2171     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2172         /* Generate BusFault for unprivileged accesses */
2173         return MEMTX_ERROR;
2174     }
2175 
2176     switch (offset) {
2177     /* reads of set and clear both return the status */
2178     case 0x100 ... 0x13f: /* NVIC Set enable */
2179         offset += 0x80;
2180         /* fall through */
2181     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2182         val = 0;
2183         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2184 
2185         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2186             if (s->vectors[startvec + i].enabled &&
2187                 (attrs.secure || s->itns[startvec + i])) {
2188                 val |= (1 << i);
2189             }
2190         }
2191         break;
2192     case 0x200 ... 0x23f: /* NVIC Set pend */
2193         offset += 0x80;
2194         /* fall through */
2195     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2196         val = 0;
2197         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2198         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2199             if (s->vectors[startvec + i].pending &&
2200                 (attrs.secure || s->itns[startvec + i])) {
2201                 val |= (1 << i);
2202             }
2203         }
2204         break;
2205     case 0x300 ... 0x33f: /* NVIC Active */
2206         val = 0;
2207 
2208         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2209             break;
2210         }
2211 
2212         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2213 
2214         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2215             if (s->vectors[startvec + i].active &&
2216                 (attrs.secure || s->itns[startvec + i])) {
2217                 val |= (1 << i);
2218             }
2219         }
2220         break;
2221     case 0x400 ... 0x5ef: /* NVIC Priority */
2222         val = 0;
2223         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2224 
2225         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2226             if (attrs.secure || s->itns[startvec + i]) {
2227                 val |= s->vectors[startvec + i].prio << (8 * i);
2228             }
2229         }
2230         break;
2231     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2232         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2233             val = 0;
2234             break;
2235         }
2236         /* fall through */
2237     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2238         val = 0;
2239         for (i = 0; i < size; i++) {
2240             unsigned hdlidx = (offset - 0xd14) + i;
2241             int sbank = shpr_bank(s, hdlidx, attrs);
2242 
2243             if (sbank < 0) {
2244                 continue;
2245             }
2246             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2247         }
2248         break;
2249     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2250         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2251             val = 0;
2252             break;
2253         };
2254         /*
2255          * The BFSR bits [15:8] are shared between security states
2256          * and we store them in the NS copy. They are RAZ/WI for
2257          * NS code if AIRCR.BFHFNMINS is 0.
2258          */
2259         val = s->cpu->env.v7m.cfsr[attrs.secure];
2260         if (!attrs.secure &&
2261             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2262             val &= ~R_V7M_CFSR_BFSR_MASK;
2263         } else {
2264             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2265         }
2266         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2267         break;
2268     case 0xfe0 ... 0xfff: /* ID.  */
2269         if (offset & 3) {
2270             val = 0;
2271         } else {
2272             val = nvic_id[(offset - 0xfe0) >> 2];
2273         }
2274         break;
2275     default:
2276         if (size == 4) {
2277             val = nvic_readl(s, offset, attrs);
2278         } else {
2279             qemu_log_mask(LOG_GUEST_ERROR,
2280                           "NVIC: Bad read of size %d at offset 0x%x\n",
2281                           size, offset);
2282             val = 0;
2283         }
2284     }
2285 
2286     trace_nvic_sysreg_read(addr, val, size);
2287     *data = val;
2288     return MEMTX_OK;
2289 }
2290 
2291 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2292                                      uint64_t value, unsigned size,
2293                                      MemTxAttrs attrs)
2294 {
2295     NVICState *s = (NVICState *)opaque;
2296     uint32_t offset = addr;
2297     unsigned i, startvec, end;
2298     unsigned setval = 0;
2299 
2300     trace_nvic_sysreg_write(addr, value, size);
2301 
2302     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2303         /* Generate BusFault for unprivileged accesses */
2304         return MEMTX_ERROR;
2305     }
2306 
2307     switch (offset) {
2308     case 0x100 ... 0x13f: /* NVIC Set enable */
2309         offset += 0x80;
2310         setval = 1;
2311         /* fall through */
2312     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2313         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2314 
2315         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2316             if (value & (1 << i) &&
2317                 (attrs.secure || s->itns[startvec + i])) {
2318                 s->vectors[startvec + i].enabled = setval;
2319             }
2320         }
2321         nvic_irq_update(s);
2322         goto exit_ok;
2323     case 0x200 ... 0x23f: /* NVIC Set pend */
2324         /* the special logic in armv7m_nvic_set_pending()
2325          * is not needed since IRQs are never escalated
2326          */
2327         offset += 0x80;
2328         setval = 1;
2329         /* fall through */
2330     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2331         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2332 
2333         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2334             if (value & (1 << i) &&
2335                 (attrs.secure || s->itns[startvec + i])) {
2336                 s->vectors[startvec + i].pending = setval;
2337             }
2338         }
2339         nvic_irq_update(s);
2340         goto exit_ok;
2341     case 0x300 ... 0x33f: /* NVIC Active */
2342         goto exit_ok; /* R/O */
2343     case 0x400 ... 0x5ef: /* NVIC Priority */
2344         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2345 
2346         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2347             if (attrs.secure || s->itns[startvec + i]) {
2348                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2349             }
2350         }
2351         nvic_irq_update(s);
2352         goto exit_ok;
2353     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2354         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2355             goto exit_ok;
2356         }
2357         /* fall through */
2358     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2359         for (i = 0; i < size; i++) {
2360             unsigned hdlidx = (offset - 0xd14) + i;
2361             int newprio = extract32(value, i * 8, 8);
2362             int sbank = shpr_bank(s, hdlidx, attrs);
2363 
2364             if (sbank < 0) {
2365                 continue;
2366             }
2367             set_prio(s, hdlidx, sbank, newprio);
2368         }
2369         nvic_irq_update(s);
2370         goto exit_ok;
2371     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2372         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2373             goto exit_ok;
2374         }
2375         /* All bits are W1C, so construct 32 bit value with 0s in
2376          * the parts not written by the access size
2377          */
2378         value <<= ((offset - 0xd28) * 8);
2379 
2380         if (!attrs.secure &&
2381             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2382             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2383             value &= ~R_V7M_CFSR_BFSR_MASK;
2384         }
2385 
2386         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2387         if (attrs.secure) {
2388             /* The BFSR bits [15:8] are shared between security states
2389              * and we store them in the NS copy.
2390              */
2391             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2392         }
2393         goto exit_ok;
2394     }
2395     if (size == 4) {
2396         nvic_writel(s, offset, value, attrs);
2397         goto exit_ok;
2398     }
2399     qemu_log_mask(LOG_GUEST_ERROR,
2400                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2401     /* This is UNPREDICTABLE; treat as RAZ/WI */
2402 
2403  exit_ok:
2404     /* Ensure any changes made are reflected in the cached hflags.  */
2405     arm_rebuild_hflags(&s->cpu->env);
2406     return MEMTX_OK;
2407 }
2408 
2409 static const MemoryRegionOps nvic_sysreg_ops = {
2410     .read_with_attrs = nvic_sysreg_read,
2411     .write_with_attrs = nvic_sysreg_write,
2412     .endianness = DEVICE_NATIVE_ENDIAN,
2413 };
2414 
2415 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2416                                         uint64_t value, unsigned size,
2417                                         MemTxAttrs attrs)
2418 {
2419     MemoryRegion *mr = opaque;
2420 
2421     if (attrs.secure) {
2422         /* S accesses to the alias act like NS accesses to the real region */
2423         attrs.secure = 0;
2424         return memory_region_dispatch_write(mr, addr, value,
2425                                             size_memop(size) | MO_TE, attrs);
2426     } else {
2427         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2428         if (attrs.user) {
2429             return MEMTX_ERROR;
2430         }
2431         return MEMTX_OK;
2432     }
2433 }
2434 
2435 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2436                                        uint64_t *data, unsigned size,
2437                                        MemTxAttrs attrs)
2438 {
2439     MemoryRegion *mr = opaque;
2440 
2441     if (attrs.secure) {
2442         /* S accesses to the alias act like NS accesses to the real region */
2443         attrs.secure = 0;
2444         return memory_region_dispatch_read(mr, addr, data,
2445                                            size_memop(size) | MO_TE, attrs);
2446     } else {
2447         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2448         if (attrs.user) {
2449             return MEMTX_ERROR;
2450         }
2451         *data = 0;
2452         return MEMTX_OK;
2453     }
2454 }
2455 
2456 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2457     .read_with_attrs = nvic_sysreg_ns_read,
2458     .write_with_attrs = nvic_sysreg_ns_write,
2459     .endianness = DEVICE_NATIVE_ENDIAN,
2460 };
2461 
2462 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2463                                       uint64_t value, unsigned size,
2464                                       MemTxAttrs attrs)
2465 {
2466     NVICState *s = opaque;
2467     MemoryRegion *mr;
2468 
2469     /* Direct the access to the correct systick */
2470     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2471     return memory_region_dispatch_write(mr, addr, value,
2472                                         size_memop(size) | MO_TE, attrs);
2473 }
2474 
2475 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2476                                      uint64_t *data, unsigned size,
2477                                      MemTxAttrs attrs)
2478 {
2479     NVICState *s = opaque;
2480     MemoryRegion *mr;
2481 
2482     /* Direct the access to the correct systick */
2483     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2484     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2485                                        attrs);
2486 }
2487 
2488 static const MemoryRegionOps nvic_systick_ops = {
2489     .read_with_attrs = nvic_systick_read,
2490     .write_with_attrs = nvic_systick_write,
2491     .endianness = DEVICE_NATIVE_ENDIAN,
2492 };
2493 
2494 /*
2495  * Unassigned portions of the PPB space are RAZ/WI for privileged
2496  * accesses, and fault for non-privileged accesses.
2497  */
2498 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2499                                     uint64_t *data, unsigned size,
2500                                     MemTxAttrs attrs)
2501 {
2502     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2503                   (uint32_t)addr);
2504     if (attrs.user) {
2505         return MEMTX_ERROR;
2506     }
2507     *data = 0;
2508     return MEMTX_OK;
2509 }
2510 
2511 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2512                                      uint64_t value, unsigned size,
2513                                      MemTxAttrs attrs)
2514 {
2515     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2516                   (uint32_t)addr);
2517     if (attrs.user) {
2518         return MEMTX_ERROR;
2519     }
2520     return MEMTX_OK;
2521 }
2522 
2523 static const MemoryRegionOps ppb_default_ops = {
2524     .read_with_attrs = ppb_default_read,
2525     .write_with_attrs = ppb_default_write,
2526     .endianness = DEVICE_NATIVE_ENDIAN,
2527     .valid.min_access_size = 1,
2528     .valid.max_access_size = 8,
2529 };
2530 
2531 static int nvic_post_load(void *opaque, int version_id)
2532 {
2533     NVICState *s = opaque;
2534     unsigned i;
2535     int resetprio;
2536 
2537     /* Check for out of range priority settings */
2538     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2539 
2540     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2541         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2542         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2543         return 1;
2544     }
2545     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2546         if (s->vectors[i].prio & ~0xff) {
2547             return 1;
2548         }
2549     }
2550 
2551     nvic_recompute_state(s);
2552 
2553     return 0;
2554 }
2555 
2556 static const VMStateDescription vmstate_VecInfo = {
2557     .name = "armv7m_nvic_info",
2558     .version_id = 1,
2559     .minimum_version_id = 1,
2560     .fields = (VMStateField[]) {
2561         VMSTATE_INT16(prio, VecInfo),
2562         VMSTATE_UINT8(enabled, VecInfo),
2563         VMSTATE_UINT8(pending, VecInfo),
2564         VMSTATE_UINT8(active, VecInfo),
2565         VMSTATE_UINT8(level, VecInfo),
2566         VMSTATE_END_OF_LIST()
2567     }
2568 };
2569 
2570 static bool nvic_security_needed(void *opaque)
2571 {
2572     NVICState *s = opaque;
2573 
2574     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2575 }
2576 
2577 static int nvic_security_post_load(void *opaque, int version_id)
2578 {
2579     NVICState *s = opaque;
2580     int i;
2581 
2582     /* Check for out of range priority settings */
2583     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2584         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2585         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2586          * if the CPU state has been migrated yet; a mismatch won't
2587          * cause the emulation to blow up, though.
2588          */
2589         return 1;
2590     }
2591     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2592         if (s->sec_vectors[i].prio & ~0xff) {
2593             return 1;
2594         }
2595     }
2596     return 0;
2597 }
2598 
2599 static const VMStateDescription vmstate_nvic_security = {
2600     .name = "armv7m_nvic/m-security",
2601     .version_id = 1,
2602     .minimum_version_id = 1,
2603     .needed = nvic_security_needed,
2604     .post_load = &nvic_security_post_load,
2605     .fields = (VMStateField[]) {
2606         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2607                              vmstate_VecInfo, VecInfo),
2608         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2609         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2610         VMSTATE_END_OF_LIST()
2611     }
2612 };
2613 
2614 static const VMStateDescription vmstate_nvic = {
2615     .name = "armv7m_nvic",
2616     .version_id = 4,
2617     .minimum_version_id = 4,
2618     .post_load = &nvic_post_load,
2619     .fields = (VMStateField[]) {
2620         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2621                              vmstate_VecInfo, VecInfo),
2622         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2623         VMSTATE_END_OF_LIST()
2624     },
2625     .subsections = (const VMStateDescription*[]) {
2626         &vmstate_nvic_security,
2627         NULL
2628     }
2629 };
2630 
2631 static Property props_nvic[] = {
2632     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2633     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2634     DEFINE_PROP_END_OF_LIST()
2635 };
2636 
2637 static void armv7m_nvic_reset(DeviceState *dev)
2638 {
2639     int resetprio;
2640     NVICState *s = NVIC(dev);
2641 
2642     memset(s->vectors, 0, sizeof(s->vectors));
2643     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2644     s->prigroup[M_REG_NS] = 0;
2645     s->prigroup[M_REG_S] = 0;
2646 
2647     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2648     /* MEM, BUS, and USAGE are enabled through
2649      * the System Handler Control register
2650      */
2651     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2652     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2653     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2654 
2655     /* DebugMonitor is enabled via DEMCR.MON_EN */
2656     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2657 
2658     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2659     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2660     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2661     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2662 
2663     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2664         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2665         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2666         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2667         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2668 
2669         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2670         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2671         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2672         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2673     } else {
2674         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2675     }
2676 
2677     /* Strictly speaking the reset handler should be enabled.
2678      * However, we don't simulate soft resets through the NVIC,
2679      * and the reset vector should never be pended.
2680      * So we leave it disabled to catch logic errors.
2681      */
2682 
2683     s->exception_prio = NVIC_NOEXC_PRIO;
2684     s->vectpending = 0;
2685     s->vectpending_is_s_banked = false;
2686     s->vectpending_prio = NVIC_NOEXC_PRIO;
2687 
2688     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2689         memset(s->itns, 0, sizeof(s->itns));
2690     } else {
2691         /* This state is constant and not guest accessible in a non-security
2692          * NVIC; we set the bits to true to avoid having to do a feature
2693          * bit check in the NVIC enable/pend/etc register accessors.
2694          */
2695         int i;
2696 
2697         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2698             s->itns[i] = true;
2699         }
2700     }
2701 
2702     /*
2703      * We updated state that affects the CPU's MMUidx and thus its hflags;
2704      * and we can't guarantee that we run before the CPU reset function.
2705      */
2706     arm_rebuild_hflags(&s->cpu->env);
2707 }
2708 
2709 static void nvic_systick_trigger(void *opaque, int n, int level)
2710 {
2711     NVICState *s = opaque;
2712 
2713     if (level) {
2714         /* SysTick just asked us to pend its exception.
2715          * (This is different from an external interrupt line's
2716          * behaviour.)
2717          * n == 0 : NonSecure systick
2718          * n == 1 : Secure systick
2719          */
2720         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2721     }
2722 }
2723 
2724 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2725 {
2726     NVICState *s = NVIC(dev);
2727 
2728     /* The armv7m container object will have set our CPU pointer */
2729     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2730         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2731         return;
2732     }
2733 
2734     if (s->num_irq > NVIC_MAX_IRQ) {
2735         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2736         return;
2737     }
2738 
2739     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2740 
2741     /* include space for internal exception vectors */
2742     s->num_irq += NVIC_FIRST_IRQ;
2743 
2744     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2745 
2746     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2747         return;
2748     }
2749     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2750                        qdev_get_gpio_in_named(dev, "systick-trigger",
2751                                               M_REG_NS));
2752 
2753     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2754         /* We couldn't init the secure systick device in instance_init
2755          * as we didn't know then if the CPU had the security extensions;
2756          * so we have to do it here.
2757          */
2758         object_initialize_child(OBJECT(dev), "systick-reg-s",
2759                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2760 
2761         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2762             return;
2763         }
2764         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2765                            qdev_get_gpio_in_named(dev, "systick-trigger",
2766                                                   M_REG_S));
2767     }
2768 
2769     /*
2770      * This device provides a single sysbus memory region which
2771      * represents the whole of the "System PPB" space. This is the
2772      * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2773      * the System Control Space (system registers), the systick timer,
2774      * and for CPUs with the Security extension an NS banked version
2775      * of all of these.
2776      *
2777      * The default behaviour for unimplemented registers/ranges
2778      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2779      * is to RAZ/WI for privileged access and BusFault for non-privileged
2780      * access.
2781      *
2782      * The NVIC and System Control Space (SCS) starts at 0xe000e000
2783      * and looks like this:
2784      *  0x004 - ICTR
2785      *  0x010 - 0xff - systick
2786      *  0x100..0x7ec - NVIC
2787      *  0x7f0..0xcff - Reserved
2788      *  0xd00..0xd3c - SCS registers
2789      *  0xd40..0xeff - Reserved or Not implemented
2790      *  0xf00 - STIR
2791      *
2792      * Some registers within this space are banked between security states.
2793      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2794      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2795      * to the main SCS range, and non-secure accesses (including when
2796      * the security extension is not implemented) are RAZ/WI.
2797      * Note that both the main SCS range and the alias range are defined
2798      * to be exempt from memory attribution (R_BLJT) and so the memory
2799      * transaction attribute always matches the current CPU security
2800      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2801      * wrappers we change attrs.secure to indicate the NS access; so
2802      * generally code determining which banked register to use should
2803      * use attrs.secure; code determining actual behaviour of the system
2804      * should use env->v7m.secure.
2805      *
2806      * The container covers the whole PPB space. Within it the priority
2807      * of overlapping regions is:
2808      *  - default region (for RAZ/WI and BusFault) : -1
2809      *  - system register regions : 0
2810      *  - systick : 1
2811      * This is because the systick device is a small block of registers
2812      * in the middle of the other system control registers.
2813      */
2814     memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2815     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2816                           "nvic-default", 0x100000);
2817     memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2818     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2819                           "nvic_sysregs", 0x1000);
2820     memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2821 
2822     memory_region_init_io(&s->systickmem, OBJECT(s),
2823                           &nvic_systick_ops, s,
2824                           "nvic_systick", 0xe0);
2825 
2826     memory_region_add_subregion_overlap(&s->container, 0xe010,
2827                                         &s->systickmem, 1);
2828 
2829     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2830         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2831                               &nvic_sysreg_ns_ops, &s->sysregmem,
2832                               "nvic_sysregs_ns", 0x1000);
2833         memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2834         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2835                               &nvic_sysreg_ns_ops, &s->systickmem,
2836                               "nvic_systick_ns", 0xe0);
2837         memory_region_add_subregion_overlap(&s->container, 0x2e010,
2838                                             &s->systick_ns_mem, 1);
2839     }
2840 
2841     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2842 }
2843 
2844 static void armv7m_nvic_instance_init(Object *obj)
2845 {
2846     /* We have a different default value for the num-irq property
2847      * than our superclass. This function runs after qdev init
2848      * has set the defaults from the Property array and before
2849      * any user-specified property setting, so just modify the
2850      * value in the GICState struct.
2851      */
2852     DeviceState *dev = DEVICE(obj);
2853     NVICState *nvic = NVIC(obj);
2854     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2855 
2856     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2857                             TYPE_SYSTICK);
2858     /* We can't initialize the secure systick here, as we don't know
2859      * yet if we need it.
2860      */
2861 
2862     sysbus_init_irq(sbd, &nvic->excpout);
2863     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2864     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2865                             M_REG_NUM_BANKS);
2866     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2867 }
2868 
2869 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2870 {
2871     DeviceClass *dc = DEVICE_CLASS(klass);
2872 
2873     dc->vmsd  = &vmstate_nvic;
2874     device_class_set_props(dc, props_nvic);
2875     dc->reset = armv7m_nvic_reset;
2876     dc->realize = armv7m_nvic_realize;
2877 }
2878 
2879 static const TypeInfo armv7m_nvic_info = {
2880     .name          = TYPE_NVIC,
2881     .parent        = TYPE_SYS_BUS_DEVICE,
2882     .instance_init = armv7m_nvic_instance_init,
2883     .instance_size = sizeof(NVICState),
2884     .class_init    = armv7m_nvic_class_init,
2885     .class_size    = sizeof(SysBusDeviceClass),
2886 };
2887 
2888 static void armv7m_nvic_register_types(void)
2889 {
2890     type_register_static(&armv7m_nvic_info);
2891 }
2892 
2893 type_init(armv7m_nvic_register_types)
2894