xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision c4379b4874f4c522f6818f1720f295205d7cf34d)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
424 
425     if (secure) {
426         assert(exc_is_banked(irq));
427         s->sec_vectors[irq].prio = prio;
428     } else {
429         s->vectors[irq].prio = prio;
430     }
431 
432     trace_nvic_set_prio(irq, secure, prio);
433 }
434 
435 /* Return the current raw priority register value.
436  * secure indicates the bank to use for banked exceptions (we assert if
437  * we are passed secure=true for a non-banked exception).
438  */
439 static int get_prio(NVICState *s, unsigned irq, bool secure)
440 {
441     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442     assert(irq < s->num_irq);
443 
444     if (secure) {
445         assert(exc_is_banked(irq));
446         return s->sec_vectors[irq].prio;
447     } else {
448         return s->vectors[irq].prio;
449     }
450 }
451 
452 /* Recompute state and assert irq line accordingly.
453  * Must be called after changes to:
454  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
455  *  prigroup
456  */
457 static void nvic_irq_update(NVICState *s)
458 {
459     int lvl;
460     int pend_prio;
461 
462     nvic_recompute_state(s);
463     pend_prio = nvic_pending_prio(s);
464 
465     /* Raise NVIC output if this IRQ would be taken, except that we
466      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468      * to those CPU registers don't cause us to recalculate the NVIC
469      * pending info.
470      */
471     lvl = (pend_prio < s->exception_prio);
472     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473     qemu_set_irq(s->excpout, lvl);
474 }
475 
476 /**
477  * armv7m_nvic_clear_pending: mark the specified exception as not pending
478  * @opaque: the NVIC
479  * @irq: the exception number to mark as not pending
480  * @secure: false for non-banked exceptions or for the nonsecure
481  * version of a banked exception, true for the secure version of a banked
482  * exception.
483  *
484  * Marks the specified exception as not pending. Note that we will assert()
485  * if @secure is true and @irq does not specify one of the fixed set
486  * of architecturally banked exceptions.
487  */
488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
489 {
490     NVICState *s = (NVICState *)opaque;
491     VecInfo *vec;
492 
493     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
494 
495     if (secure) {
496         assert(exc_is_banked(irq));
497         vec = &s->sec_vectors[irq];
498     } else {
499         vec = &s->vectors[irq];
500     }
501     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
502     if (vec->pending) {
503         vec->pending = 0;
504         nvic_irq_update(s);
505     }
506 }
507 
508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509                                        bool derived)
510 {
511     /* Pend an exception, including possibly escalating it to HardFault.
512      *
513      * This function handles both "normal" pending of interrupts and
514      * exceptions, and also derived exceptions (ones which occur as
515      * a result of trying to take some other exception).
516      *
517      * If derived == true, the caller guarantees that we are part way through
518      * trying to take an exception (but have not yet called
519      * armv7m_nvic_acknowledge_irq() to make it active), and so:
520      *  - s->vectpending is the "original exception" we were trying to take
521      *  - irq is the "derived exception"
522      *  - nvic_exec_prio(s) gives the priority before exception entry
523      * Here we handle the prioritization logic which the pseudocode puts
524      * in the DerivedLateArrival() function.
525      */
526 
527     NVICState *s = (NVICState *)opaque;
528     bool banked = exc_is_banked(irq);
529     VecInfo *vec;
530     bool targets_secure;
531 
532     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
533     assert(!secure || banked);
534 
535     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
536 
537     targets_secure = banked ? secure : exc_targets_secure(s, irq);
538 
539     trace_nvic_set_pending(irq, secure, targets_secure,
540                            derived, vec->enabled, vec->prio);
541 
542     if (derived) {
543         /* Derived exceptions are always synchronous. */
544         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
545 
546         if (irq == ARMV7M_EXCP_DEBUG &&
547             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548             /* DebugMonitorFault, but its priority is lower than the
549              * preempted exception priority: just ignore it.
550              */
551             return;
552         }
553 
554         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555             /* If this is a terminal exception (one which means we cannot
556              * take the original exception, like a failure to read its
557              * vector table entry), then we must take the derived exception.
558              * If the derived exception can't take priority over the
559              * original exception, then we go into Lockup.
560              *
561              * For QEMU, we rely on the fact that a derived exception is
562              * terminal if and only if it's reported to us as HardFault,
563              * which saves having to have an extra argument is_terminal
564              * that we'd only use in one place.
565              */
566             cpu_abort(&s->cpu->parent_obj,
567                       "Lockup: can't take terminal derived exception "
568                       "(original exception priority %d)\n",
569                       s->vectpending_prio);
570         }
571         /* We now continue with the same code as for a normal pending
572          * exception, which will cause us to pend the derived exception.
573          * We'll then take either the original or the derived exception
574          * based on which is higher priority by the usual mechanism
575          * for selecting the highest priority pending interrupt.
576          */
577     }
578 
579     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580         /* If a synchronous exception is pending then it may be
581          * escalated to HardFault if:
582          *  * it is equal or lower priority to current execution
583          *  * it is disabled
584          * (ie we need to take it immediately but we can't do so).
585          * Asynchronous exceptions (and interrupts) simply remain pending.
586          *
587          * For QEMU, we don't have any imprecise (asynchronous) faults,
588          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589          * synchronous.
590          * Debug exceptions are awkward because only Debug exceptions
591          * resulting from the BKPT instruction should be escalated,
592          * but we don't currently implement any Debug exceptions other
593          * than those that result from BKPT, so we treat all debug exceptions
594          * as needing escalation.
595          *
596          * This all means we can identify whether to escalate based only on
597          * the exception number and don't (yet) need the caller to explicitly
598          * tell us whether this exception is synchronous or not.
599          */
600         int running = nvic_exec_prio(s);
601         bool escalate = false;
602 
603         if (exc_group_prio(s, vec->prio, secure) >= running) {
604             trace_nvic_escalate_prio(irq, vec->prio, running);
605             escalate = true;
606         } else if (!vec->enabled) {
607             trace_nvic_escalate_disabled(irq);
608             escalate = true;
609         }
610 
611         if (escalate) {
612 
613             /* We need to escalate this exception to a synchronous HardFault.
614              * If BFHFNMINS is set then we escalate to the banked HF for
615              * the target security state of the original exception; otherwise
616              * we take a Secure HardFault.
617              */
618             irq = ARMV7M_EXCP_HARD;
619             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
620                 (targets_secure ||
621                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622                 vec = &s->sec_vectors[irq];
623             } else {
624                 vec = &s->vectors[irq];
625             }
626             if (running <= vec->prio) {
627                 /* We want to escalate to HardFault but we can't take the
628                  * synchronous HardFault at this point either. This is a
629                  * Lockup condition due to a guest bug. We don't model
630                  * Lockup, so report via cpu_abort() instead.
631                  */
632                 cpu_abort(&s->cpu->parent_obj,
633                           "Lockup: can't escalate %d to HardFault "
634                           "(current priority %d)\n", irq, running);
635             }
636 
637             /* HF may be banked but there is only one shared HFSR */
638             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
639         }
640     }
641 
642     if (!vec->pending) {
643         vec->pending = 1;
644         nvic_irq_update(s);
645     }
646 }
647 
648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
649 {
650     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
651 }
652 
653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
654 {
655     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
656 }
657 
658 /* Make pending IRQ active.  */
659 void armv7m_nvic_acknowledge_irq(void *opaque)
660 {
661     NVICState *s = (NVICState *)opaque;
662     CPUARMState *env = &s->cpu->env;
663     const int pending = s->vectpending;
664     const int running = nvic_exec_prio(s);
665     VecInfo *vec;
666 
667     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
668 
669     if (s->vectpending_is_s_banked) {
670         vec = &s->sec_vectors[pending];
671     } else {
672         vec = &s->vectors[pending];
673     }
674 
675     assert(vec->enabled);
676     assert(vec->pending);
677 
678     assert(s->vectpending_prio < running);
679 
680     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
681 
682     vec->active = 1;
683     vec->pending = 0;
684 
685     write_v7m_exception(env, s->vectpending);
686 
687     nvic_irq_update(s);
688 }
689 
690 void armv7m_nvic_get_pending_irq_info(void *opaque,
691                                       int *pirq, bool *ptargets_secure)
692 {
693     NVICState *s = (NVICState *)opaque;
694     const int pending = s->vectpending;
695     bool targets_secure;
696 
697     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
698 
699     if (s->vectpending_is_s_banked) {
700         targets_secure = true;
701     } else {
702         targets_secure = !exc_is_banked(pending) &&
703             exc_targets_secure(s, pending);
704     }
705 
706     trace_nvic_get_pending_irq_info(pending, targets_secure);
707 
708     *ptargets_secure = targets_secure;
709     *pirq = pending;
710 }
711 
712 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
713 {
714     NVICState *s = (NVICState *)opaque;
715     VecInfo *vec;
716     int ret;
717 
718     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
719 
720     if (secure && exc_is_banked(irq)) {
721         vec = &s->sec_vectors[irq];
722     } else {
723         vec = &s->vectors[irq];
724     }
725 
726     trace_nvic_complete_irq(irq, secure);
727 
728     if (!vec->active) {
729         /* Tell the caller this was an illegal exception return */
730         return -1;
731     }
732 
733     ret = nvic_rettobase(s);
734 
735     vec->active = 0;
736     if (vec->level) {
737         /* Re-pend the exception if it's still held high; only
738          * happens for extenal IRQs
739          */
740         assert(irq >= NVIC_FIRST_IRQ);
741         vec->pending = 1;
742     }
743 
744     nvic_irq_update(s);
745 
746     return ret;
747 }
748 
749 /* callback when external interrupt line is changed */
750 static void set_irq_level(void *opaque, int n, int level)
751 {
752     NVICState *s = opaque;
753     VecInfo *vec;
754 
755     n += NVIC_FIRST_IRQ;
756 
757     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
758 
759     trace_nvic_set_irq_level(n, level);
760 
761     /* The pending status of an external interrupt is
762      * latched on rising edge and exception handler return.
763      *
764      * Pulsing the IRQ will always run the handler
765      * once, and the handler will re-run until the
766      * level is low when the handler completes.
767      */
768     vec = &s->vectors[n];
769     if (level != vec->level) {
770         vec->level = level;
771         if (level) {
772             armv7m_nvic_set_pending(s, n, false);
773         }
774     }
775 }
776 
777 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
778 {
779     ARMCPU *cpu = s->cpu;
780     uint32_t val;
781 
782     switch (offset) {
783     case 4: /* Interrupt Control Type.  */
784         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
785             goto bad_offset;
786         }
787         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
788     case 0xc: /* CPPWR */
789         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
790             goto bad_offset;
791         }
792         /* We make the IMPDEF choice that nothing can ever go into a
793          * non-retentive power state, which allows us to RAZ/WI this.
794          */
795         return 0;
796     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
797     {
798         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
799         int i;
800 
801         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
802             goto bad_offset;
803         }
804         if (!attrs.secure) {
805             return 0;
806         }
807         val = 0;
808         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
809             if (s->itns[startvec + i]) {
810                 val |= (1 << i);
811             }
812         }
813         return val;
814     }
815     case 0xd00: /* CPUID Base.  */
816         return cpu->midr;
817     case 0xd04: /* Interrupt Control State (ICSR) */
818         /* VECTACTIVE */
819         val = cpu->env.v7m.exception;
820         /* VECTPENDING */
821         val |= (s->vectpending & 0xff) << 12;
822         /* ISRPENDING - set if any external IRQ is pending */
823         if (nvic_isrpending(s)) {
824             val |= (1 << 22);
825         }
826         /* RETTOBASE - set if only one handler is active */
827         if (nvic_rettobase(s)) {
828             val |= (1 << 11);
829         }
830         if (attrs.secure) {
831             /* PENDSTSET */
832             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
833                 val |= (1 << 26);
834             }
835             /* PENDSVSET */
836             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
837                 val |= (1 << 28);
838             }
839         } else {
840             /* PENDSTSET */
841             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
842                 val |= (1 << 26);
843             }
844             /* PENDSVSET */
845             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
846                 val |= (1 << 28);
847             }
848         }
849         /* NMIPENDSET */
850         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
851             && s->vectors[ARMV7M_EXCP_NMI].pending) {
852             val |= (1 << 31);
853         }
854         /* ISRPREEMPT: RES0 when halting debug not implemented */
855         /* STTNS: RES0 for the Main Extension */
856         return val;
857     case 0xd08: /* Vector Table Offset.  */
858         return cpu->env.v7m.vecbase[attrs.secure];
859     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
860         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
861         if (attrs.secure) {
862             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
863             val |= cpu->env.v7m.aircr;
864         } else {
865             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
866                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
867                  * security isn't supported then BFHFNMINS is RAO (and
868                  * the bit in env.v7m.aircr is always set).
869                  */
870                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
871             }
872         }
873         return val;
874     case 0xd10: /* System Control.  */
875         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
876             goto bad_offset;
877         }
878         return cpu->env.v7m.scr[attrs.secure];
879     case 0xd14: /* Configuration Control.  */
880         /* The BFHFNMIGN bit is the only non-banked bit; we
881          * keep it in the non-secure copy of the register.
882          */
883         val = cpu->env.v7m.ccr[attrs.secure];
884         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
885         return val;
886     case 0xd24: /* System Handler Control and State (SHCSR) */
887         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
888             goto bad_offset;
889         }
890         val = 0;
891         if (attrs.secure) {
892             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
893                 val |= (1 << 0);
894             }
895             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
896                 val |= (1 << 2);
897             }
898             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
899                 val |= (1 << 3);
900             }
901             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
902                 val |= (1 << 7);
903             }
904             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
905                 val |= (1 << 10);
906             }
907             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
908                 val |= (1 << 11);
909             }
910             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
911                 val |= (1 << 12);
912             }
913             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
914                 val |= (1 << 13);
915             }
916             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
917                 val |= (1 << 15);
918             }
919             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
920                 val |= (1 << 16);
921             }
922             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
923                 val |= (1 << 18);
924             }
925             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
926                 val |= (1 << 21);
927             }
928             /* SecureFault is not banked but is always RAZ/WI to NS */
929             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
930                 val |= (1 << 4);
931             }
932             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
933                 val |= (1 << 19);
934             }
935             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
936                 val |= (1 << 20);
937             }
938         } else {
939             if (s->vectors[ARMV7M_EXCP_MEM].active) {
940                 val |= (1 << 0);
941             }
942             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
943                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
944                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
945                     val |= (1 << 2);
946                 }
947                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
948                     val |= (1 << 21);
949                 }
950             }
951             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
952                 val |= (1 << 3);
953             }
954             if (s->vectors[ARMV7M_EXCP_SVC].active) {
955                 val |= (1 << 7);
956             }
957             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
958                 val |= (1 << 10);
959             }
960             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
961                 val |= (1 << 11);
962             }
963             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
964                 val |= (1 << 12);
965             }
966             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
967                 val |= (1 << 13);
968             }
969             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
970                 val |= (1 << 15);
971             }
972             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
973                 val |= (1 << 16);
974             }
975             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
976                 val |= (1 << 18);
977             }
978         }
979         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
980             if (s->vectors[ARMV7M_EXCP_BUS].active) {
981                 val |= (1 << 1);
982             }
983             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
984                 val |= (1 << 14);
985             }
986             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
987                 val |= (1 << 17);
988             }
989             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
990                 s->vectors[ARMV7M_EXCP_NMI].active) {
991                 /* NMIACT is not present in v7M */
992                 val |= (1 << 5);
993             }
994         }
995 
996         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
997         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
998             val |= (1 << 8);
999         }
1000         return val;
1001     case 0xd2c: /* Hard Fault Status.  */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1003             goto bad_offset;
1004         }
1005         return cpu->env.v7m.hfsr;
1006     case 0xd30: /* Debug Fault Status.  */
1007         return cpu->env.v7m.dfsr;
1008     case 0xd34: /* MMFAR MemManage Fault Address */
1009         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1010             goto bad_offset;
1011         }
1012         return cpu->env.v7m.mmfar[attrs.secure];
1013     case 0xd38: /* Bus Fault Address.  */
1014         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1015             goto bad_offset;
1016         }
1017         return cpu->env.v7m.bfar;
1018     case 0xd3c: /* Aux Fault Status.  */
1019         /* TODO: Implement fault status registers.  */
1020         qemu_log_mask(LOG_UNIMP,
1021                       "Aux Fault status registers unimplemented\n");
1022         return 0;
1023     case 0xd40: /* PFR0.  */
1024         return cpu->id_pfr0;
1025     case 0xd44: /* PFR1.  */
1026         return cpu->id_pfr1;
1027     case 0xd48: /* DFR0.  */
1028         return cpu->id_dfr0;
1029     case 0xd4c: /* AFR0.  */
1030         return cpu->id_afr0;
1031     case 0xd50: /* MMFR0.  */
1032         return cpu->id_mmfr0;
1033     case 0xd54: /* MMFR1.  */
1034         return cpu->id_mmfr1;
1035     case 0xd58: /* MMFR2.  */
1036         return cpu->id_mmfr2;
1037     case 0xd5c: /* MMFR3.  */
1038         return cpu->id_mmfr3;
1039     case 0xd60: /* ISAR0.  */
1040         return cpu->id_isar0;
1041     case 0xd64: /* ISAR1.  */
1042         return cpu->id_isar1;
1043     case 0xd68: /* ISAR2.  */
1044         return cpu->id_isar2;
1045     case 0xd6c: /* ISAR3.  */
1046         return cpu->id_isar3;
1047     case 0xd70: /* ISAR4.  */
1048         return cpu->id_isar4;
1049     case 0xd74: /* ISAR5.  */
1050         return cpu->id_isar5;
1051     case 0xd78: /* CLIDR */
1052         return cpu->clidr;
1053     case 0xd7c: /* CTR */
1054         return cpu->ctr;
1055     case 0xd80: /* CSSIDR */
1056     {
1057         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1058         return cpu->ccsidr[idx];
1059     }
1060     case 0xd84: /* CSSELR */
1061         return cpu->env.v7m.csselr[attrs.secure];
1062     /* TODO: Implement debug registers.  */
1063     case 0xd90: /* MPU_TYPE */
1064         /* Unified MPU; if the MPU is not present this value is zero */
1065         return cpu->pmsav7_dregion << 8;
1066         break;
1067     case 0xd94: /* MPU_CTRL */
1068         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1069     case 0xd98: /* MPU_RNR */
1070         return cpu->env.pmsav7.rnr[attrs.secure];
1071     case 0xd9c: /* MPU_RBAR */
1072     case 0xda4: /* MPU_RBAR_A1 */
1073     case 0xdac: /* MPU_RBAR_A2 */
1074     case 0xdb4: /* MPU_RBAR_A3 */
1075     {
1076         int region = cpu->env.pmsav7.rnr[attrs.secure];
1077 
1078         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1079             /* PMSAv8M handling of the aliases is different from v7M:
1080              * aliases A1, A2, A3 override the low two bits of the region
1081              * number in MPU_RNR, and there is no 'region' field in the
1082              * RBAR register.
1083              */
1084             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1085             if (aliasno) {
1086                 region = deposit32(region, 0, 2, aliasno);
1087             }
1088             if (region >= cpu->pmsav7_dregion) {
1089                 return 0;
1090             }
1091             return cpu->env.pmsav8.rbar[attrs.secure][region];
1092         }
1093 
1094         if (region >= cpu->pmsav7_dregion) {
1095             return 0;
1096         }
1097         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1098     }
1099     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1100     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1101     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1102     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1103     {
1104         int region = cpu->env.pmsav7.rnr[attrs.secure];
1105 
1106         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1107             /* PMSAv8M handling of the aliases is different from v7M:
1108              * aliases A1, A2, A3 override the low two bits of the region
1109              * number in MPU_RNR.
1110              */
1111             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1112             if (aliasno) {
1113                 region = deposit32(region, 0, 2, aliasno);
1114             }
1115             if (region >= cpu->pmsav7_dregion) {
1116                 return 0;
1117             }
1118             return cpu->env.pmsav8.rlar[attrs.secure][region];
1119         }
1120 
1121         if (region >= cpu->pmsav7_dregion) {
1122             return 0;
1123         }
1124         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1125             (cpu->env.pmsav7.drsr[region] & 0xffff);
1126     }
1127     case 0xdc0: /* MPU_MAIR0 */
1128         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1129             goto bad_offset;
1130         }
1131         return cpu->env.pmsav8.mair0[attrs.secure];
1132     case 0xdc4: /* MPU_MAIR1 */
1133         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1134             goto bad_offset;
1135         }
1136         return cpu->env.pmsav8.mair1[attrs.secure];
1137     case 0xdd0: /* SAU_CTRL */
1138         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139             goto bad_offset;
1140         }
1141         if (!attrs.secure) {
1142             return 0;
1143         }
1144         return cpu->env.sau.ctrl;
1145     case 0xdd4: /* SAU_TYPE */
1146         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147             goto bad_offset;
1148         }
1149         if (!attrs.secure) {
1150             return 0;
1151         }
1152         return cpu->sau_sregion;
1153     case 0xdd8: /* SAU_RNR */
1154         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1155             goto bad_offset;
1156         }
1157         if (!attrs.secure) {
1158             return 0;
1159         }
1160         return cpu->env.sau.rnr;
1161     case 0xddc: /* SAU_RBAR */
1162     {
1163         int region = cpu->env.sau.rnr;
1164 
1165         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1166             goto bad_offset;
1167         }
1168         if (!attrs.secure) {
1169             return 0;
1170         }
1171         if (region >= cpu->sau_sregion) {
1172             return 0;
1173         }
1174         return cpu->env.sau.rbar[region];
1175     }
1176     case 0xde0: /* SAU_RLAR */
1177     {
1178         int region = cpu->env.sau.rnr;
1179 
1180         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1181             goto bad_offset;
1182         }
1183         if (!attrs.secure) {
1184             return 0;
1185         }
1186         if (region >= cpu->sau_sregion) {
1187             return 0;
1188         }
1189         return cpu->env.sau.rlar[region];
1190     }
1191     case 0xde4: /* SFSR */
1192         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1193             goto bad_offset;
1194         }
1195         if (!attrs.secure) {
1196             return 0;
1197         }
1198         return cpu->env.v7m.sfsr;
1199     case 0xde8: /* SFAR */
1200         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1201             goto bad_offset;
1202         }
1203         if (!attrs.secure) {
1204             return 0;
1205         }
1206         return cpu->env.v7m.sfar;
1207     default:
1208     bad_offset:
1209         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1210         return 0;
1211     }
1212 }
1213 
1214 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1215                         MemTxAttrs attrs)
1216 {
1217     ARMCPU *cpu = s->cpu;
1218 
1219     switch (offset) {
1220     case 0xc: /* CPPWR */
1221         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1222             goto bad_offset;
1223         }
1224         /* Make the IMPDEF choice to RAZ/WI this. */
1225         break;
1226     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1227     {
1228         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1229         int i;
1230 
1231         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1232             goto bad_offset;
1233         }
1234         if (!attrs.secure) {
1235             break;
1236         }
1237         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1238             s->itns[startvec + i] = (value >> i) & 1;
1239         }
1240         nvic_irq_update(s);
1241         break;
1242     }
1243     case 0xd04: /* Interrupt Control State (ICSR) */
1244         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1245             if (value & (1 << 31)) {
1246                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1247             } else if (value & (1 << 30) &&
1248                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1249                 /* PENDNMICLR didn't exist in v7M */
1250                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1251             }
1252         }
1253         if (value & (1 << 28)) {
1254             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1255         } else if (value & (1 << 27)) {
1256             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1257         }
1258         if (value & (1 << 26)) {
1259             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1260         } else if (value & (1 << 25)) {
1261             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1262         }
1263         break;
1264     case 0xd08: /* Vector Table Offset.  */
1265         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1266         break;
1267     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1268         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1269             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1270                 if (attrs.secure ||
1271                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1272                     qemu_irq_pulse(s->sysresetreq);
1273                 }
1274             }
1275             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1276                 qemu_log_mask(LOG_GUEST_ERROR,
1277                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1278                               "is UNPREDICTABLE\n");
1279             }
1280             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1281                 /* NB: this bit is RES0 in v8M */
1282                 qemu_log_mask(LOG_GUEST_ERROR,
1283                               "Setting VECTRESET when not in DEBUG mode "
1284                               "is UNPREDICTABLE\n");
1285             }
1286             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1287                 s->prigroup[attrs.secure] =
1288                     extract32(value,
1289                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1290                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1291             }
1292             if (attrs.secure) {
1293                 /* These bits are only writable by secure */
1294                 cpu->env.v7m.aircr = value &
1295                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1296                      R_V7M_AIRCR_BFHFNMINS_MASK |
1297                      R_V7M_AIRCR_PRIS_MASK);
1298                 /* BFHFNMINS changes the priority of Secure HardFault, and
1299                  * allows a pending Non-secure HardFault to preempt (which
1300                  * we implement by marking it enabled).
1301                  */
1302                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1303                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1304                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1305                 } else {
1306                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1307                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1308                 }
1309             }
1310             nvic_irq_update(s);
1311         }
1312         break;
1313     case 0xd10: /* System Control.  */
1314         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1315             goto bad_offset;
1316         }
1317         /* We don't implement deep-sleep so these bits are RAZ/WI.
1318          * The other bits in the register are banked.
1319          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1320          * is architecturally permitted.
1321          */
1322         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1323         cpu->env.v7m.scr[attrs.secure] = value;
1324         break;
1325     case 0xd14: /* Configuration Control.  */
1326         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1327             goto bad_offset;
1328         }
1329 
1330         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1331         value &= (R_V7M_CCR_STKALIGN_MASK |
1332                   R_V7M_CCR_BFHFNMIGN_MASK |
1333                   R_V7M_CCR_DIV_0_TRP_MASK |
1334                   R_V7M_CCR_UNALIGN_TRP_MASK |
1335                   R_V7M_CCR_USERSETMPEND_MASK |
1336                   R_V7M_CCR_NONBASETHRDENA_MASK);
1337 
1338         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1339             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1340             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1341                 | R_V7M_CCR_STKALIGN_MASK;
1342         }
1343         if (attrs.secure) {
1344             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1345             cpu->env.v7m.ccr[M_REG_NS] =
1346                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1347                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1348             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1349         }
1350 
1351         cpu->env.v7m.ccr[attrs.secure] = value;
1352         break;
1353     case 0xd24: /* System Handler Control and State (SHCSR) */
1354         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1355             goto bad_offset;
1356         }
1357         if (attrs.secure) {
1358             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1359             /* Secure HardFault active bit cannot be written */
1360             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1361             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1362             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1363                 (value & (1 << 10)) != 0;
1364             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1365                 (value & (1 << 11)) != 0;
1366             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1367                 (value & (1 << 12)) != 0;
1368             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1369             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1370             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1371             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1372             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1373                 (value & (1 << 18)) != 0;
1374             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1375             /* SecureFault not banked, but RAZ/WI to NS */
1376             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1377             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1378             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1379         } else {
1380             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1381             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1382                 /* HARDFAULTPENDED is not present in v7M */
1383                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1384             }
1385             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1386             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1387             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1388             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1389             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1390             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1391             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1392             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1393             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1394         }
1395         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1396             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1397             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1398             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1399         }
1400         /* NMIACT can only be written if the write is of a zero, with
1401          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1402          */
1403         if (!attrs.secure && cpu->env.v7m.secure &&
1404             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1405             (value & (1 << 5)) == 0) {
1406             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1407         }
1408         /* HARDFAULTACT can only be written if the write is of a zero
1409          * to the non-secure HardFault state by the CPU in secure state.
1410          * The only case where we can be targeting the non-secure HF state
1411          * when in secure state is if this is a write via the NS alias
1412          * and BFHFNMINS is 1.
1413          */
1414         if (!attrs.secure && cpu->env.v7m.secure &&
1415             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1416             (value & (1 << 2)) == 0) {
1417             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1418         }
1419 
1420         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1421         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1422         nvic_irq_update(s);
1423         break;
1424     case 0xd2c: /* Hard Fault Status.  */
1425         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1426             goto bad_offset;
1427         }
1428         cpu->env.v7m.hfsr &= ~value; /* W1C */
1429         break;
1430     case 0xd30: /* Debug Fault Status.  */
1431         cpu->env.v7m.dfsr &= ~value; /* W1C */
1432         break;
1433     case 0xd34: /* Mem Manage Address.  */
1434         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1435             goto bad_offset;
1436         }
1437         cpu->env.v7m.mmfar[attrs.secure] = value;
1438         return;
1439     case 0xd38: /* Bus Fault Address.  */
1440         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1441             goto bad_offset;
1442         }
1443         cpu->env.v7m.bfar = value;
1444         return;
1445     case 0xd3c: /* Aux Fault Status.  */
1446         qemu_log_mask(LOG_UNIMP,
1447                       "NVIC: Aux fault status registers unimplemented\n");
1448         break;
1449     case 0xd84: /* CSSELR */
1450         if (!arm_v7m_csselr_razwi(cpu)) {
1451             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1452         }
1453         break;
1454     case 0xd90: /* MPU_TYPE */
1455         return; /* RO */
1456     case 0xd94: /* MPU_CTRL */
1457         if ((value &
1458              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1459             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1460             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1461                           "UNPREDICTABLE\n");
1462         }
1463         cpu->env.v7m.mpu_ctrl[attrs.secure]
1464             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1465                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1466                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1467         tlb_flush(CPU(cpu));
1468         break;
1469     case 0xd98: /* MPU_RNR */
1470         if (value >= cpu->pmsav7_dregion) {
1471             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1472                           PRIu32 "/%" PRIu32 "\n",
1473                           value, cpu->pmsav7_dregion);
1474         } else {
1475             cpu->env.pmsav7.rnr[attrs.secure] = value;
1476         }
1477         break;
1478     case 0xd9c: /* MPU_RBAR */
1479     case 0xda4: /* MPU_RBAR_A1 */
1480     case 0xdac: /* MPU_RBAR_A2 */
1481     case 0xdb4: /* MPU_RBAR_A3 */
1482     {
1483         int region;
1484 
1485         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1486             /* PMSAv8M handling of the aliases is different from v7M:
1487              * aliases A1, A2, A3 override the low two bits of the region
1488              * number in MPU_RNR, and there is no 'region' field in the
1489              * RBAR register.
1490              */
1491             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1492 
1493             region = cpu->env.pmsav7.rnr[attrs.secure];
1494             if (aliasno) {
1495                 region = deposit32(region, 0, 2, aliasno);
1496             }
1497             if (region >= cpu->pmsav7_dregion) {
1498                 return;
1499             }
1500             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1501             tlb_flush(CPU(cpu));
1502             return;
1503         }
1504 
1505         if (value & (1 << 4)) {
1506             /* VALID bit means use the region number specified in this
1507              * value and also update MPU_RNR.REGION with that value.
1508              */
1509             region = extract32(value, 0, 4);
1510             if (region >= cpu->pmsav7_dregion) {
1511                 qemu_log_mask(LOG_GUEST_ERROR,
1512                               "MPU region out of range %u/%" PRIu32 "\n",
1513                               region, cpu->pmsav7_dregion);
1514                 return;
1515             }
1516             cpu->env.pmsav7.rnr[attrs.secure] = region;
1517         } else {
1518             region = cpu->env.pmsav7.rnr[attrs.secure];
1519         }
1520 
1521         if (region >= cpu->pmsav7_dregion) {
1522             return;
1523         }
1524 
1525         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1526         tlb_flush(CPU(cpu));
1527         break;
1528     }
1529     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1530     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1531     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1532     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1533     {
1534         int region = cpu->env.pmsav7.rnr[attrs.secure];
1535 
1536         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1537             /* PMSAv8M handling of the aliases is different from v7M:
1538              * aliases A1, A2, A3 override the low two bits of the region
1539              * number in MPU_RNR.
1540              */
1541             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1542 
1543             region = cpu->env.pmsav7.rnr[attrs.secure];
1544             if (aliasno) {
1545                 region = deposit32(region, 0, 2, aliasno);
1546             }
1547             if (region >= cpu->pmsav7_dregion) {
1548                 return;
1549             }
1550             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1551             tlb_flush(CPU(cpu));
1552             return;
1553         }
1554 
1555         if (region >= cpu->pmsav7_dregion) {
1556             return;
1557         }
1558 
1559         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1560         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1561         tlb_flush(CPU(cpu));
1562         break;
1563     }
1564     case 0xdc0: /* MPU_MAIR0 */
1565         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1566             goto bad_offset;
1567         }
1568         if (cpu->pmsav7_dregion) {
1569             /* Register is RES0 if no MPU regions are implemented */
1570             cpu->env.pmsav8.mair0[attrs.secure] = value;
1571         }
1572         /* We don't need to do anything else because memory attributes
1573          * only affect cacheability, and we don't implement caching.
1574          */
1575         break;
1576     case 0xdc4: /* MPU_MAIR1 */
1577         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1578             goto bad_offset;
1579         }
1580         if (cpu->pmsav7_dregion) {
1581             /* Register is RES0 if no MPU regions are implemented */
1582             cpu->env.pmsav8.mair1[attrs.secure] = value;
1583         }
1584         /* We don't need to do anything else because memory attributes
1585          * only affect cacheability, and we don't implement caching.
1586          */
1587         break;
1588     case 0xdd0: /* SAU_CTRL */
1589         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590             goto bad_offset;
1591         }
1592         if (!attrs.secure) {
1593             return;
1594         }
1595         cpu->env.sau.ctrl = value & 3;
1596         break;
1597     case 0xdd4: /* SAU_TYPE */
1598         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1599             goto bad_offset;
1600         }
1601         break;
1602     case 0xdd8: /* SAU_RNR */
1603         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1604             goto bad_offset;
1605         }
1606         if (!attrs.secure) {
1607             return;
1608         }
1609         if (value >= cpu->sau_sregion) {
1610             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1611                           PRIu32 "/%" PRIu32 "\n",
1612                           value, cpu->sau_sregion);
1613         } else {
1614             cpu->env.sau.rnr = value;
1615         }
1616         break;
1617     case 0xddc: /* SAU_RBAR */
1618     {
1619         int region = cpu->env.sau.rnr;
1620 
1621         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1622             goto bad_offset;
1623         }
1624         if (!attrs.secure) {
1625             return;
1626         }
1627         if (region >= cpu->sau_sregion) {
1628             return;
1629         }
1630         cpu->env.sau.rbar[region] = value & ~0x1f;
1631         tlb_flush(CPU(cpu));
1632         break;
1633     }
1634     case 0xde0: /* SAU_RLAR */
1635     {
1636         int region = cpu->env.sau.rnr;
1637 
1638         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1639             goto bad_offset;
1640         }
1641         if (!attrs.secure) {
1642             return;
1643         }
1644         if (region >= cpu->sau_sregion) {
1645             return;
1646         }
1647         cpu->env.sau.rlar[region] = value & ~0x1c;
1648         tlb_flush(CPU(cpu));
1649         break;
1650     }
1651     case 0xde4: /* SFSR */
1652         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1653             goto bad_offset;
1654         }
1655         if (!attrs.secure) {
1656             return;
1657         }
1658         cpu->env.v7m.sfsr &= ~value; /* W1C */
1659         break;
1660     case 0xde8: /* SFAR */
1661         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1662             goto bad_offset;
1663         }
1664         if (!attrs.secure) {
1665             return;
1666         }
1667         cpu->env.v7m.sfsr = value;
1668         break;
1669     case 0xf00: /* Software Triggered Interrupt Register */
1670     {
1671         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1672 
1673         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1674             goto bad_offset;
1675         }
1676 
1677         if (excnum < s->num_irq) {
1678             armv7m_nvic_set_pending(s, excnum, false);
1679         }
1680         break;
1681     }
1682     case 0xf50: /* ICIALLU */
1683     case 0xf58: /* ICIMVAU */
1684     case 0xf5c: /* DCIMVAC */
1685     case 0xf60: /* DCISW */
1686     case 0xf64: /* DCCMVAU */
1687     case 0xf68: /* DCCMVAC */
1688     case 0xf6c: /* DCCSW */
1689     case 0xf70: /* DCCIMVAC */
1690     case 0xf74: /* DCCISW */
1691     case 0xf78: /* BPIALL */
1692         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1693         break;
1694     default:
1695     bad_offset:
1696         qemu_log_mask(LOG_GUEST_ERROR,
1697                       "NVIC: Bad write offset 0x%x\n", offset);
1698     }
1699 }
1700 
1701 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1702 {
1703     /* Return true if unprivileged access to this register is permitted. */
1704     switch (offset) {
1705     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1706         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1707          * controls access even though the CPU is in Secure state (I_QDKX).
1708          */
1709         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1710     default:
1711         /* All other user accesses cause a BusFault unconditionally */
1712         return false;
1713     }
1714 }
1715 
1716 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1717 {
1718     /* Behaviour for the SHPR register field for this exception:
1719      * return M_REG_NS to use the nonsecure vector (including for
1720      * non-banked exceptions), M_REG_S for the secure version of
1721      * a banked exception, and -1 if this field should RAZ/WI.
1722      */
1723     switch (exc) {
1724     case ARMV7M_EXCP_MEM:
1725     case ARMV7M_EXCP_USAGE:
1726     case ARMV7M_EXCP_SVC:
1727     case ARMV7M_EXCP_PENDSV:
1728     case ARMV7M_EXCP_SYSTICK:
1729         /* Banked exceptions */
1730         return attrs.secure;
1731     case ARMV7M_EXCP_BUS:
1732         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1733         if (!attrs.secure &&
1734             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1735             return -1;
1736         }
1737         return M_REG_NS;
1738     case ARMV7M_EXCP_SECURE:
1739         /* Not banked, RAZ/WI from nonsecure */
1740         if (!attrs.secure) {
1741             return -1;
1742         }
1743         return M_REG_NS;
1744     case ARMV7M_EXCP_DEBUG:
1745         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1746         return M_REG_NS;
1747     case 8 ... 10:
1748     case 13:
1749         /* RES0 */
1750         return -1;
1751     default:
1752         /* Not reachable due to decode of SHPR register addresses */
1753         g_assert_not_reached();
1754     }
1755 }
1756 
1757 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1758                                     uint64_t *data, unsigned size,
1759                                     MemTxAttrs attrs)
1760 {
1761     NVICState *s = (NVICState *)opaque;
1762     uint32_t offset = addr;
1763     unsigned i, startvec, end;
1764     uint32_t val;
1765 
1766     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1767         /* Generate BusFault for unprivileged accesses */
1768         return MEMTX_ERROR;
1769     }
1770 
1771     switch (offset) {
1772     /* reads of set and clear both return the status */
1773     case 0x100 ... 0x13f: /* NVIC Set enable */
1774         offset += 0x80;
1775         /* fall through */
1776     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1777         val = 0;
1778         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1779 
1780         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1781             if (s->vectors[startvec + i].enabled &&
1782                 (attrs.secure || s->itns[startvec + i])) {
1783                 val |= (1 << i);
1784             }
1785         }
1786         break;
1787     case 0x200 ... 0x23f: /* NVIC Set pend */
1788         offset += 0x80;
1789         /* fall through */
1790     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1791         val = 0;
1792         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1793         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1794             if (s->vectors[startvec + i].pending &&
1795                 (attrs.secure || s->itns[startvec + i])) {
1796                 val |= (1 << i);
1797             }
1798         }
1799         break;
1800     case 0x300 ... 0x33f: /* NVIC Active */
1801         val = 0;
1802 
1803         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1804             break;
1805         }
1806 
1807         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1808 
1809         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1810             if (s->vectors[startvec + i].active &&
1811                 (attrs.secure || s->itns[startvec + i])) {
1812                 val |= (1 << i);
1813             }
1814         }
1815         break;
1816     case 0x400 ... 0x5ef: /* NVIC Priority */
1817         val = 0;
1818         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1819 
1820         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1821             if (attrs.secure || s->itns[startvec + i]) {
1822                 val |= s->vectors[startvec + i].prio << (8 * i);
1823             }
1824         }
1825         break;
1826     case 0xd18: /* System Handler Priority (SHPR1) */
1827         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1828             val = 0;
1829             break;
1830         }
1831         /* fall through */
1832     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1833         val = 0;
1834         for (i = 0; i < size; i++) {
1835             unsigned hdlidx = (offset - 0xd14) + i;
1836             int sbank = shpr_bank(s, hdlidx, attrs);
1837 
1838             if (sbank < 0) {
1839                 continue;
1840             }
1841             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1842         }
1843         break;
1844     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1845         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1846             val = 0;
1847             break;
1848         };
1849         /* The BFSR bits [15:8] are shared between security states
1850          * and we store them in the NS copy
1851          */
1852         val = s->cpu->env.v7m.cfsr[attrs.secure];
1853         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1854         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1855         break;
1856     case 0xfe0 ... 0xfff: /* ID.  */
1857         if (offset & 3) {
1858             val = 0;
1859         } else {
1860             val = nvic_id[(offset - 0xfe0) >> 2];
1861         }
1862         break;
1863     default:
1864         if (size == 4) {
1865             val = nvic_readl(s, offset, attrs);
1866         } else {
1867             qemu_log_mask(LOG_GUEST_ERROR,
1868                           "NVIC: Bad read of size %d at offset 0x%x\n",
1869                           size, offset);
1870             val = 0;
1871         }
1872     }
1873 
1874     trace_nvic_sysreg_read(addr, val, size);
1875     *data = val;
1876     return MEMTX_OK;
1877 }
1878 
1879 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1880                                      uint64_t value, unsigned size,
1881                                      MemTxAttrs attrs)
1882 {
1883     NVICState *s = (NVICState *)opaque;
1884     uint32_t offset = addr;
1885     unsigned i, startvec, end;
1886     unsigned setval = 0;
1887 
1888     trace_nvic_sysreg_write(addr, value, size);
1889 
1890     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1891         /* Generate BusFault for unprivileged accesses */
1892         return MEMTX_ERROR;
1893     }
1894 
1895     switch (offset) {
1896     case 0x100 ... 0x13f: /* NVIC Set enable */
1897         offset += 0x80;
1898         setval = 1;
1899         /* fall through */
1900     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1901         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1902 
1903         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1904             if (value & (1 << i) &&
1905                 (attrs.secure || s->itns[startvec + i])) {
1906                 s->vectors[startvec + i].enabled = setval;
1907             }
1908         }
1909         nvic_irq_update(s);
1910         return MEMTX_OK;
1911     case 0x200 ... 0x23f: /* NVIC Set pend */
1912         /* the special logic in armv7m_nvic_set_pending()
1913          * is not needed since IRQs are never escalated
1914          */
1915         offset += 0x80;
1916         setval = 1;
1917         /* fall through */
1918     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1919         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1920 
1921         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1922             if (value & (1 << i) &&
1923                 (attrs.secure || s->itns[startvec + i])) {
1924                 s->vectors[startvec + i].pending = setval;
1925             }
1926         }
1927         nvic_irq_update(s);
1928         return MEMTX_OK;
1929     case 0x300 ... 0x33f: /* NVIC Active */
1930         return MEMTX_OK; /* R/O */
1931     case 0x400 ... 0x5ef: /* NVIC Priority */
1932         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1933 
1934         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1935             if (attrs.secure || s->itns[startvec + i]) {
1936                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1937             }
1938         }
1939         nvic_irq_update(s);
1940         return MEMTX_OK;
1941     case 0xd18: /* System Handler Priority (SHPR1) */
1942         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1943             return MEMTX_OK;
1944         }
1945         /* fall through */
1946     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1947         for (i = 0; i < size; i++) {
1948             unsigned hdlidx = (offset - 0xd14) + i;
1949             int newprio = extract32(value, i * 8, 8);
1950             int sbank = shpr_bank(s, hdlidx, attrs);
1951 
1952             if (sbank < 0) {
1953                 continue;
1954             }
1955             set_prio(s, hdlidx, sbank, newprio);
1956         }
1957         nvic_irq_update(s);
1958         return MEMTX_OK;
1959     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1960         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1961             return MEMTX_OK;
1962         }
1963         /* All bits are W1C, so construct 32 bit value with 0s in
1964          * the parts not written by the access size
1965          */
1966         value <<= ((offset - 0xd28) * 8);
1967 
1968         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1969         if (attrs.secure) {
1970             /* The BFSR bits [15:8] are shared between security states
1971              * and we store them in the NS copy.
1972              */
1973             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1974         }
1975         return MEMTX_OK;
1976     }
1977     if (size == 4) {
1978         nvic_writel(s, offset, value, attrs);
1979         return MEMTX_OK;
1980     }
1981     qemu_log_mask(LOG_GUEST_ERROR,
1982                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1983     /* This is UNPREDICTABLE; treat as RAZ/WI */
1984     return MEMTX_OK;
1985 }
1986 
1987 static const MemoryRegionOps nvic_sysreg_ops = {
1988     .read_with_attrs = nvic_sysreg_read,
1989     .write_with_attrs = nvic_sysreg_write,
1990     .endianness = DEVICE_NATIVE_ENDIAN,
1991 };
1992 
1993 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1994                                         uint64_t value, unsigned size,
1995                                         MemTxAttrs attrs)
1996 {
1997     MemoryRegion *mr = opaque;
1998 
1999     if (attrs.secure) {
2000         /* S accesses to the alias act like NS accesses to the real region */
2001         attrs.secure = 0;
2002         return memory_region_dispatch_write(mr, addr, value, size, attrs);
2003     } else {
2004         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2005         if (attrs.user) {
2006             return MEMTX_ERROR;
2007         }
2008         return MEMTX_OK;
2009     }
2010 }
2011 
2012 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2013                                        uint64_t *data, unsigned size,
2014                                        MemTxAttrs attrs)
2015 {
2016     MemoryRegion *mr = opaque;
2017 
2018     if (attrs.secure) {
2019         /* S accesses to the alias act like NS accesses to the real region */
2020         attrs.secure = 0;
2021         return memory_region_dispatch_read(mr, addr, data, size, attrs);
2022     } else {
2023         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2024         if (attrs.user) {
2025             return MEMTX_ERROR;
2026         }
2027         *data = 0;
2028         return MEMTX_OK;
2029     }
2030 }
2031 
2032 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2033     .read_with_attrs = nvic_sysreg_ns_read,
2034     .write_with_attrs = nvic_sysreg_ns_write,
2035     .endianness = DEVICE_NATIVE_ENDIAN,
2036 };
2037 
2038 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2039                                       uint64_t value, unsigned size,
2040                                       MemTxAttrs attrs)
2041 {
2042     NVICState *s = opaque;
2043     MemoryRegion *mr;
2044 
2045     /* Direct the access to the correct systick */
2046     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2047     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2048 }
2049 
2050 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2051                                      uint64_t *data, unsigned size,
2052                                      MemTxAttrs attrs)
2053 {
2054     NVICState *s = opaque;
2055     MemoryRegion *mr;
2056 
2057     /* Direct the access to the correct systick */
2058     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2059     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2060 }
2061 
2062 static const MemoryRegionOps nvic_systick_ops = {
2063     .read_with_attrs = nvic_systick_read,
2064     .write_with_attrs = nvic_systick_write,
2065     .endianness = DEVICE_NATIVE_ENDIAN,
2066 };
2067 
2068 static int nvic_post_load(void *opaque, int version_id)
2069 {
2070     NVICState *s = opaque;
2071     unsigned i;
2072     int resetprio;
2073 
2074     /* Check for out of range priority settings */
2075     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2076 
2077     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2078         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2079         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2080         return 1;
2081     }
2082     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2083         if (s->vectors[i].prio & ~0xff) {
2084             return 1;
2085         }
2086     }
2087 
2088     nvic_recompute_state(s);
2089 
2090     return 0;
2091 }
2092 
2093 static const VMStateDescription vmstate_VecInfo = {
2094     .name = "armv7m_nvic_info",
2095     .version_id = 1,
2096     .minimum_version_id = 1,
2097     .fields = (VMStateField[]) {
2098         VMSTATE_INT16(prio, VecInfo),
2099         VMSTATE_UINT8(enabled, VecInfo),
2100         VMSTATE_UINT8(pending, VecInfo),
2101         VMSTATE_UINT8(active, VecInfo),
2102         VMSTATE_UINT8(level, VecInfo),
2103         VMSTATE_END_OF_LIST()
2104     }
2105 };
2106 
2107 static bool nvic_security_needed(void *opaque)
2108 {
2109     NVICState *s = opaque;
2110 
2111     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2112 }
2113 
2114 static int nvic_security_post_load(void *opaque, int version_id)
2115 {
2116     NVICState *s = opaque;
2117     int i;
2118 
2119     /* Check for out of range priority settings */
2120     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2121         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2122         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2123          * if the CPU state has been migrated yet; a mismatch won't
2124          * cause the emulation to blow up, though.
2125          */
2126         return 1;
2127     }
2128     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2129         if (s->sec_vectors[i].prio & ~0xff) {
2130             return 1;
2131         }
2132     }
2133     return 0;
2134 }
2135 
2136 static const VMStateDescription vmstate_nvic_security = {
2137     .name = "armv7m_nvic/m-security",
2138     .version_id = 1,
2139     .minimum_version_id = 1,
2140     .needed = nvic_security_needed,
2141     .post_load = &nvic_security_post_load,
2142     .fields = (VMStateField[]) {
2143         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2144                              vmstate_VecInfo, VecInfo),
2145         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2146         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2147         VMSTATE_END_OF_LIST()
2148     }
2149 };
2150 
2151 static const VMStateDescription vmstate_nvic = {
2152     .name = "armv7m_nvic",
2153     .version_id = 4,
2154     .minimum_version_id = 4,
2155     .post_load = &nvic_post_load,
2156     .fields = (VMStateField[]) {
2157         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2158                              vmstate_VecInfo, VecInfo),
2159         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2160         VMSTATE_END_OF_LIST()
2161     },
2162     .subsections = (const VMStateDescription*[]) {
2163         &vmstate_nvic_security,
2164         NULL
2165     }
2166 };
2167 
2168 static Property props_nvic[] = {
2169     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2170     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2171     DEFINE_PROP_END_OF_LIST()
2172 };
2173 
2174 static void armv7m_nvic_reset(DeviceState *dev)
2175 {
2176     int resetprio;
2177     NVICState *s = NVIC(dev);
2178 
2179     memset(s->vectors, 0, sizeof(s->vectors));
2180     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2181     s->prigroup[M_REG_NS] = 0;
2182     s->prigroup[M_REG_S] = 0;
2183 
2184     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2185     /* MEM, BUS, and USAGE are enabled through
2186      * the System Handler Control register
2187      */
2188     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2189     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2190     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2191     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2192 
2193     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2194     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2195     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2196     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2197 
2198     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2199         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2200         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2201         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2202         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2203 
2204         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2205         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2206         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2207         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2208     } else {
2209         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2210     }
2211 
2212     /* Strictly speaking the reset handler should be enabled.
2213      * However, we don't simulate soft resets through the NVIC,
2214      * and the reset vector should never be pended.
2215      * So we leave it disabled to catch logic errors.
2216      */
2217 
2218     s->exception_prio = NVIC_NOEXC_PRIO;
2219     s->vectpending = 0;
2220     s->vectpending_is_s_banked = false;
2221     s->vectpending_prio = NVIC_NOEXC_PRIO;
2222 
2223     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2224         memset(s->itns, 0, sizeof(s->itns));
2225     } else {
2226         /* This state is constant and not guest accessible in a non-security
2227          * NVIC; we set the bits to true to avoid having to do a feature
2228          * bit check in the NVIC enable/pend/etc register accessors.
2229          */
2230         int i;
2231 
2232         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2233             s->itns[i] = true;
2234         }
2235     }
2236 }
2237 
2238 static void nvic_systick_trigger(void *opaque, int n, int level)
2239 {
2240     NVICState *s = opaque;
2241 
2242     if (level) {
2243         /* SysTick just asked us to pend its exception.
2244          * (This is different from an external interrupt line's
2245          * behaviour.)
2246          * n == 0 : NonSecure systick
2247          * n == 1 : Secure systick
2248          */
2249         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2250     }
2251 }
2252 
2253 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2254 {
2255     NVICState *s = NVIC(dev);
2256     Error *err = NULL;
2257     int regionlen;
2258 
2259     s->cpu = ARM_CPU(qemu_get_cpu(0));
2260 
2261     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2262         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2263         return;
2264     }
2265 
2266     if (s->num_irq > NVIC_MAX_IRQ) {
2267         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2268         return;
2269     }
2270 
2271     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2272 
2273     /* include space for internal exception vectors */
2274     s->num_irq += NVIC_FIRST_IRQ;
2275 
2276     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2277 
2278     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2279                              "realized", &err);
2280     if (err != NULL) {
2281         error_propagate(errp, err);
2282         return;
2283     }
2284     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2285                        qdev_get_gpio_in_named(dev, "systick-trigger",
2286                                               M_REG_NS));
2287 
2288     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2289         /* We couldn't init the secure systick device in instance_init
2290          * as we didn't know then if the CPU had the security extensions;
2291          * so we have to do it here.
2292          */
2293         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2294                           TYPE_SYSTICK);
2295         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2296 
2297         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2298                                  "realized", &err);
2299         if (err != NULL) {
2300             error_propagate(errp, err);
2301             return;
2302         }
2303         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2304                            qdev_get_gpio_in_named(dev, "systick-trigger",
2305                                                   M_REG_S));
2306     }
2307 
2308     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2309      * and looks like this:
2310      *  0x004 - ICTR
2311      *  0x010 - 0xff - systick
2312      *  0x100..0x7ec - NVIC
2313      *  0x7f0..0xcff - Reserved
2314      *  0xd00..0xd3c - SCS registers
2315      *  0xd40..0xeff - Reserved or Not implemented
2316      *  0xf00 - STIR
2317      *
2318      * Some registers within this space are banked between security states.
2319      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2320      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2321      * to the main SCS range, and non-secure accesses (including when
2322      * the security extension is not implemented) are RAZ/WI.
2323      * Note that both the main SCS range and the alias range are defined
2324      * to be exempt from memory attribution (R_BLJT) and so the memory
2325      * transaction attribute always matches the current CPU security
2326      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2327      * wrappers we change attrs.secure to indicate the NS access; so
2328      * generally code determining which banked register to use should
2329      * use attrs.secure; code determining actual behaviour of the system
2330      * should use env->v7m.secure.
2331      */
2332     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2333     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2334     /* The system register region goes at the bottom of the priority
2335      * stack as it covers the whole page.
2336      */
2337     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2338                           "nvic_sysregs", 0x1000);
2339     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2340 
2341     memory_region_init_io(&s->systickmem, OBJECT(s),
2342                           &nvic_systick_ops, s,
2343                           "nvic_systick", 0xe0);
2344 
2345     memory_region_add_subregion_overlap(&s->container, 0x10,
2346                                         &s->systickmem, 1);
2347 
2348     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2349         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2350                               &nvic_sysreg_ns_ops, &s->sysregmem,
2351                               "nvic_sysregs_ns", 0x1000);
2352         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2353         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2354                               &nvic_sysreg_ns_ops, &s->systickmem,
2355                               "nvic_systick_ns", 0xe0);
2356         memory_region_add_subregion_overlap(&s->container, 0x20010,
2357                                             &s->systick_ns_mem, 1);
2358     }
2359 
2360     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2361 }
2362 
2363 static void armv7m_nvic_instance_init(Object *obj)
2364 {
2365     /* We have a different default value for the num-irq property
2366      * than our superclass. This function runs after qdev init
2367      * has set the defaults from the Property array and before
2368      * any user-specified property setting, so just modify the
2369      * value in the GICState struct.
2370      */
2371     DeviceState *dev = DEVICE(obj);
2372     NVICState *nvic = NVIC(obj);
2373     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2374 
2375     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2376                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2377     /* We can't initialize the secure systick here, as we don't know
2378      * yet if we need it.
2379      */
2380 
2381     sysbus_init_irq(sbd, &nvic->excpout);
2382     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2383     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2384                             M_REG_NUM_BANKS);
2385 }
2386 
2387 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2388 {
2389     DeviceClass *dc = DEVICE_CLASS(klass);
2390 
2391     dc->vmsd  = &vmstate_nvic;
2392     dc->props = props_nvic;
2393     dc->reset = armv7m_nvic_reset;
2394     dc->realize = armv7m_nvic_realize;
2395 }
2396 
2397 static const TypeInfo armv7m_nvic_info = {
2398     .name          = TYPE_NVIC,
2399     .parent        = TYPE_SYS_BUS_DEVICE,
2400     .instance_init = armv7m_nvic_instance_init,
2401     .instance_size = sizeof(NVICState),
2402     .class_init    = armv7m_nvic_class_init,
2403     .class_size    = sizeof(SysBusDeviceClass),
2404 };
2405 
2406 static void armv7m_nvic_register_types(void)
2407 {
2408     type_register_static(&armv7m_nvic_info);
2409 }
2410 
2411 type_init(armv7m_nvic_register_types)
2412