1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 424 425 if (secure) { 426 assert(exc_is_banked(irq)); 427 s->sec_vectors[irq].prio = prio; 428 } else { 429 s->vectors[irq].prio = prio; 430 } 431 432 trace_nvic_set_prio(irq, secure, prio); 433 } 434 435 /* Return the current raw priority register value. 436 * secure indicates the bank to use for banked exceptions (we assert if 437 * we are passed secure=true for a non-banked exception). 438 */ 439 static int get_prio(NVICState *s, unsigned irq, bool secure) 440 { 441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 442 assert(irq < s->num_irq); 443 444 if (secure) { 445 assert(exc_is_banked(irq)); 446 return s->sec_vectors[irq].prio; 447 } else { 448 return s->vectors[irq].prio; 449 } 450 } 451 452 /* Recompute state and assert irq line accordingly. 453 * Must be called after changes to: 454 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 455 * prigroup 456 */ 457 static void nvic_irq_update(NVICState *s) 458 { 459 int lvl; 460 int pend_prio; 461 462 nvic_recompute_state(s); 463 pend_prio = nvic_pending_prio(s); 464 465 /* Raise NVIC output if this IRQ would be taken, except that we 466 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 467 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 468 * to those CPU registers don't cause us to recalculate the NVIC 469 * pending info. 470 */ 471 lvl = (pend_prio < s->exception_prio); 472 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 473 qemu_set_irq(s->excpout, lvl); 474 } 475 476 /** 477 * armv7m_nvic_clear_pending: mark the specified exception as not pending 478 * @opaque: the NVIC 479 * @irq: the exception number to mark as not pending 480 * @secure: false for non-banked exceptions or for the nonsecure 481 * version of a banked exception, true for the secure version of a banked 482 * exception. 483 * 484 * Marks the specified exception as not pending. Note that we will assert() 485 * if @secure is true and @irq does not specify one of the fixed set 486 * of architecturally banked exceptions. 487 */ 488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 489 { 490 NVICState *s = (NVICState *)opaque; 491 VecInfo *vec; 492 493 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 494 495 if (secure) { 496 assert(exc_is_banked(irq)); 497 vec = &s->sec_vectors[irq]; 498 } else { 499 vec = &s->vectors[irq]; 500 } 501 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 502 if (vec->pending) { 503 vec->pending = 0; 504 nvic_irq_update(s); 505 } 506 } 507 508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 509 bool derived) 510 { 511 /* Pend an exception, including possibly escalating it to HardFault. 512 * 513 * This function handles both "normal" pending of interrupts and 514 * exceptions, and also derived exceptions (ones which occur as 515 * a result of trying to take some other exception). 516 * 517 * If derived == true, the caller guarantees that we are part way through 518 * trying to take an exception (but have not yet called 519 * armv7m_nvic_acknowledge_irq() to make it active), and so: 520 * - s->vectpending is the "original exception" we were trying to take 521 * - irq is the "derived exception" 522 * - nvic_exec_prio(s) gives the priority before exception entry 523 * Here we handle the prioritization logic which the pseudocode puts 524 * in the DerivedLateArrival() function. 525 */ 526 527 NVICState *s = (NVICState *)opaque; 528 bool banked = exc_is_banked(irq); 529 VecInfo *vec; 530 bool targets_secure; 531 532 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 533 assert(!secure || banked); 534 535 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 536 537 targets_secure = banked ? secure : exc_targets_secure(s, irq); 538 539 trace_nvic_set_pending(irq, secure, targets_secure, 540 derived, vec->enabled, vec->prio); 541 542 if (derived) { 543 /* Derived exceptions are always synchronous. */ 544 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 545 546 if (irq == ARMV7M_EXCP_DEBUG && 547 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 548 /* DebugMonitorFault, but its priority is lower than the 549 * preempted exception priority: just ignore it. 550 */ 551 return; 552 } 553 554 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 555 /* If this is a terminal exception (one which means we cannot 556 * take the original exception, like a failure to read its 557 * vector table entry), then we must take the derived exception. 558 * If the derived exception can't take priority over the 559 * original exception, then we go into Lockup. 560 * 561 * For QEMU, we rely on the fact that a derived exception is 562 * terminal if and only if it's reported to us as HardFault, 563 * which saves having to have an extra argument is_terminal 564 * that we'd only use in one place. 565 */ 566 cpu_abort(&s->cpu->parent_obj, 567 "Lockup: can't take terminal derived exception " 568 "(original exception priority %d)\n", 569 s->vectpending_prio); 570 } 571 /* We now continue with the same code as for a normal pending 572 * exception, which will cause us to pend the derived exception. 573 * We'll then take either the original or the derived exception 574 * based on which is higher priority by the usual mechanism 575 * for selecting the highest priority pending interrupt. 576 */ 577 } 578 579 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 580 /* If a synchronous exception is pending then it may be 581 * escalated to HardFault if: 582 * * it is equal or lower priority to current execution 583 * * it is disabled 584 * (ie we need to take it immediately but we can't do so). 585 * Asynchronous exceptions (and interrupts) simply remain pending. 586 * 587 * For QEMU, we don't have any imprecise (asynchronous) faults, 588 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 589 * synchronous. 590 * Debug exceptions are awkward because only Debug exceptions 591 * resulting from the BKPT instruction should be escalated, 592 * but we don't currently implement any Debug exceptions other 593 * than those that result from BKPT, so we treat all debug exceptions 594 * as needing escalation. 595 * 596 * This all means we can identify whether to escalate based only on 597 * the exception number and don't (yet) need the caller to explicitly 598 * tell us whether this exception is synchronous or not. 599 */ 600 int running = nvic_exec_prio(s); 601 bool escalate = false; 602 603 if (exc_group_prio(s, vec->prio, secure) >= running) { 604 trace_nvic_escalate_prio(irq, vec->prio, running); 605 escalate = true; 606 } else if (!vec->enabled) { 607 trace_nvic_escalate_disabled(irq); 608 escalate = true; 609 } 610 611 if (escalate) { 612 613 /* We need to escalate this exception to a synchronous HardFault. 614 * If BFHFNMINS is set then we escalate to the banked HF for 615 * the target security state of the original exception; otherwise 616 * we take a Secure HardFault. 617 */ 618 irq = ARMV7M_EXCP_HARD; 619 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 620 (targets_secure || 621 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 622 vec = &s->sec_vectors[irq]; 623 } else { 624 vec = &s->vectors[irq]; 625 } 626 if (running <= vec->prio) { 627 /* We want to escalate to HardFault but we can't take the 628 * synchronous HardFault at this point either. This is a 629 * Lockup condition due to a guest bug. We don't model 630 * Lockup, so report via cpu_abort() instead. 631 */ 632 cpu_abort(&s->cpu->parent_obj, 633 "Lockup: can't escalate %d to HardFault " 634 "(current priority %d)\n", irq, running); 635 } 636 637 /* HF may be banked but there is only one shared HFSR */ 638 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 639 } 640 } 641 642 if (!vec->pending) { 643 vec->pending = 1; 644 nvic_irq_update(s); 645 } 646 } 647 648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 649 { 650 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 651 } 652 653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 654 { 655 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 656 } 657 658 /* Make pending IRQ active. */ 659 void armv7m_nvic_acknowledge_irq(void *opaque) 660 { 661 NVICState *s = (NVICState *)opaque; 662 CPUARMState *env = &s->cpu->env; 663 const int pending = s->vectpending; 664 const int running = nvic_exec_prio(s); 665 VecInfo *vec; 666 667 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 668 669 if (s->vectpending_is_s_banked) { 670 vec = &s->sec_vectors[pending]; 671 } else { 672 vec = &s->vectors[pending]; 673 } 674 675 assert(vec->enabled); 676 assert(vec->pending); 677 678 assert(s->vectpending_prio < running); 679 680 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 681 682 vec->active = 1; 683 vec->pending = 0; 684 685 write_v7m_exception(env, s->vectpending); 686 687 nvic_irq_update(s); 688 } 689 690 void armv7m_nvic_get_pending_irq_info(void *opaque, 691 int *pirq, bool *ptargets_secure) 692 { 693 NVICState *s = (NVICState *)opaque; 694 const int pending = s->vectpending; 695 bool targets_secure; 696 697 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 698 699 if (s->vectpending_is_s_banked) { 700 targets_secure = true; 701 } else { 702 targets_secure = !exc_is_banked(pending) && 703 exc_targets_secure(s, pending); 704 } 705 706 trace_nvic_get_pending_irq_info(pending, targets_secure); 707 708 *ptargets_secure = targets_secure; 709 *pirq = pending; 710 } 711 712 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 713 { 714 NVICState *s = (NVICState *)opaque; 715 VecInfo *vec; 716 int ret; 717 718 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 719 720 if (secure && exc_is_banked(irq)) { 721 vec = &s->sec_vectors[irq]; 722 } else { 723 vec = &s->vectors[irq]; 724 } 725 726 trace_nvic_complete_irq(irq, secure); 727 728 if (!vec->active) { 729 /* Tell the caller this was an illegal exception return */ 730 return -1; 731 } 732 733 ret = nvic_rettobase(s); 734 735 vec->active = 0; 736 if (vec->level) { 737 /* Re-pend the exception if it's still held high; only 738 * happens for extenal IRQs 739 */ 740 assert(irq >= NVIC_FIRST_IRQ); 741 vec->pending = 1; 742 } 743 744 nvic_irq_update(s); 745 746 return ret; 747 } 748 749 /* callback when external interrupt line is changed */ 750 static void set_irq_level(void *opaque, int n, int level) 751 { 752 NVICState *s = opaque; 753 VecInfo *vec; 754 755 n += NVIC_FIRST_IRQ; 756 757 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 758 759 trace_nvic_set_irq_level(n, level); 760 761 /* The pending status of an external interrupt is 762 * latched on rising edge and exception handler return. 763 * 764 * Pulsing the IRQ will always run the handler 765 * once, and the handler will re-run until the 766 * level is low when the handler completes. 767 */ 768 vec = &s->vectors[n]; 769 if (level != vec->level) { 770 vec->level = level; 771 if (level) { 772 armv7m_nvic_set_pending(s, n, false); 773 } 774 } 775 } 776 777 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 778 { 779 ARMCPU *cpu = s->cpu; 780 uint32_t val; 781 782 switch (offset) { 783 case 4: /* Interrupt Control Type. */ 784 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 785 goto bad_offset; 786 } 787 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 788 case 0xc: /* CPPWR */ 789 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 790 goto bad_offset; 791 } 792 /* We make the IMPDEF choice that nothing can ever go into a 793 * non-retentive power state, which allows us to RAZ/WI this. 794 */ 795 return 0; 796 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 797 { 798 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 799 int i; 800 801 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 802 goto bad_offset; 803 } 804 if (!attrs.secure) { 805 return 0; 806 } 807 val = 0; 808 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 809 if (s->itns[startvec + i]) { 810 val |= (1 << i); 811 } 812 } 813 return val; 814 } 815 case 0xd00: /* CPUID Base. */ 816 return cpu->midr; 817 case 0xd04: /* Interrupt Control State (ICSR) */ 818 /* VECTACTIVE */ 819 val = cpu->env.v7m.exception; 820 /* VECTPENDING */ 821 val |= (s->vectpending & 0xff) << 12; 822 /* ISRPENDING - set if any external IRQ is pending */ 823 if (nvic_isrpending(s)) { 824 val |= (1 << 22); 825 } 826 /* RETTOBASE - set if only one handler is active */ 827 if (nvic_rettobase(s)) { 828 val |= (1 << 11); 829 } 830 if (attrs.secure) { 831 /* PENDSTSET */ 832 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 833 val |= (1 << 26); 834 } 835 /* PENDSVSET */ 836 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 837 val |= (1 << 28); 838 } 839 } else { 840 /* PENDSTSET */ 841 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 842 val |= (1 << 26); 843 } 844 /* PENDSVSET */ 845 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 846 val |= (1 << 28); 847 } 848 } 849 /* NMIPENDSET */ 850 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 851 && s->vectors[ARMV7M_EXCP_NMI].pending) { 852 val |= (1 << 31); 853 } 854 /* ISRPREEMPT: RES0 when halting debug not implemented */ 855 /* STTNS: RES0 for the Main Extension */ 856 return val; 857 case 0xd08: /* Vector Table Offset. */ 858 return cpu->env.v7m.vecbase[attrs.secure]; 859 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 860 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 861 if (attrs.secure) { 862 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 863 val |= cpu->env.v7m.aircr; 864 } else { 865 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 866 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 867 * security isn't supported then BFHFNMINS is RAO (and 868 * the bit in env.v7m.aircr is always set). 869 */ 870 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 871 } 872 } 873 return val; 874 case 0xd10: /* System Control. */ 875 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 876 goto bad_offset; 877 } 878 return cpu->env.v7m.scr[attrs.secure]; 879 case 0xd14: /* Configuration Control. */ 880 /* The BFHFNMIGN bit is the only non-banked bit; we 881 * keep it in the non-secure copy of the register. 882 */ 883 val = cpu->env.v7m.ccr[attrs.secure]; 884 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 885 return val; 886 case 0xd24: /* System Handler Control and State (SHCSR) */ 887 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 888 goto bad_offset; 889 } 890 val = 0; 891 if (attrs.secure) { 892 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 893 val |= (1 << 0); 894 } 895 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 896 val |= (1 << 2); 897 } 898 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 899 val |= (1 << 3); 900 } 901 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 902 val |= (1 << 7); 903 } 904 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 905 val |= (1 << 10); 906 } 907 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 908 val |= (1 << 11); 909 } 910 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 911 val |= (1 << 12); 912 } 913 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 914 val |= (1 << 13); 915 } 916 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 917 val |= (1 << 15); 918 } 919 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 920 val |= (1 << 16); 921 } 922 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 923 val |= (1 << 18); 924 } 925 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 926 val |= (1 << 21); 927 } 928 /* SecureFault is not banked but is always RAZ/WI to NS */ 929 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 930 val |= (1 << 4); 931 } 932 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 933 val |= (1 << 19); 934 } 935 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 936 val |= (1 << 20); 937 } 938 } else { 939 if (s->vectors[ARMV7M_EXCP_MEM].active) { 940 val |= (1 << 0); 941 } 942 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 943 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 944 if (s->vectors[ARMV7M_EXCP_HARD].active) { 945 val |= (1 << 2); 946 } 947 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 948 val |= (1 << 21); 949 } 950 } 951 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 952 val |= (1 << 3); 953 } 954 if (s->vectors[ARMV7M_EXCP_SVC].active) { 955 val |= (1 << 7); 956 } 957 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 958 val |= (1 << 10); 959 } 960 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 961 val |= (1 << 11); 962 } 963 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 964 val |= (1 << 12); 965 } 966 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 967 val |= (1 << 13); 968 } 969 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 970 val |= (1 << 15); 971 } 972 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 973 val |= (1 << 16); 974 } 975 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 976 val |= (1 << 18); 977 } 978 } 979 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 980 if (s->vectors[ARMV7M_EXCP_BUS].active) { 981 val |= (1 << 1); 982 } 983 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 984 val |= (1 << 14); 985 } 986 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 987 val |= (1 << 17); 988 } 989 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 990 s->vectors[ARMV7M_EXCP_NMI].active) { 991 /* NMIACT is not present in v7M */ 992 val |= (1 << 5); 993 } 994 } 995 996 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 997 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 998 val |= (1 << 8); 999 } 1000 return val; 1001 case 0xd2c: /* Hard Fault Status. */ 1002 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1003 goto bad_offset; 1004 } 1005 return cpu->env.v7m.hfsr; 1006 case 0xd30: /* Debug Fault Status. */ 1007 return cpu->env.v7m.dfsr; 1008 case 0xd34: /* MMFAR MemManage Fault Address */ 1009 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1010 goto bad_offset; 1011 } 1012 return cpu->env.v7m.mmfar[attrs.secure]; 1013 case 0xd38: /* Bus Fault Address. */ 1014 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1015 goto bad_offset; 1016 } 1017 return cpu->env.v7m.bfar; 1018 case 0xd3c: /* Aux Fault Status. */ 1019 /* TODO: Implement fault status registers. */ 1020 qemu_log_mask(LOG_UNIMP, 1021 "Aux Fault status registers unimplemented\n"); 1022 return 0; 1023 case 0xd40: /* PFR0. */ 1024 return cpu->id_pfr0; 1025 case 0xd44: /* PFR1. */ 1026 return cpu->id_pfr1; 1027 case 0xd48: /* DFR0. */ 1028 return cpu->id_dfr0; 1029 case 0xd4c: /* AFR0. */ 1030 return cpu->id_afr0; 1031 case 0xd50: /* MMFR0. */ 1032 return cpu->id_mmfr0; 1033 case 0xd54: /* MMFR1. */ 1034 return cpu->id_mmfr1; 1035 case 0xd58: /* MMFR2. */ 1036 return cpu->id_mmfr2; 1037 case 0xd5c: /* MMFR3. */ 1038 return cpu->id_mmfr3; 1039 case 0xd60: /* ISAR0. */ 1040 return cpu->id_isar0; 1041 case 0xd64: /* ISAR1. */ 1042 return cpu->id_isar1; 1043 case 0xd68: /* ISAR2. */ 1044 return cpu->id_isar2; 1045 case 0xd6c: /* ISAR3. */ 1046 return cpu->id_isar3; 1047 case 0xd70: /* ISAR4. */ 1048 return cpu->id_isar4; 1049 case 0xd74: /* ISAR5. */ 1050 return cpu->id_isar5; 1051 case 0xd78: /* CLIDR */ 1052 return cpu->clidr; 1053 case 0xd7c: /* CTR */ 1054 return cpu->ctr; 1055 case 0xd80: /* CSSIDR */ 1056 { 1057 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1058 return cpu->ccsidr[idx]; 1059 } 1060 case 0xd84: /* CSSELR */ 1061 return cpu->env.v7m.csselr[attrs.secure]; 1062 /* TODO: Implement debug registers. */ 1063 case 0xd90: /* MPU_TYPE */ 1064 /* Unified MPU; if the MPU is not present this value is zero */ 1065 return cpu->pmsav7_dregion << 8; 1066 break; 1067 case 0xd94: /* MPU_CTRL */ 1068 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1069 case 0xd98: /* MPU_RNR */ 1070 return cpu->env.pmsav7.rnr[attrs.secure]; 1071 case 0xd9c: /* MPU_RBAR */ 1072 case 0xda4: /* MPU_RBAR_A1 */ 1073 case 0xdac: /* MPU_RBAR_A2 */ 1074 case 0xdb4: /* MPU_RBAR_A3 */ 1075 { 1076 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1077 1078 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1079 /* PMSAv8M handling of the aliases is different from v7M: 1080 * aliases A1, A2, A3 override the low two bits of the region 1081 * number in MPU_RNR, and there is no 'region' field in the 1082 * RBAR register. 1083 */ 1084 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1085 if (aliasno) { 1086 region = deposit32(region, 0, 2, aliasno); 1087 } 1088 if (region >= cpu->pmsav7_dregion) { 1089 return 0; 1090 } 1091 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1092 } 1093 1094 if (region >= cpu->pmsav7_dregion) { 1095 return 0; 1096 } 1097 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1098 } 1099 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1100 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1101 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1102 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1103 { 1104 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1105 1106 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1107 /* PMSAv8M handling of the aliases is different from v7M: 1108 * aliases A1, A2, A3 override the low two bits of the region 1109 * number in MPU_RNR. 1110 */ 1111 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1112 if (aliasno) { 1113 region = deposit32(region, 0, 2, aliasno); 1114 } 1115 if (region >= cpu->pmsav7_dregion) { 1116 return 0; 1117 } 1118 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1119 } 1120 1121 if (region >= cpu->pmsav7_dregion) { 1122 return 0; 1123 } 1124 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1125 (cpu->env.pmsav7.drsr[region] & 0xffff); 1126 } 1127 case 0xdc0: /* MPU_MAIR0 */ 1128 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1129 goto bad_offset; 1130 } 1131 return cpu->env.pmsav8.mair0[attrs.secure]; 1132 case 0xdc4: /* MPU_MAIR1 */ 1133 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1134 goto bad_offset; 1135 } 1136 return cpu->env.pmsav8.mair1[attrs.secure]; 1137 case 0xdd0: /* SAU_CTRL */ 1138 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1139 goto bad_offset; 1140 } 1141 if (!attrs.secure) { 1142 return 0; 1143 } 1144 return cpu->env.sau.ctrl; 1145 case 0xdd4: /* SAU_TYPE */ 1146 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1147 goto bad_offset; 1148 } 1149 if (!attrs.secure) { 1150 return 0; 1151 } 1152 return cpu->sau_sregion; 1153 case 0xdd8: /* SAU_RNR */ 1154 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1155 goto bad_offset; 1156 } 1157 if (!attrs.secure) { 1158 return 0; 1159 } 1160 return cpu->env.sau.rnr; 1161 case 0xddc: /* SAU_RBAR */ 1162 { 1163 int region = cpu->env.sau.rnr; 1164 1165 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1166 goto bad_offset; 1167 } 1168 if (!attrs.secure) { 1169 return 0; 1170 } 1171 if (region >= cpu->sau_sregion) { 1172 return 0; 1173 } 1174 return cpu->env.sau.rbar[region]; 1175 } 1176 case 0xde0: /* SAU_RLAR */ 1177 { 1178 int region = cpu->env.sau.rnr; 1179 1180 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1181 goto bad_offset; 1182 } 1183 if (!attrs.secure) { 1184 return 0; 1185 } 1186 if (region >= cpu->sau_sregion) { 1187 return 0; 1188 } 1189 return cpu->env.sau.rlar[region]; 1190 } 1191 case 0xde4: /* SFSR */ 1192 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1193 goto bad_offset; 1194 } 1195 if (!attrs.secure) { 1196 return 0; 1197 } 1198 return cpu->env.v7m.sfsr; 1199 case 0xde8: /* SFAR */ 1200 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1201 goto bad_offset; 1202 } 1203 if (!attrs.secure) { 1204 return 0; 1205 } 1206 return cpu->env.v7m.sfar; 1207 default: 1208 bad_offset: 1209 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1210 return 0; 1211 } 1212 } 1213 1214 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1215 MemTxAttrs attrs) 1216 { 1217 ARMCPU *cpu = s->cpu; 1218 1219 switch (offset) { 1220 case 0xc: /* CPPWR */ 1221 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1222 goto bad_offset; 1223 } 1224 /* Make the IMPDEF choice to RAZ/WI this. */ 1225 break; 1226 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1227 { 1228 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1229 int i; 1230 1231 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1232 goto bad_offset; 1233 } 1234 if (!attrs.secure) { 1235 break; 1236 } 1237 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1238 s->itns[startvec + i] = (value >> i) & 1; 1239 } 1240 nvic_irq_update(s); 1241 break; 1242 } 1243 case 0xd04: /* Interrupt Control State (ICSR) */ 1244 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1245 if (value & (1 << 31)) { 1246 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1247 } else if (value & (1 << 30) && 1248 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1249 /* PENDNMICLR didn't exist in v7M */ 1250 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1251 } 1252 } 1253 if (value & (1 << 28)) { 1254 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1255 } else if (value & (1 << 27)) { 1256 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1257 } 1258 if (value & (1 << 26)) { 1259 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1260 } else if (value & (1 << 25)) { 1261 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1262 } 1263 break; 1264 case 0xd08: /* Vector Table Offset. */ 1265 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1266 break; 1267 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1268 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1269 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1270 if (attrs.secure || 1271 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1272 qemu_irq_pulse(s->sysresetreq); 1273 } 1274 } 1275 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1276 qemu_log_mask(LOG_GUEST_ERROR, 1277 "Setting VECTCLRACTIVE when not in DEBUG mode " 1278 "is UNPREDICTABLE\n"); 1279 } 1280 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1281 /* NB: this bit is RES0 in v8M */ 1282 qemu_log_mask(LOG_GUEST_ERROR, 1283 "Setting VECTRESET when not in DEBUG mode " 1284 "is UNPREDICTABLE\n"); 1285 } 1286 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1287 s->prigroup[attrs.secure] = 1288 extract32(value, 1289 R_V7M_AIRCR_PRIGROUP_SHIFT, 1290 R_V7M_AIRCR_PRIGROUP_LENGTH); 1291 } 1292 if (attrs.secure) { 1293 /* These bits are only writable by secure */ 1294 cpu->env.v7m.aircr = value & 1295 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1296 R_V7M_AIRCR_BFHFNMINS_MASK | 1297 R_V7M_AIRCR_PRIS_MASK); 1298 /* BFHFNMINS changes the priority of Secure HardFault, and 1299 * allows a pending Non-secure HardFault to preempt (which 1300 * we implement by marking it enabled). 1301 */ 1302 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1303 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1304 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1305 } else { 1306 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1307 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1308 } 1309 } 1310 nvic_irq_update(s); 1311 } 1312 break; 1313 case 0xd10: /* System Control. */ 1314 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1315 goto bad_offset; 1316 } 1317 /* We don't implement deep-sleep so these bits are RAZ/WI. 1318 * The other bits in the register are banked. 1319 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1320 * is architecturally permitted. 1321 */ 1322 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1323 cpu->env.v7m.scr[attrs.secure] = value; 1324 break; 1325 case 0xd14: /* Configuration Control. */ 1326 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1327 goto bad_offset; 1328 } 1329 1330 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1331 value &= (R_V7M_CCR_STKALIGN_MASK | 1332 R_V7M_CCR_BFHFNMIGN_MASK | 1333 R_V7M_CCR_DIV_0_TRP_MASK | 1334 R_V7M_CCR_UNALIGN_TRP_MASK | 1335 R_V7M_CCR_USERSETMPEND_MASK | 1336 R_V7M_CCR_NONBASETHRDENA_MASK); 1337 1338 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1339 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1340 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1341 | R_V7M_CCR_STKALIGN_MASK; 1342 } 1343 if (attrs.secure) { 1344 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1345 cpu->env.v7m.ccr[M_REG_NS] = 1346 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1347 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1348 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1349 } 1350 1351 cpu->env.v7m.ccr[attrs.secure] = value; 1352 break; 1353 case 0xd24: /* System Handler Control and State (SHCSR) */ 1354 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1355 goto bad_offset; 1356 } 1357 if (attrs.secure) { 1358 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1359 /* Secure HardFault active bit cannot be written */ 1360 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1361 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1362 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1363 (value & (1 << 10)) != 0; 1364 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1365 (value & (1 << 11)) != 0; 1366 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1367 (value & (1 << 12)) != 0; 1368 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1369 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1370 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1371 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1372 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1373 (value & (1 << 18)) != 0; 1374 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1375 /* SecureFault not banked, but RAZ/WI to NS */ 1376 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1377 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1378 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1379 } else { 1380 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1381 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1382 /* HARDFAULTPENDED is not present in v7M */ 1383 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1384 } 1385 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1386 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1387 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1388 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1389 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1390 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1391 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1392 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1393 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1394 } 1395 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1396 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1397 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1398 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1399 } 1400 /* NMIACT can only be written if the write is of a zero, with 1401 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1402 */ 1403 if (!attrs.secure && cpu->env.v7m.secure && 1404 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1405 (value & (1 << 5)) == 0) { 1406 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1407 } 1408 /* HARDFAULTACT can only be written if the write is of a zero 1409 * to the non-secure HardFault state by the CPU in secure state. 1410 * The only case where we can be targeting the non-secure HF state 1411 * when in secure state is if this is a write via the NS alias 1412 * and BFHFNMINS is 1. 1413 */ 1414 if (!attrs.secure && cpu->env.v7m.secure && 1415 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1416 (value & (1 << 2)) == 0) { 1417 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1418 } 1419 1420 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1421 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1422 nvic_irq_update(s); 1423 break; 1424 case 0xd2c: /* Hard Fault Status. */ 1425 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1426 goto bad_offset; 1427 } 1428 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1429 break; 1430 case 0xd30: /* Debug Fault Status. */ 1431 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1432 break; 1433 case 0xd34: /* Mem Manage Address. */ 1434 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1435 goto bad_offset; 1436 } 1437 cpu->env.v7m.mmfar[attrs.secure] = value; 1438 return; 1439 case 0xd38: /* Bus Fault Address. */ 1440 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1441 goto bad_offset; 1442 } 1443 cpu->env.v7m.bfar = value; 1444 return; 1445 case 0xd3c: /* Aux Fault Status. */ 1446 qemu_log_mask(LOG_UNIMP, 1447 "NVIC: Aux fault status registers unimplemented\n"); 1448 break; 1449 case 0xd84: /* CSSELR */ 1450 if (!arm_v7m_csselr_razwi(cpu)) { 1451 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1452 } 1453 break; 1454 case 0xd90: /* MPU_TYPE */ 1455 return; /* RO */ 1456 case 0xd94: /* MPU_CTRL */ 1457 if ((value & 1458 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1459 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1460 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1461 "UNPREDICTABLE\n"); 1462 } 1463 cpu->env.v7m.mpu_ctrl[attrs.secure] 1464 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1465 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1466 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1467 tlb_flush(CPU(cpu)); 1468 break; 1469 case 0xd98: /* MPU_RNR */ 1470 if (value >= cpu->pmsav7_dregion) { 1471 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1472 PRIu32 "/%" PRIu32 "\n", 1473 value, cpu->pmsav7_dregion); 1474 } else { 1475 cpu->env.pmsav7.rnr[attrs.secure] = value; 1476 } 1477 break; 1478 case 0xd9c: /* MPU_RBAR */ 1479 case 0xda4: /* MPU_RBAR_A1 */ 1480 case 0xdac: /* MPU_RBAR_A2 */ 1481 case 0xdb4: /* MPU_RBAR_A3 */ 1482 { 1483 int region; 1484 1485 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1486 /* PMSAv8M handling of the aliases is different from v7M: 1487 * aliases A1, A2, A3 override the low two bits of the region 1488 * number in MPU_RNR, and there is no 'region' field in the 1489 * RBAR register. 1490 */ 1491 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1492 1493 region = cpu->env.pmsav7.rnr[attrs.secure]; 1494 if (aliasno) { 1495 region = deposit32(region, 0, 2, aliasno); 1496 } 1497 if (region >= cpu->pmsav7_dregion) { 1498 return; 1499 } 1500 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1501 tlb_flush(CPU(cpu)); 1502 return; 1503 } 1504 1505 if (value & (1 << 4)) { 1506 /* VALID bit means use the region number specified in this 1507 * value and also update MPU_RNR.REGION with that value. 1508 */ 1509 region = extract32(value, 0, 4); 1510 if (region >= cpu->pmsav7_dregion) { 1511 qemu_log_mask(LOG_GUEST_ERROR, 1512 "MPU region out of range %u/%" PRIu32 "\n", 1513 region, cpu->pmsav7_dregion); 1514 return; 1515 } 1516 cpu->env.pmsav7.rnr[attrs.secure] = region; 1517 } else { 1518 region = cpu->env.pmsav7.rnr[attrs.secure]; 1519 } 1520 1521 if (region >= cpu->pmsav7_dregion) { 1522 return; 1523 } 1524 1525 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1526 tlb_flush(CPU(cpu)); 1527 break; 1528 } 1529 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1530 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1531 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1532 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1533 { 1534 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1535 1536 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1537 /* PMSAv8M handling of the aliases is different from v7M: 1538 * aliases A1, A2, A3 override the low two bits of the region 1539 * number in MPU_RNR. 1540 */ 1541 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1542 1543 region = cpu->env.pmsav7.rnr[attrs.secure]; 1544 if (aliasno) { 1545 region = deposit32(region, 0, 2, aliasno); 1546 } 1547 if (region >= cpu->pmsav7_dregion) { 1548 return; 1549 } 1550 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1551 tlb_flush(CPU(cpu)); 1552 return; 1553 } 1554 1555 if (region >= cpu->pmsav7_dregion) { 1556 return; 1557 } 1558 1559 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1560 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1561 tlb_flush(CPU(cpu)); 1562 break; 1563 } 1564 case 0xdc0: /* MPU_MAIR0 */ 1565 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1566 goto bad_offset; 1567 } 1568 if (cpu->pmsav7_dregion) { 1569 /* Register is RES0 if no MPU regions are implemented */ 1570 cpu->env.pmsav8.mair0[attrs.secure] = value; 1571 } 1572 /* We don't need to do anything else because memory attributes 1573 * only affect cacheability, and we don't implement caching. 1574 */ 1575 break; 1576 case 0xdc4: /* MPU_MAIR1 */ 1577 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1578 goto bad_offset; 1579 } 1580 if (cpu->pmsav7_dregion) { 1581 /* Register is RES0 if no MPU regions are implemented */ 1582 cpu->env.pmsav8.mair1[attrs.secure] = value; 1583 } 1584 /* We don't need to do anything else because memory attributes 1585 * only affect cacheability, and we don't implement caching. 1586 */ 1587 break; 1588 case 0xdd0: /* SAU_CTRL */ 1589 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1590 goto bad_offset; 1591 } 1592 if (!attrs.secure) { 1593 return; 1594 } 1595 cpu->env.sau.ctrl = value & 3; 1596 break; 1597 case 0xdd4: /* SAU_TYPE */ 1598 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1599 goto bad_offset; 1600 } 1601 break; 1602 case 0xdd8: /* SAU_RNR */ 1603 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1604 goto bad_offset; 1605 } 1606 if (!attrs.secure) { 1607 return; 1608 } 1609 if (value >= cpu->sau_sregion) { 1610 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1611 PRIu32 "/%" PRIu32 "\n", 1612 value, cpu->sau_sregion); 1613 } else { 1614 cpu->env.sau.rnr = value; 1615 } 1616 break; 1617 case 0xddc: /* SAU_RBAR */ 1618 { 1619 int region = cpu->env.sau.rnr; 1620 1621 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1622 goto bad_offset; 1623 } 1624 if (!attrs.secure) { 1625 return; 1626 } 1627 if (region >= cpu->sau_sregion) { 1628 return; 1629 } 1630 cpu->env.sau.rbar[region] = value & ~0x1f; 1631 tlb_flush(CPU(cpu)); 1632 break; 1633 } 1634 case 0xde0: /* SAU_RLAR */ 1635 { 1636 int region = cpu->env.sau.rnr; 1637 1638 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1639 goto bad_offset; 1640 } 1641 if (!attrs.secure) { 1642 return; 1643 } 1644 if (region >= cpu->sau_sregion) { 1645 return; 1646 } 1647 cpu->env.sau.rlar[region] = value & ~0x1c; 1648 tlb_flush(CPU(cpu)); 1649 break; 1650 } 1651 case 0xde4: /* SFSR */ 1652 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1653 goto bad_offset; 1654 } 1655 if (!attrs.secure) { 1656 return; 1657 } 1658 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1659 break; 1660 case 0xde8: /* SFAR */ 1661 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1662 goto bad_offset; 1663 } 1664 if (!attrs.secure) { 1665 return; 1666 } 1667 cpu->env.v7m.sfsr = value; 1668 break; 1669 case 0xf00: /* Software Triggered Interrupt Register */ 1670 { 1671 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1672 1673 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1674 goto bad_offset; 1675 } 1676 1677 if (excnum < s->num_irq) { 1678 armv7m_nvic_set_pending(s, excnum, false); 1679 } 1680 break; 1681 } 1682 case 0xf50: /* ICIALLU */ 1683 case 0xf58: /* ICIMVAU */ 1684 case 0xf5c: /* DCIMVAC */ 1685 case 0xf60: /* DCISW */ 1686 case 0xf64: /* DCCMVAU */ 1687 case 0xf68: /* DCCMVAC */ 1688 case 0xf6c: /* DCCSW */ 1689 case 0xf70: /* DCCIMVAC */ 1690 case 0xf74: /* DCCISW */ 1691 case 0xf78: /* BPIALL */ 1692 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 1693 break; 1694 default: 1695 bad_offset: 1696 qemu_log_mask(LOG_GUEST_ERROR, 1697 "NVIC: Bad write offset 0x%x\n", offset); 1698 } 1699 } 1700 1701 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1702 { 1703 /* Return true if unprivileged access to this register is permitted. */ 1704 switch (offset) { 1705 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1706 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1707 * controls access even though the CPU is in Secure state (I_QDKX). 1708 */ 1709 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1710 default: 1711 /* All other user accesses cause a BusFault unconditionally */ 1712 return false; 1713 } 1714 } 1715 1716 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1717 { 1718 /* Behaviour for the SHPR register field for this exception: 1719 * return M_REG_NS to use the nonsecure vector (including for 1720 * non-banked exceptions), M_REG_S for the secure version of 1721 * a banked exception, and -1 if this field should RAZ/WI. 1722 */ 1723 switch (exc) { 1724 case ARMV7M_EXCP_MEM: 1725 case ARMV7M_EXCP_USAGE: 1726 case ARMV7M_EXCP_SVC: 1727 case ARMV7M_EXCP_PENDSV: 1728 case ARMV7M_EXCP_SYSTICK: 1729 /* Banked exceptions */ 1730 return attrs.secure; 1731 case ARMV7M_EXCP_BUS: 1732 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1733 if (!attrs.secure && 1734 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1735 return -1; 1736 } 1737 return M_REG_NS; 1738 case ARMV7M_EXCP_SECURE: 1739 /* Not banked, RAZ/WI from nonsecure */ 1740 if (!attrs.secure) { 1741 return -1; 1742 } 1743 return M_REG_NS; 1744 case ARMV7M_EXCP_DEBUG: 1745 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1746 return M_REG_NS; 1747 case 8 ... 10: 1748 case 13: 1749 /* RES0 */ 1750 return -1; 1751 default: 1752 /* Not reachable due to decode of SHPR register addresses */ 1753 g_assert_not_reached(); 1754 } 1755 } 1756 1757 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1758 uint64_t *data, unsigned size, 1759 MemTxAttrs attrs) 1760 { 1761 NVICState *s = (NVICState *)opaque; 1762 uint32_t offset = addr; 1763 unsigned i, startvec, end; 1764 uint32_t val; 1765 1766 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1767 /* Generate BusFault for unprivileged accesses */ 1768 return MEMTX_ERROR; 1769 } 1770 1771 switch (offset) { 1772 /* reads of set and clear both return the status */ 1773 case 0x100 ... 0x13f: /* NVIC Set enable */ 1774 offset += 0x80; 1775 /* fall through */ 1776 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1777 val = 0; 1778 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 1779 1780 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1781 if (s->vectors[startvec + i].enabled && 1782 (attrs.secure || s->itns[startvec + i])) { 1783 val |= (1 << i); 1784 } 1785 } 1786 break; 1787 case 0x200 ... 0x23f: /* NVIC Set pend */ 1788 offset += 0x80; 1789 /* fall through */ 1790 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1791 val = 0; 1792 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1793 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1794 if (s->vectors[startvec + i].pending && 1795 (attrs.secure || s->itns[startvec + i])) { 1796 val |= (1 << i); 1797 } 1798 } 1799 break; 1800 case 0x300 ... 0x33f: /* NVIC Active */ 1801 val = 0; 1802 1803 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 1804 break; 1805 } 1806 1807 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 1808 1809 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1810 if (s->vectors[startvec + i].active && 1811 (attrs.secure || s->itns[startvec + i])) { 1812 val |= (1 << i); 1813 } 1814 } 1815 break; 1816 case 0x400 ... 0x5ef: /* NVIC Priority */ 1817 val = 0; 1818 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1819 1820 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1821 if (attrs.secure || s->itns[startvec + i]) { 1822 val |= s->vectors[startvec + i].prio << (8 * i); 1823 } 1824 } 1825 break; 1826 case 0xd18: /* System Handler Priority (SHPR1) */ 1827 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1828 val = 0; 1829 break; 1830 } 1831 /* fall through */ 1832 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 1833 val = 0; 1834 for (i = 0; i < size; i++) { 1835 unsigned hdlidx = (offset - 0xd14) + i; 1836 int sbank = shpr_bank(s, hdlidx, attrs); 1837 1838 if (sbank < 0) { 1839 continue; 1840 } 1841 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1842 } 1843 break; 1844 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1845 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1846 val = 0; 1847 break; 1848 }; 1849 /* The BFSR bits [15:8] are shared between security states 1850 * and we store them in the NS copy 1851 */ 1852 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1853 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1854 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1855 break; 1856 case 0xfe0 ... 0xfff: /* ID. */ 1857 if (offset & 3) { 1858 val = 0; 1859 } else { 1860 val = nvic_id[(offset - 0xfe0) >> 2]; 1861 } 1862 break; 1863 default: 1864 if (size == 4) { 1865 val = nvic_readl(s, offset, attrs); 1866 } else { 1867 qemu_log_mask(LOG_GUEST_ERROR, 1868 "NVIC: Bad read of size %d at offset 0x%x\n", 1869 size, offset); 1870 val = 0; 1871 } 1872 } 1873 1874 trace_nvic_sysreg_read(addr, val, size); 1875 *data = val; 1876 return MEMTX_OK; 1877 } 1878 1879 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1880 uint64_t value, unsigned size, 1881 MemTxAttrs attrs) 1882 { 1883 NVICState *s = (NVICState *)opaque; 1884 uint32_t offset = addr; 1885 unsigned i, startvec, end; 1886 unsigned setval = 0; 1887 1888 trace_nvic_sysreg_write(addr, value, size); 1889 1890 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1891 /* Generate BusFault for unprivileged accesses */ 1892 return MEMTX_ERROR; 1893 } 1894 1895 switch (offset) { 1896 case 0x100 ... 0x13f: /* NVIC Set enable */ 1897 offset += 0x80; 1898 setval = 1; 1899 /* fall through */ 1900 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1901 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1902 1903 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1904 if (value & (1 << i) && 1905 (attrs.secure || s->itns[startvec + i])) { 1906 s->vectors[startvec + i].enabled = setval; 1907 } 1908 } 1909 nvic_irq_update(s); 1910 return MEMTX_OK; 1911 case 0x200 ... 0x23f: /* NVIC Set pend */ 1912 /* the special logic in armv7m_nvic_set_pending() 1913 * is not needed since IRQs are never escalated 1914 */ 1915 offset += 0x80; 1916 setval = 1; 1917 /* fall through */ 1918 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1919 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1920 1921 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1922 if (value & (1 << i) && 1923 (attrs.secure || s->itns[startvec + i])) { 1924 s->vectors[startvec + i].pending = setval; 1925 } 1926 } 1927 nvic_irq_update(s); 1928 return MEMTX_OK; 1929 case 0x300 ... 0x33f: /* NVIC Active */ 1930 return MEMTX_OK; /* R/O */ 1931 case 0x400 ... 0x5ef: /* NVIC Priority */ 1932 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1933 1934 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1935 if (attrs.secure || s->itns[startvec + i]) { 1936 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1937 } 1938 } 1939 nvic_irq_update(s); 1940 return MEMTX_OK; 1941 case 0xd18: /* System Handler Priority (SHPR1) */ 1942 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1943 return MEMTX_OK; 1944 } 1945 /* fall through */ 1946 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 1947 for (i = 0; i < size; i++) { 1948 unsigned hdlidx = (offset - 0xd14) + i; 1949 int newprio = extract32(value, i * 8, 8); 1950 int sbank = shpr_bank(s, hdlidx, attrs); 1951 1952 if (sbank < 0) { 1953 continue; 1954 } 1955 set_prio(s, hdlidx, sbank, newprio); 1956 } 1957 nvic_irq_update(s); 1958 return MEMTX_OK; 1959 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1960 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1961 return MEMTX_OK; 1962 } 1963 /* All bits are W1C, so construct 32 bit value with 0s in 1964 * the parts not written by the access size 1965 */ 1966 value <<= ((offset - 0xd28) * 8); 1967 1968 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1969 if (attrs.secure) { 1970 /* The BFSR bits [15:8] are shared between security states 1971 * and we store them in the NS copy. 1972 */ 1973 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1974 } 1975 return MEMTX_OK; 1976 } 1977 if (size == 4) { 1978 nvic_writel(s, offset, value, attrs); 1979 return MEMTX_OK; 1980 } 1981 qemu_log_mask(LOG_GUEST_ERROR, 1982 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1983 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1984 return MEMTX_OK; 1985 } 1986 1987 static const MemoryRegionOps nvic_sysreg_ops = { 1988 .read_with_attrs = nvic_sysreg_read, 1989 .write_with_attrs = nvic_sysreg_write, 1990 .endianness = DEVICE_NATIVE_ENDIAN, 1991 }; 1992 1993 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1994 uint64_t value, unsigned size, 1995 MemTxAttrs attrs) 1996 { 1997 MemoryRegion *mr = opaque; 1998 1999 if (attrs.secure) { 2000 /* S accesses to the alias act like NS accesses to the real region */ 2001 attrs.secure = 0; 2002 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2003 } else { 2004 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2005 if (attrs.user) { 2006 return MEMTX_ERROR; 2007 } 2008 return MEMTX_OK; 2009 } 2010 } 2011 2012 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2013 uint64_t *data, unsigned size, 2014 MemTxAttrs attrs) 2015 { 2016 MemoryRegion *mr = opaque; 2017 2018 if (attrs.secure) { 2019 /* S accesses to the alias act like NS accesses to the real region */ 2020 attrs.secure = 0; 2021 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2022 } else { 2023 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2024 if (attrs.user) { 2025 return MEMTX_ERROR; 2026 } 2027 *data = 0; 2028 return MEMTX_OK; 2029 } 2030 } 2031 2032 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2033 .read_with_attrs = nvic_sysreg_ns_read, 2034 .write_with_attrs = nvic_sysreg_ns_write, 2035 .endianness = DEVICE_NATIVE_ENDIAN, 2036 }; 2037 2038 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2039 uint64_t value, unsigned size, 2040 MemTxAttrs attrs) 2041 { 2042 NVICState *s = opaque; 2043 MemoryRegion *mr; 2044 2045 /* Direct the access to the correct systick */ 2046 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2047 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2048 } 2049 2050 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2051 uint64_t *data, unsigned size, 2052 MemTxAttrs attrs) 2053 { 2054 NVICState *s = opaque; 2055 MemoryRegion *mr; 2056 2057 /* Direct the access to the correct systick */ 2058 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2059 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2060 } 2061 2062 static const MemoryRegionOps nvic_systick_ops = { 2063 .read_with_attrs = nvic_systick_read, 2064 .write_with_attrs = nvic_systick_write, 2065 .endianness = DEVICE_NATIVE_ENDIAN, 2066 }; 2067 2068 static int nvic_post_load(void *opaque, int version_id) 2069 { 2070 NVICState *s = opaque; 2071 unsigned i; 2072 int resetprio; 2073 2074 /* Check for out of range priority settings */ 2075 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2076 2077 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2078 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2079 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2080 return 1; 2081 } 2082 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2083 if (s->vectors[i].prio & ~0xff) { 2084 return 1; 2085 } 2086 } 2087 2088 nvic_recompute_state(s); 2089 2090 return 0; 2091 } 2092 2093 static const VMStateDescription vmstate_VecInfo = { 2094 .name = "armv7m_nvic_info", 2095 .version_id = 1, 2096 .minimum_version_id = 1, 2097 .fields = (VMStateField[]) { 2098 VMSTATE_INT16(prio, VecInfo), 2099 VMSTATE_UINT8(enabled, VecInfo), 2100 VMSTATE_UINT8(pending, VecInfo), 2101 VMSTATE_UINT8(active, VecInfo), 2102 VMSTATE_UINT8(level, VecInfo), 2103 VMSTATE_END_OF_LIST() 2104 } 2105 }; 2106 2107 static bool nvic_security_needed(void *opaque) 2108 { 2109 NVICState *s = opaque; 2110 2111 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2112 } 2113 2114 static int nvic_security_post_load(void *opaque, int version_id) 2115 { 2116 NVICState *s = opaque; 2117 int i; 2118 2119 /* Check for out of range priority settings */ 2120 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2121 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2122 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2123 * if the CPU state has been migrated yet; a mismatch won't 2124 * cause the emulation to blow up, though. 2125 */ 2126 return 1; 2127 } 2128 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2129 if (s->sec_vectors[i].prio & ~0xff) { 2130 return 1; 2131 } 2132 } 2133 return 0; 2134 } 2135 2136 static const VMStateDescription vmstate_nvic_security = { 2137 .name = "armv7m_nvic/m-security", 2138 .version_id = 1, 2139 .minimum_version_id = 1, 2140 .needed = nvic_security_needed, 2141 .post_load = &nvic_security_post_load, 2142 .fields = (VMStateField[]) { 2143 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2144 vmstate_VecInfo, VecInfo), 2145 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2146 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2147 VMSTATE_END_OF_LIST() 2148 } 2149 }; 2150 2151 static const VMStateDescription vmstate_nvic = { 2152 .name = "armv7m_nvic", 2153 .version_id = 4, 2154 .minimum_version_id = 4, 2155 .post_load = &nvic_post_load, 2156 .fields = (VMStateField[]) { 2157 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2158 vmstate_VecInfo, VecInfo), 2159 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2160 VMSTATE_END_OF_LIST() 2161 }, 2162 .subsections = (const VMStateDescription*[]) { 2163 &vmstate_nvic_security, 2164 NULL 2165 } 2166 }; 2167 2168 static Property props_nvic[] = { 2169 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2170 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2171 DEFINE_PROP_END_OF_LIST() 2172 }; 2173 2174 static void armv7m_nvic_reset(DeviceState *dev) 2175 { 2176 int resetprio; 2177 NVICState *s = NVIC(dev); 2178 2179 memset(s->vectors, 0, sizeof(s->vectors)); 2180 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2181 s->prigroup[M_REG_NS] = 0; 2182 s->prigroup[M_REG_S] = 0; 2183 2184 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2185 /* MEM, BUS, and USAGE are enabled through 2186 * the System Handler Control register 2187 */ 2188 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2189 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 2190 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2191 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2192 2193 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2194 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2195 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2196 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2197 2198 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2199 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2200 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2201 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2202 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2203 2204 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2205 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2206 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2207 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2208 } else { 2209 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2210 } 2211 2212 /* Strictly speaking the reset handler should be enabled. 2213 * However, we don't simulate soft resets through the NVIC, 2214 * and the reset vector should never be pended. 2215 * So we leave it disabled to catch logic errors. 2216 */ 2217 2218 s->exception_prio = NVIC_NOEXC_PRIO; 2219 s->vectpending = 0; 2220 s->vectpending_is_s_banked = false; 2221 s->vectpending_prio = NVIC_NOEXC_PRIO; 2222 2223 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2224 memset(s->itns, 0, sizeof(s->itns)); 2225 } else { 2226 /* This state is constant and not guest accessible in a non-security 2227 * NVIC; we set the bits to true to avoid having to do a feature 2228 * bit check in the NVIC enable/pend/etc register accessors. 2229 */ 2230 int i; 2231 2232 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2233 s->itns[i] = true; 2234 } 2235 } 2236 } 2237 2238 static void nvic_systick_trigger(void *opaque, int n, int level) 2239 { 2240 NVICState *s = opaque; 2241 2242 if (level) { 2243 /* SysTick just asked us to pend its exception. 2244 * (This is different from an external interrupt line's 2245 * behaviour.) 2246 * n == 0 : NonSecure systick 2247 * n == 1 : Secure systick 2248 */ 2249 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2250 } 2251 } 2252 2253 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2254 { 2255 NVICState *s = NVIC(dev); 2256 Error *err = NULL; 2257 int regionlen; 2258 2259 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2260 2261 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2262 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2263 return; 2264 } 2265 2266 if (s->num_irq > NVIC_MAX_IRQ) { 2267 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2268 return; 2269 } 2270 2271 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2272 2273 /* include space for internal exception vectors */ 2274 s->num_irq += NVIC_FIRST_IRQ; 2275 2276 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2277 2278 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2279 "realized", &err); 2280 if (err != NULL) { 2281 error_propagate(errp, err); 2282 return; 2283 } 2284 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2285 qdev_get_gpio_in_named(dev, "systick-trigger", 2286 M_REG_NS)); 2287 2288 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2289 /* We couldn't init the secure systick device in instance_init 2290 * as we didn't know then if the CPU had the security extensions; 2291 * so we have to do it here. 2292 */ 2293 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2294 TYPE_SYSTICK); 2295 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2296 2297 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2298 "realized", &err); 2299 if (err != NULL) { 2300 error_propagate(errp, err); 2301 return; 2302 } 2303 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2304 qdev_get_gpio_in_named(dev, "systick-trigger", 2305 M_REG_S)); 2306 } 2307 2308 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2309 * and looks like this: 2310 * 0x004 - ICTR 2311 * 0x010 - 0xff - systick 2312 * 0x100..0x7ec - NVIC 2313 * 0x7f0..0xcff - Reserved 2314 * 0xd00..0xd3c - SCS registers 2315 * 0xd40..0xeff - Reserved or Not implemented 2316 * 0xf00 - STIR 2317 * 2318 * Some registers within this space are banked between security states. 2319 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2320 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2321 * to the main SCS range, and non-secure accesses (including when 2322 * the security extension is not implemented) are RAZ/WI. 2323 * Note that both the main SCS range and the alias range are defined 2324 * to be exempt from memory attribution (R_BLJT) and so the memory 2325 * transaction attribute always matches the current CPU security 2326 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2327 * wrappers we change attrs.secure to indicate the NS access; so 2328 * generally code determining which banked register to use should 2329 * use attrs.secure; code determining actual behaviour of the system 2330 * should use env->v7m.secure. 2331 */ 2332 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2333 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2334 /* The system register region goes at the bottom of the priority 2335 * stack as it covers the whole page. 2336 */ 2337 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2338 "nvic_sysregs", 0x1000); 2339 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2340 2341 memory_region_init_io(&s->systickmem, OBJECT(s), 2342 &nvic_systick_ops, s, 2343 "nvic_systick", 0xe0); 2344 2345 memory_region_add_subregion_overlap(&s->container, 0x10, 2346 &s->systickmem, 1); 2347 2348 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2349 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2350 &nvic_sysreg_ns_ops, &s->sysregmem, 2351 "nvic_sysregs_ns", 0x1000); 2352 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2353 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2354 &nvic_sysreg_ns_ops, &s->systickmem, 2355 "nvic_systick_ns", 0xe0); 2356 memory_region_add_subregion_overlap(&s->container, 0x20010, 2357 &s->systick_ns_mem, 1); 2358 } 2359 2360 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2361 } 2362 2363 static void armv7m_nvic_instance_init(Object *obj) 2364 { 2365 /* We have a different default value for the num-irq property 2366 * than our superclass. This function runs after qdev init 2367 * has set the defaults from the Property array and before 2368 * any user-specified property setting, so just modify the 2369 * value in the GICState struct. 2370 */ 2371 DeviceState *dev = DEVICE(obj); 2372 NVICState *nvic = NVIC(obj); 2373 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2374 2375 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2376 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2377 /* We can't initialize the secure systick here, as we don't know 2378 * yet if we need it. 2379 */ 2380 2381 sysbus_init_irq(sbd, &nvic->excpout); 2382 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2383 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2384 M_REG_NUM_BANKS); 2385 } 2386 2387 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2388 { 2389 DeviceClass *dc = DEVICE_CLASS(klass); 2390 2391 dc->vmsd = &vmstate_nvic; 2392 dc->props = props_nvic; 2393 dc->reset = armv7m_nvic_reset; 2394 dc->realize = armv7m_nvic_realize; 2395 } 2396 2397 static const TypeInfo armv7m_nvic_info = { 2398 .name = TYPE_NVIC, 2399 .parent = TYPE_SYS_BUS_DEVICE, 2400 .instance_init = armv7m_nvic_instance_init, 2401 .instance_size = sizeof(NVICState), 2402 .class_init = armv7m_nvic_class_init, 2403 .class_size = sizeof(SysBusDeviceClass), 2404 }; 2405 2406 static void armv7m_nvic_register_types(void) 2407 { 2408 type_register_static(&armv7m_nvic_info); 2409 } 2410 2411 type_init(armv7m_nvic_register_types) 2412