1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 507 { 508 NVICState *s = (NVICState *)opaque; 509 bool banked = exc_is_banked(irq); 510 VecInfo *vec; 511 512 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 513 assert(!secure || banked); 514 515 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 516 517 trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio); 518 519 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 520 /* If a synchronous exception is pending then it may be 521 * escalated to HardFault if: 522 * * it is equal or lower priority to current execution 523 * * it is disabled 524 * (ie we need to take it immediately but we can't do so). 525 * Asynchronous exceptions (and interrupts) simply remain pending. 526 * 527 * For QEMU, we don't have any imprecise (asynchronous) faults, 528 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 529 * synchronous. 530 * Debug exceptions are awkward because only Debug exceptions 531 * resulting from the BKPT instruction should be escalated, 532 * but we don't currently implement any Debug exceptions other 533 * than those that result from BKPT, so we treat all debug exceptions 534 * as needing escalation. 535 * 536 * This all means we can identify whether to escalate based only on 537 * the exception number and don't (yet) need the caller to explicitly 538 * tell us whether this exception is synchronous or not. 539 */ 540 int running = nvic_exec_prio(s); 541 bool escalate = false; 542 543 if (exc_group_prio(s, vec->prio, secure) >= running) { 544 trace_nvic_escalate_prio(irq, vec->prio, running); 545 escalate = true; 546 } else if (!vec->enabled) { 547 trace_nvic_escalate_disabled(irq); 548 escalate = true; 549 } 550 551 if (escalate) { 552 553 /* We need to escalate this exception to a synchronous HardFault. 554 * If BFHFNMINS is set then we escalate to the banked HF for 555 * the target security state of the original exception; otherwise 556 * we take a Secure HardFault. 557 */ 558 irq = ARMV7M_EXCP_HARD; 559 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 560 (secure || 561 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 562 vec = &s->sec_vectors[irq]; 563 } else { 564 vec = &s->vectors[irq]; 565 } 566 if (running <= vec->prio) { 567 /* We want to escalate to HardFault but we can't take the 568 * synchronous HardFault at this point either. This is a 569 * Lockup condition due to a guest bug. We don't model 570 * Lockup, so report via cpu_abort() instead. 571 */ 572 cpu_abort(&s->cpu->parent_obj, 573 "Lockup: can't escalate %d to HardFault " 574 "(current priority %d)\n", irq, running); 575 } 576 577 /* HF may be banked but there is only one shared HFSR */ 578 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 579 } 580 } 581 582 if (!vec->pending) { 583 vec->pending = 1; 584 nvic_irq_update(s); 585 } 586 } 587 588 /* Make pending IRQ active. */ 589 bool armv7m_nvic_acknowledge_irq(void *opaque) 590 { 591 NVICState *s = (NVICState *)opaque; 592 CPUARMState *env = &s->cpu->env; 593 const int pending = s->vectpending; 594 const int running = nvic_exec_prio(s); 595 VecInfo *vec; 596 bool targets_secure; 597 598 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 599 600 if (s->vectpending_is_s_banked) { 601 vec = &s->sec_vectors[pending]; 602 targets_secure = true; 603 } else { 604 vec = &s->vectors[pending]; 605 targets_secure = !exc_is_banked(s->vectpending) && 606 exc_targets_secure(s, s->vectpending); 607 } 608 609 assert(vec->enabled); 610 assert(vec->pending); 611 612 assert(s->vectpending_prio < running); 613 614 trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure); 615 616 vec->active = 1; 617 vec->pending = 0; 618 619 write_v7m_exception(env, s->vectpending); 620 621 nvic_irq_update(s); 622 623 return targets_secure; 624 } 625 626 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 627 { 628 NVICState *s = (NVICState *)opaque; 629 VecInfo *vec; 630 int ret; 631 632 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 633 634 if (secure && exc_is_banked(irq)) { 635 vec = &s->sec_vectors[irq]; 636 } else { 637 vec = &s->vectors[irq]; 638 } 639 640 trace_nvic_complete_irq(irq, secure); 641 642 if (!vec->active) { 643 /* Tell the caller this was an illegal exception return */ 644 return -1; 645 } 646 647 ret = nvic_rettobase(s); 648 649 vec->active = 0; 650 if (vec->level) { 651 /* Re-pend the exception if it's still held high; only 652 * happens for extenal IRQs 653 */ 654 assert(irq >= NVIC_FIRST_IRQ); 655 vec->pending = 1; 656 } 657 658 nvic_irq_update(s); 659 660 return ret; 661 } 662 663 /* callback when external interrupt line is changed */ 664 static void set_irq_level(void *opaque, int n, int level) 665 { 666 NVICState *s = opaque; 667 VecInfo *vec; 668 669 n += NVIC_FIRST_IRQ; 670 671 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 672 673 trace_nvic_set_irq_level(n, level); 674 675 /* The pending status of an external interrupt is 676 * latched on rising edge and exception handler return. 677 * 678 * Pulsing the IRQ will always run the handler 679 * once, and the handler will re-run until the 680 * level is low when the handler completes. 681 */ 682 vec = &s->vectors[n]; 683 if (level != vec->level) { 684 vec->level = level; 685 if (level) { 686 armv7m_nvic_set_pending(s, n, false); 687 } 688 } 689 } 690 691 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 692 { 693 ARMCPU *cpu = s->cpu; 694 uint32_t val; 695 696 switch (offset) { 697 case 4: /* Interrupt Control Type. */ 698 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 699 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 700 { 701 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 702 int i; 703 704 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 705 goto bad_offset; 706 } 707 if (!attrs.secure) { 708 return 0; 709 } 710 val = 0; 711 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 712 if (s->itns[startvec + i]) { 713 val |= (1 << i); 714 } 715 } 716 return val; 717 } 718 case 0xd00: /* CPUID Base. */ 719 return cpu->midr; 720 case 0xd04: /* Interrupt Control State (ICSR) */ 721 /* VECTACTIVE */ 722 val = cpu->env.v7m.exception; 723 /* VECTPENDING */ 724 val |= (s->vectpending & 0xff) << 12; 725 /* ISRPENDING - set if any external IRQ is pending */ 726 if (nvic_isrpending(s)) { 727 val |= (1 << 22); 728 } 729 /* RETTOBASE - set if only one handler is active */ 730 if (nvic_rettobase(s)) { 731 val |= (1 << 11); 732 } 733 if (attrs.secure) { 734 /* PENDSTSET */ 735 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 736 val |= (1 << 26); 737 } 738 /* PENDSVSET */ 739 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 740 val |= (1 << 28); 741 } 742 } else { 743 /* PENDSTSET */ 744 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 745 val |= (1 << 26); 746 } 747 /* PENDSVSET */ 748 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 749 val |= (1 << 28); 750 } 751 } 752 /* NMIPENDSET */ 753 if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 754 s->vectors[ARMV7M_EXCP_NMI].pending) { 755 val |= (1 << 31); 756 } 757 /* ISRPREEMPT: RES0 when halting debug not implemented */ 758 /* STTNS: RES0 for the Main Extension */ 759 return val; 760 case 0xd08: /* Vector Table Offset. */ 761 return cpu->env.v7m.vecbase[attrs.secure]; 762 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 763 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 764 if (attrs.secure) { 765 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 766 val |= cpu->env.v7m.aircr; 767 } else { 768 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 769 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 770 * security isn't supported then BFHFNMINS is RAO (and 771 * the bit in env.v7m.aircr is always set). 772 */ 773 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 774 } 775 } 776 return val; 777 case 0xd10: /* System Control. */ 778 /* TODO: Implement SLEEPONEXIT. */ 779 return 0; 780 case 0xd14: /* Configuration Control. */ 781 /* The BFHFNMIGN bit is the only non-banked bit; we 782 * keep it in the non-secure copy of the register. 783 */ 784 val = cpu->env.v7m.ccr[attrs.secure]; 785 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 786 return val; 787 case 0xd24: /* System Handler Control and State (SHCSR) */ 788 val = 0; 789 if (attrs.secure) { 790 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 791 val |= (1 << 0); 792 } 793 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 794 val |= (1 << 2); 795 } 796 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 797 val |= (1 << 3); 798 } 799 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 800 val |= (1 << 7); 801 } 802 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 803 val |= (1 << 10); 804 } 805 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 806 val |= (1 << 11); 807 } 808 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 809 val |= (1 << 12); 810 } 811 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 812 val |= (1 << 13); 813 } 814 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 815 val |= (1 << 15); 816 } 817 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 818 val |= (1 << 16); 819 } 820 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 821 val |= (1 << 18); 822 } 823 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 824 val |= (1 << 21); 825 } 826 /* SecureFault is not banked but is always RAZ/WI to NS */ 827 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 828 val |= (1 << 4); 829 } 830 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 831 val |= (1 << 19); 832 } 833 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 834 val |= (1 << 20); 835 } 836 } else { 837 if (s->vectors[ARMV7M_EXCP_MEM].active) { 838 val |= (1 << 0); 839 } 840 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 841 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 842 if (s->vectors[ARMV7M_EXCP_HARD].active) { 843 val |= (1 << 2); 844 } 845 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 846 val |= (1 << 21); 847 } 848 } 849 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 850 val |= (1 << 3); 851 } 852 if (s->vectors[ARMV7M_EXCP_SVC].active) { 853 val |= (1 << 7); 854 } 855 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 856 val |= (1 << 10); 857 } 858 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 859 val |= (1 << 11); 860 } 861 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 862 val |= (1 << 12); 863 } 864 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 865 val |= (1 << 13); 866 } 867 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 868 val |= (1 << 15); 869 } 870 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 871 val |= (1 << 16); 872 } 873 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 874 val |= (1 << 18); 875 } 876 } 877 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 878 if (s->vectors[ARMV7M_EXCP_BUS].active) { 879 val |= (1 << 1); 880 } 881 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 882 val |= (1 << 14); 883 } 884 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 885 val |= (1 << 17); 886 } 887 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 888 s->vectors[ARMV7M_EXCP_NMI].active) { 889 /* NMIACT is not present in v7M */ 890 val |= (1 << 5); 891 } 892 } 893 894 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 895 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 896 val |= (1 << 8); 897 } 898 return val; 899 case 0xd28: /* Configurable Fault Status. */ 900 /* The BFSR bits [15:8] are shared between security states 901 * and we store them in the NS copy 902 */ 903 val = cpu->env.v7m.cfsr[attrs.secure]; 904 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 905 return val; 906 case 0xd2c: /* Hard Fault Status. */ 907 return cpu->env.v7m.hfsr; 908 case 0xd30: /* Debug Fault Status. */ 909 return cpu->env.v7m.dfsr; 910 case 0xd34: /* MMFAR MemManage Fault Address */ 911 return cpu->env.v7m.mmfar[attrs.secure]; 912 case 0xd38: /* Bus Fault Address. */ 913 return cpu->env.v7m.bfar; 914 case 0xd3c: /* Aux Fault Status. */ 915 /* TODO: Implement fault status registers. */ 916 qemu_log_mask(LOG_UNIMP, 917 "Aux Fault status registers unimplemented\n"); 918 return 0; 919 case 0xd40: /* PFR0. */ 920 return 0x00000030; 921 case 0xd44: /* PRF1. */ 922 return 0x00000200; 923 case 0xd48: /* DFR0. */ 924 return 0x00100000; 925 case 0xd4c: /* AFR0. */ 926 return 0x00000000; 927 case 0xd50: /* MMFR0. */ 928 return 0x00000030; 929 case 0xd54: /* MMFR1. */ 930 return 0x00000000; 931 case 0xd58: /* MMFR2. */ 932 return 0x00000000; 933 case 0xd5c: /* MMFR3. */ 934 return 0x00000000; 935 case 0xd60: /* ISAR0. */ 936 return 0x01141110; 937 case 0xd64: /* ISAR1. */ 938 return 0x02111000; 939 case 0xd68: /* ISAR2. */ 940 return 0x21112231; 941 case 0xd6c: /* ISAR3. */ 942 return 0x01111110; 943 case 0xd70: /* ISAR4. */ 944 return 0x01310102; 945 /* TODO: Implement debug registers. */ 946 case 0xd90: /* MPU_TYPE */ 947 /* Unified MPU; if the MPU is not present this value is zero */ 948 return cpu->pmsav7_dregion << 8; 949 break; 950 case 0xd94: /* MPU_CTRL */ 951 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 952 case 0xd98: /* MPU_RNR */ 953 return cpu->env.pmsav7.rnr[attrs.secure]; 954 case 0xd9c: /* MPU_RBAR */ 955 case 0xda4: /* MPU_RBAR_A1 */ 956 case 0xdac: /* MPU_RBAR_A2 */ 957 case 0xdb4: /* MPU_RBAR_A3 */ 958 { 959 int region = cpu->env.pmsav7.rnr[attrs.secure]; 960 961 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 962 /* PMSAv8M handling of the aliases is different from v7M: 963 * aliases A1, A2, A3 override the low two bits of the region 964 * number in MPU_RNR, and there is no 'region' field in the 965 * RBAR register. 966 */ 967 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 968 if (aliasno) { 969 region = deposit32(region, 0, 2, aliasno); 970 } 971 if (region >= cpu->pmsav7_dregion) { 972 return 0; 973 } 974 return cpu->env.pmsav8.rbar[attrs.secure][region]; 975 } 976 977 if (region >= cpu->pmsav7_dregion) { 978 return 0; 979 } 980 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 981 } 982 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 983 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 984 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 985 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 986 { 987 int region = cpu->env.pmsav7.rnr[attrs.secure]; 988 989 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 990 /* PMSAv8M handling of the aliases is different from v7M: 991 * aliases A1, A2, A3 override the low two bits of the region 992 * number in MPU_RNR. 993 */ 994 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 995 if (aliasno) { 996 region = deposit32(region, 0, 2, aliasno); 997 } 998 if (region >= cpu->pmsav7_dregion) { 999 return 0; 1000 } 1001 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1002 } 1003 1004 if (region >= cpu->pmsav7_dregion) { 1005 return 0; 1006 } 1007 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1008 (cpu->env.pmsav7.drsr[region] & 0xffff); 1009 } 1010 case 0xdc0: /* MPU_MAIR0 */ 1011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1012 goto bad_offset; 1013 } 1014 return cpu->env.pmsav8.mair0[attrs.secure]; 1015 case 0xdc4: /* MPU_MAIR1 */ 1016 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1017 goto bad_offset; 1018 } 1019 return cpu->env.pmsav8.mair1[attrs.secure]; 1020 case 0xdd0: /* SAU_CTRL */ 1021 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1022 goto bad_offset; 1023 } 1024 if (!attrs.secure) { 1025 return 0; 1026 } 1027 return cpu->env.sau.ctrl; 1028 case 0xdd4: /* SAU_TYPE */ 1029 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1030 goto bad_offset; 1031 } 1032 if (!attrs.secure) { 1033 return 0; 1034 } 1035 return cpu->sau_sregion; 1036 case 0xdd8: /* SAU_RNR */ 1037 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1038 goto bad_offset; 1039 } 1040 if (!attrs.secure) { 1041 return 0; 1042 } 1043 return cpu->env.sau.rnr; 1044 case 0xddc: /* SAU_RBAR */ 1045 { 1046 int region = cpu->env.sau.rnr; 1047 1048 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1049 goto bad_offset; 1050 } 1051 if (!attrs.secure) { 1052 return 0; 1053 } 1054 if (region >= cpu->sau_sregion) { 1055 return 0; 1056 } 1057 return cpu->env.sau.rbar[region]; 1058 } 1059 case 0xde0: /* SAU_RLAR */ 1060 { 1061 int region = cpu->env.sau.rnr; 1062 1063 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1064 goto bad_offset; 1065 } 1066 if (!attrs.secure) { 1067 return 0; 1068 } 1069 if (region >= cpu->sau_sregion) { 1070 return 0; 1071 } 1072 return cpu->env.sau.rlar[region]; 1073 } 1074 case 0xde4: /* SFSR */ 1075 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1076 goto bad_offset; 1077 } 1078 if (!attrs.secure) { 1079 return 0; 1080 } 1081 return cpu->env.v7m.sfsr; 1082 case 0xde8: /* SFAR */ 1083 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1084 goto bad_offset; 1085 } 1086 if (!attrs.secure) { 1087 return 0; 1088 } 1089 return cpu->env.v7m.sfar; 1090 default: 1091 bad_offset: 1092 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1093 return 0; 1094 } 1095 } 1096 1097 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1098 MemTxAttrs attrs) 1099 { 1100 ARMCPU *cpu = s->cpu; 1101 1102 switch (offset) { 1103 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1104 { 1105 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1106 int i; 1107 1108 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1109 goto bad_offset; 1110 } 1111 if (!attrs.secure) { 1112 break; 1113 } 1114 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1115 s->itns[startvec + i] = (value >> i) & 1; 1116 } 1117 nvic_irq_update(s); 1118 break; 1119 } 1120 case 0xd04: /* Interrupt Control State (ICSR) */ 1121 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1122 if (value & (1 << 31)) { 1123 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1124 } else if (value & (1 << 30) && 1125 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1126 /* PENDNMICLR didn't exist in v7M */ 1127 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1128 } 1129 } 1130 if (value & (1 << 28)) { 1131 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1132 } else if (value & (1 << 27)) { 1133 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1134 } 1135 if (value & (1 << 26)) { 1136 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1137 } else if (value & (1 << 25)) { 1138 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1139 } 1140 break; 1141 case 0xd08: /* Vector Table Offset. */ 1142 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1143 break; 1144 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1145 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1146 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1147 if (attrs.secure || 1148 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1149 qemu_irq_pulse(s->sysresetreq); 1150 } 1151 } 1152 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1153 qemu_log_mask(LOG_GUEST_ERROR, 1154 "Setting VECTCLRACTIVE when not in DEBUG mode " 1155 "is UNPREDICTABLE\n"); 1156 } 1157 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1158 /* NB: this bit is RES0 in v8M */ 1159 qemu_log_mask(LOG_GUEST_ERROR, 1160 "Setting VECTRESET when not in DEBUG mode " 1161 "is UNPREDICTABLE\n"); 1162 } 1163 s->prigroup[attrs.secure] = extract32(value, 1164 R_V7M_AIRCR_PRIGROUP_SHIFT, 1165 R_V7M_AIRCR_PRIGROUP_LENGTH); 1166 if (attrs.secure) { 1167 /* These bits are only writable by secure */ 1168 cpu->env.v7m.aircr = value & 1169 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1170 R_V7M_AIRCR_BFHFNMINS_MASK | 1171 R_V7M_AIRCR_PRIS_MASK); 1172 /* BFHFNMINS changes the priority of Secure HardFault, and 1173 * allows a pending Non-secure HardFault to preempt (which 1174 * we implement by marking it enabled). 1175 */ 1176 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1177 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1178 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1179 } else { 1180 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1181 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1182 } 1183 } 1184 nvic_irq_update(s); 1185 } 1186 break; 1187 case 0xd10: /* System Control. */ 1188 /* TODO: Implement control registers. */ 1189 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 1190 break; 1191 case 0xd14: /* Configuration Control. */ 1192 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1193 value &= (R_V7M_CCR_STKALIGN_MASK | 1194 R_V7M_CCR_BFHFNMIGN_MASK | 1195 R_V7M_CCR_DIV_0_TRP_MASK | 1196 R_V7M_CCR_UNALIGN_TRP_MASK | 1197 R_V7M_CCR_USERSETMPEND_MASK | 1198 R_V7M_CCR_NONBASETHRDENA_MASK); 1199 1200 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1201 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1202 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1203 | R_V7M_CCR_STKALIGN_MASK; 1204 } 1205 if (attrs.secure) { 1206 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1207 cpu->env.v7m.ccr[M_REG_NS] = 1208 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1209 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1210 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1211 } 1212 1213 cpu->env.v7m.ccr[attrs.secure] = value; 1214 break; 1215 case 0xd24: /* System Handler Control and State (SHCSR) */ 1216 if (attrs.secure) { 1217 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1218 /* Secure HardFault active bit cannot be written */ 1219 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1220 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1221 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1222 (value & (1 << 10)) != 0; 1223 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1224 (value & (1 << 11)) != 0; 1225 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1226 (value & (1 << 12)) != 0; 1227 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1228 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1229 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1230 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1231 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1232 (value & (1 << 18)) != 0; 1233 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1234 /* SecureFault not banked, but RAZ/WI to NS */ 1235 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1236 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1237 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1238 } else { 1239 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1240 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1241 /* HARDFAULTPENDED is not present in v7M */ 1242 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1243 } 1244 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1245 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1246 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1247 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1248 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1249 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1250 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1251 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1252 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1253 } 1254 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1255 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1256 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1257 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1258 } 1259 /* NMIACT can only be written if the write is of a zero, with 1260 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1261 */ 1262 if (!attrs.secure && cpu->env.v7m.secure && 1263 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1264 (value & (1 << 5)) == 0) { 1265 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1266 } 1267 /* HARDFAULTACT can only be written if the write is of a zero 1268 * to the non-secure HardFault state by the CPU in secure state. 1269 * The only case where we can be targeting the non-secure HF state 1270 * when in secure state is if this is a write via the NS alias 1271 * and BFHFNMINS is 1. 1272 */ 1273 if (!attrs.secure && cpu->env.v7m.secure && 1274 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1275 (value & (1 << 2)) == 0) { 1276 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1277 } 1278 1279 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1280 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1281 nvic_irq_update(s); 1282 break; 1283 case 0xd28: /* Configurable Fault Status. */ 1284 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */ 1285 if (attrs.secure) { 1286 /* The BFSR bits [15:8] are shared between security states 1287 * and we store them in the NS copy. 1288 */ 1289 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1290 } 1291 break; 1292 case 0xd2c: /* Hard Fault Status. */ 1293 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1294 break; 1295 case 0xd30: /* Debug Fault Status. */ 1296 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1297 break; 1298 case 0xd34: /* Mem Manage Address. */ 1299 cpu->env.v7m.mmfar[attrs.secure] = value; 1300 return; 1301 case 0xd38: /* Bus Fault Address. */ 1302 cpu->env.v7m.bfar = value; 1303 return; 1304 case 0xd3c: /* Aux Fault Status. */ 1305 qemu_log_mask(LOG_UNIMP, 1306 "NVIC: Aux fault status registers unimplemented\n"); 1307 break; 1308 case 0xd90: /* MPU_TYPE */ 1309 return; /* RO */ 1310 case 0xd94: /* MPU_CTRL */ 1311 if ((value & 1312 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1313 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1314 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1315 "UNPREDICTABLE\n"); 1316 } 1317 cpu->env.v7m.mpu_ctrl[attrs.secure] 1318 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1319 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1320 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1321 tlb_flush(CPU(cpu)); 1322 break; 1323 case 0xd98: /* MPU_RNR */ 1324 if (value >= cpu->pmsav7_dregion) { 1325 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1326 PRIu32 "/%" PRIu32 "\n", 1327 value, cpu->pmsav7_dregion); 1328 } else { 1329 cpu->env.pmsav7.rnr[attrs.secure] = value; 1330 } 1331 break; 1332 case 0xd9c: /* MPU_RBAR */ 1333 case 0xda4: /* MPU_RBAR_A1 */ 1334 case 0xdac: /* MPU_RBAR_A2 */ 1335 case 0xdb4: /* MPU_RBAR_A3 */ 1336 { 1337 int region; 1338 1339 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1340 /* PMSAv8M handling of the aliases is different from v7M: 1341 * aliases A1, A2, A3 override the low two bits of the region 1342 * number in MPU_RNR, and there is no 'region' field in the 1343 * RBAR register. 1344 */ 1345 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1346 1347 region = cpu->env.pmsav7.rnr[attrs.secure]; 1348 if (aliasno) { 1349 region = deposit32(region, 0, 2, aliasno); 1350 } 1351 if (region >= cpu->pmsav7_dregion) { 1352 return; 1353 } 1354 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1355 tlb_flush(CPU(cpu)); 1356 return; 1357 } 1358 1359 if (value & (1 << 4)) { 1360 /* VALID bit means use the region number specified in this 1361 * value and also update MPU_RNR.REGION with that value. 1362 */ 1363 region = extract32(value, 0, 4); 1364 if (region >= cpu->pmsav7_dregion) { 1365 qemu_log_mask(LOG_GUEST_ERROR, 1366 "MPU region out of range %u/%" PRIu32 "\n", 1367 region, cpu->pmsav7_dregion); 1368 return; 1369 } 1370 cpu->env.pmsav7.rnr[attrs.secure] = region; 1371 } else { 1372 region = cpu->env.pmsav7.rnr[attrs.secure]; 1373 } 1374 1375 if (region >= cpu->pmsav7_dregion) { 1376 return; 1377 } 1378 1379 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1380 tlb_flush(CPU(cpu)); 1381 break; 1382 } 1383 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1384 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1385 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1386 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1387 { 1388 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1389 1390 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1391 /* PMSAv8M handling of the aliases is different from v7M: 1392 * aliases A1, A2, A3 override the low two bits of the region 1393 * number in MPU_RNR. 1394 */ 1395 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1396 1397 region = cpu->env.pmsav7.rnr[attrs.secure]; 1398 if (aliasno) { 1399 region = deposit32(region, 0, 2, aliasno); 1400 } 1401 if (region >= cpu->pmsav7_dregion) { 1402 return; 1403 } 1404 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1405 tlb_flush(CPU(cpu)); 1406 return; 1407 } 1408 1409 if (region >= cpu->pmsav7_dregion) { 1410 return; 1411 } 1412 1413 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1414 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1415 tlb_flush(CPU(cpu)); 1416 break; 1417 } 1418 case 0xdc0: /* MPU_MAIR0 */ 1419 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1420 goto bad_offset; 1421 } 1422 if (cpu->pmsav7_dregion) { 1423 /* Register is RES0 if no MPU regions are implemented */ 1424 cpu->env.pmsav8.mair0[attrs.secure] = value; 1425 } 1426 /* We don't need to do anything else because memory attributes 1427 * only affect cacheability, and we don't implement caching. 1428 */ 1429 break; 1430 case 0xdc4: /* MPU_MAIR1 */ 1431 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1432 goto bad_offset; 1433 } 1434 if (cpu->pmsav7_dregion) { 1435 /* Register is RES0 if no MPU regions are implemented */ 1436 cpu->env.pmsav8.mair1[attrs.secure] = value; 1437 } 1438 /* We don't need to do anything else because memory attributes 1439 * only affect cacheability, and we don't implement caching. 1440 */ 1441 break; 1442 case 0xdd0: /* SAU_CTRL */ 1443 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1444 goto bad_offset; 1445 } 1446 if (!attrs.secure) { 1447 return; 1448 } 1449 cpu->env.sau.ctrl = value & 3; 1450 break; 1451 case 0xdd4: /* SAU_TYPE */ 1452 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1453 goto bad_offset; 1454 } 1455 break; 1456 case 0xdd8: /* SAU_RNR */ 1457 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1458 goto bad_offset; 1459 } 1460 if (!attrs.secure) { 1461 return; 1462 } 1463 if (value >= cpu->sau_sregion) { 1464 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1465 PRIu32 "/%" PRIu32 "\n", 1466 value, cpu->sau_sregion); 1467 } else { 1468 cpu->env.sau.rnr = value; 1469 } 1470 break; 1471 case 0xddc: /* SAU_RBAR */ 1472 { 1473 int region = cpu->env.sau.rnr; 1474 1475 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1476 goto bad_offset; 1477 } 1478 if (!attrs.secure) { 1479 return; 1480 } 1481 if (region >= cpu->sau_sregion) { 1482 return; 1483 } 1484 cpu->env.sau.rbar[region] = value & ~0x1f; 1485 tlb_flush(CPU(cpu)); 1486 break; 1487 } 1488 case 0xde0: /* SAU_RLAR */ 1489 { 1490 int region = cpu->env.sau.rnr; 1491 1492 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1493 goto bad_offset; 1494 } 1495 if (!attrs.secure) { 1496 return; 1497 } 1498 if (region >= cpu->sau_sregion) { 1499 return; 1500 } 1501 cpu->env.sau.rlar[region] = value & ~0x1c; 1502 tlb_flush(CPU(cpu)); 1503 break; 1504 } 1505 case 0xde4: /* SFSR */ 1506 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1507 goto bad_offset; 1508 } 1509 if (!attrs.secure) { 1510 return; 1511 } 1512 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1513 break; 1514 case 0xde8: /* SFAR */ 1515 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1516 goto bad_offset; 1517 } 1518 if (!attrs.secure) { 1519 return; 1520 } 1521 cpu->env.v7m.sfsr = value; 1522 break; 1523 case 0xf00: /* Software Triggered Interrupt Register */ 1524 { 1525 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1526 if (excnum < s->num_irq) { 1527 armv7m_nvic_set_pending(s, excnum, false); 1528 } 1529 break; 1530 } 1531 default: 1532 bad_offset: 1533 qemu_log_mask(LOG_GUEST_ERROR, 1534 "NVIC: Bad write offset 0x%x\n", offset); 1535 } 1536 } 1537 1538 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1539 { 1540 /* Return true if unprivileged access to this register is permitted. */ 1541 switch (offset) { 1542 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1543 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1544 * controls access even though the CPU is in Secure state (I_QDKX). 1545 */ 1546 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1547 default: 1548 /* All other user accesses cause a BusFault unconditionally */ 1549 return false; 1550 } 1551 } 1552 1553 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1554 { 1555 /* Behaviour for the SHPR register field for this exception: 1556 * return M_REG_NS to use the nonsecure vector (including for 1557 * non-banked exceptions), M_REG_S for the secure version of 1558 * a banked exception, and -1 if this field should RAZ/WI. 1559 */ 1560 switch (exc) { 1561 case ARMV7M_EXCP_MEM: 1562 case ARMV7M_EXCP_USAGE: 1563 case ARMV7M_EXCP_SVC: 1564 case ARMV7M_EXCP_PENDSV: 1565 case ARMV7M_EXCP_SYSTICK: 1566 /* Banked exceptions */ 1567 return attrs.secure; 1568 case ARMV7M_EXCP_BUS: 1569 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1570 if (!attrs.secure && 1571 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1572 return -1; 1573 } 1574 return M_REG_NS; 1575 case ARMV7M_EXCP_SECURE: 1576 /* Not banked, RAZ/WI from nonsecure */ 1577 if (!attrs.secure) { 1578 return -1; 1579 } 1580 return M_REG_NS; 1581 case ARMV7M_EXCP_DEBUG: 1582 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1583 return M_REG_NS; 1584 case 8 ... 10: 1585 case 13: 1586 /* RES0 */ 1587 return -1; 1588 default: 1589 /* Not reachable due to decode of SHPR register addresses */ 1590 g_assert_not_reached(); 1591 } 1592 } 1593 1594 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1595 uint64_t *data, unsigned size, 1596 MemTxAttrs attrs) 1597 { 1598 NVICState *s = (NVICState *)opaque; 1599 uint32_t offset = addr; 1600 unsigned i, startvec, end; 1601 uint32_t val; 1602 1603 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1604 /* Generate BusFault for unprivileged accesses */ 1605 return MEMTX_ERROR; 1606 } 1607 1608 switch (offset) { 1609 /* reads of set and clear both return the status */ 1610 case 0x100 ... 0x13f: /* NVIC Set enable */ 1611 offset += 0x80; 1612 /* fall through */ 1613 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1614 val = 0; 1615 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 1616 1617 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1618 if (s->vectors[startvec + i].enabled && 1619 (attrs.secure || s->itns[startvec + i])) { 1620 val |= (1 << i); 1621 } 1622 } 1623 break; 1624 case 0x200 ... 0x23f: /* NVIC Set pend */ 1625 offset += 0x80; 1626 /* fall through */ 1627 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1628 val = 0; 1629 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 1630 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1631 if (s->vectors[startvec + i].pending && 1632 (attrs.secure || s->itns[startvec + i])) { 1633 val |= (1 << i); 1634 } 1635 } 1636 break; 1637 case 0x300 ... 0x33f: /* NVIC Active */ 1638 val = 0; 1639 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 1640 1641 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1642 if (s->vectors[startvec + i].active && 1643 (attrs.secure || s->itns[startvec + i])) { 1644 val |= (1 << i); 1645 } 1646 } 1647 break; 1648 case 0x400 ... 0x5ef: /* NVIC Priority */ 1649 val = 0; 1650 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1651 1652 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1653 if (attrs.secure || s->itns[startvec + i]) { 1654 val |= s->vectors[startvec + i].prio << (8 * i); 1655 } 1656 } 1657 break; 1658 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1659 val = 0; 1660 for (i = 0; i < size; i++) { 1661 unsigned hdlidx = (offset - 0xd14) + i; 1662 int sbank = shpr_bank(s, hdlidx, attrs); 1663 1664 if (sbank < 0) { 1665 continue; 1666 } 1667 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1668 } 1669 break; 1670 case 0xfe0 ... 0xfff: /* ID. */ 1671 if (offset & 3) { 1672 val = 0; 1673 } else { 1674 val = nvic_id[(offset - 0xfe0) >> 2]; 1675 } 1676 break; 1677 default: 1678 if (size == 4) { 1679 val = nvic_readl(s, offset, attrs); 1680 } else { 1681 qemu_log_mask(LOG_GUEST_ERROR, 1682 "NVIC: Bad read of size %d at offset 0x%x\n", 1683 size, offset); 1684 val = 0; 1685 } 1686 } 1687 1688 trace_nvic_sysreg_read(addr, val, size); 1689 *data = val; 1690 return MEMTX_OK; 1691 } 1692 1693 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1694 uint64_t value, unsigned size, 1695 MemTxAttrs attrs) 1696 { 1697 NVICState *s = (NVICState *)opaque; 1698 uint32_t offset = addr; 1699 unsigned i, startvec, end; 1700 unsigned setval = 0; 1701 1702 trace_nvic_sysreg_write(addr, value, size); 1703 1704 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1705 /* Generate BusFault for unprivileged accesses */ 1706 return MEMTX_ERROR; 1707 } 1708 1709 switch (offset) { 1710 case 0x100 ... 0x13f: /* NVIC Set enable */ 1711 offset += 0x80; 1712 setval = 1; 1713 /* fall through */ 1714 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1715 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1716 1717 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1718 if (value & (1 << i) && 1719 (attrs.secure || s->itns[startvec + i])) { 1720 s->vectors[startvec + i].enabled = setval; 1721 } 1722 } 1723 nvic_irq_update(s); 1724 return MEMTX_OK; 1725 case 0x200 ... 0x23f: /* NVIC Set pend */ 1726 /* the special logic in armv7m_nvic_set_pending() 1727 * is not needed since IRQs are never escalated 1728 */ 1729 offset += 0x80; 1730 setval = 1; 1731 /* fall through */ 1732 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1733 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1734 1735 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1736 if (value & (1 << i) && 1737 (attrs.secure || s->itns[startvec + i])) { 1738 s->vectors[startvec + i].pending = setval; 1739 } 1740 } 1741 nvic_irq_update(s); 1742 return MEMTX_OK; 1743 case 0x300 ... 0x33f: /* NVIC Active */ 1744 return MEMTX_OK; /* R/O */ 1745 case 0x400 ... 0x5ef: /* NVIC Priority */ 1746 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1747 1748 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1749 if (attrs.secure || s->itns[startvec + i]) { 1750 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1751 } 1752 } 1753 nvic_irq_update(s); 1754 return MEMTX_OK; 1755 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1756 for (i = 0; i < size; i++) { 1757 unsigned hdlidx = (offset - 0xd14) + i; 1758 int newprio = extract32(value, i * 8, 8); 1759 int sbank = shpr_bank(s, hdlidx, attrs); 1760 1761 if (sbank < 0) { 1762 continue; 1763 } 1764 set_prio(s, hdlidx, sbank, newprio); 1765 } 1766 nvic_irq_update(s); 1767 return MEMTX_OK; 1768 } 1769 if (size == 4) { 1770 nvic_writel(s, offset, value, attrs); 1771 return MEMTX_OK; 1772 } 1773 qemu_log_mask(LOG_GUEST_ERROR, 1774 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1775 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1776 return MEMTX_OK; 1777 } 1778 1779 static const MemoryRegionOps nvic_sysreg_ops = { 1780 .read_with_attrs = nvic_sysreg_read, 1781 .write_with_attrs = nvic_sysreg_write, 1782 .endianness = DEVICE_NATIVE_ENDIAN, 1783 }; 1784 1785 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1786 uint64_t value, unsigned size, 1787 MemTxAttrs attrs) 1788 { 1789 if (attrs.secure) { 1790 /* S accesses to the alias act like NS accesses to the real region */ 1791 attrs.secure = 0; 1792 return nvic_sysreg_write(opaque, addr, value, size, attrs); 1793 } else { 1794 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1795 if (attrs.user) { 1796 return MEMTX_ERROR; 1797 } 1798 return MEMTX_OK; 1799 } 1800 } 1801 1802 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1803 uint64_t *data, unsigned size, 1804 MemTxAttrs attrs) 1805 { 1806 if (attrs.secure) { 1807 /* S accesses to the alias act like NS accesses to the real region */ 1808 attrs.secure = 0; 1809 return nvic_sysreg_read(opaque, addr, data, size, attrs); 1810 } else { 1811 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1812 if (attrs.user) { 1813 return MEMTX_ERROR; 1814 } 1815 *data = 0; 1816 return MEMTX_OK; 1817 } 1818 } 1819 1820 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1821 .read_with_attrs = nvic_sysreg_ns_read, 1822 .write_with_attrs = nvic_sysreg_ns_write, 1823 .endianness = DEVICE_NATIVE_ENDIAN, 1824 }; 1825 1826 static int nvic_post_load(void *opaque, int version_id) 1827 { 1828 NVICState *s = opaque; 1829 unsigned i; 1830 int resetprio; 1831 1832 /* Check for out of range priority settings */ 1833 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1834 1835 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 1836 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1837 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1838 return 1; 1839 } 1840 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1841 if (s->vectors[i].prio & ~0xff) { 1842 return 1; 1843 } 1844 } 1845 1846 nvic_recompute_state(s); 1847 1848 return 0; 1849 } 1850 1851 static const VMStateDescription vmstate_VecInfo = { 1852 .name = "armv7m_nvic_info", 1853 .version_id = 1, 1854 .minimum_version_id = 1, 1855 .fields = (VMStateField[]) { 1856 VMSTATE_INT16(prio, VecInfo), 1857 VMSTATE_UINT8(enabled, VecInfo), 1858 VMSTATE_UINT8(pending, VecInfo), 1859 VMSTATE_UINT8(active, VecInfo), 1860 VMSTATE_UINT8(level, VecInfo), 1861 VMSTATE_END_OF_LIST() 1862 } 1863 }; 1864 1865 static bool nvic_security_needed(void *opaque) 1866 { 1867 NVICState *s = opaque; 1868 1869 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 1870 } 1871 1872 static int nvic_security_post_load(void *opaque, int version_id) 1873 { 1874 NVICState *s = opaque; 1875 int i; 1876 1877 /* Check for out of range priority settings */ 1878 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 1879 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 1880 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 1881 * if the CPU state has been migrated yet; a mismatch won't 1882 * cause the emulation to blow up, though. 1883 */ 1884 return 1; 1885 } 1886 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 1887 if (s->sec_vectors[i].prio & ~0xff) { 1888 return 1; 1889 } 1890 } 1891 return 0; 1892 } 1893 1894 static const VMStateDescription vmstate_nvic_security = { 1895 .name = "nvic/m-security", 1896 .version_id = 1, 1897 .minimum_version_id = 1, 1898 .needed = nvic_security_needed, 1899 .post_load = &nvic_security_post_load, 1900 .fields = (VMStateField[]) { 1901 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 1902 vmstate_VecInfo, VecInfo), 1903 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 1904 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 1905 VMSTATE_END_OF_LIST() 1906 } 1907 }; 1908 1909 static const VMStateDescription vmstate_nvic = { 1910 .name = "armv7m_nvic", 1911 .version_id = 4, 1912 .minimum_version_id = 4, 1913 .post_load = &nvic_post_load, 1914 .fields = (VMStateField[]) { 1915 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1916 vmstate_VecInfo, VecInfo), 1917 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 1918 VMSTATE_END_OF_LIST() 1919 }, 1920 .subsections = (const VMStateDescription*[]) { 1921 &vmstate_nvic_security, 1922 NULL 1923 } 1924 }; 1925 1926 static Property props_nvic[] = { 1927 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1928 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1929 DEFINE_PROP_END_OF_LIST() 1930 }; 1931 1932 static void armv7m_nvic_reset(DeviceState *dev) 1933 { 1934 int resetprio; 1935 NVICState *s = NVIC(dev); 1936 1937 memset(s->vectors, 0, sizeof(s->vectors)); 1938 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 1939 s->prigroup[M_REG_NS] = 0; 1940 s->prigroup[M_REG_S] = 0; 1941 1942 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1943 /* MEM, BUS, and USAGE are enabled through 1944 * the System Handler Control register 1945 */ 1946 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1947 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1948 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1949 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1950 1951 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1952 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 1953 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1954 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1955 1956 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1957 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 1958 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 1959 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1960 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1961 1962 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 1963 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1964 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 1965 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1966 } else { 1967 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1968 } 1969 1970 /* Strictly speaking the reset handler should be enabled. 1971 * However, we don't simulate soft resets through the NVIC, 1972 * and the reset vector should never be pended. 1973 * So we leave it disabled to catch logic errors. 1974 */ 1975 1976 s->exception_prio = NVIC_NOEXC_PRIO; 1977 s->vectpending = 0; 1978 s->vectpending_is_s_banked = false; 1979 s->vectpending_prio = NVIC_NOEXC_PRIO; 1980 1981 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1982 memset(s->itns, 0, sizeof(s->itns)); 1983 } else { 1984 /* This state is constant and not guest accessible in a non-security 1985 * NVIC; we set the bits to true to avoid having to do a feature 1986 * bit check in the NVIC enable/pend/etc register accessors. 1987 */ 1988 int i; 1989 1990 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 1991 s->itns[i] = true; 1992 } 1993 } 1994 } 1995 1996 static void nvic_systick_trigger(void *opaque, int n, int level) 1997 { 1998 NVICState *s = opaque; 1999 2000 if (level) { 2001 /* SysTick just asked us to pend its exception. 2002 * (This is different from an external interrupt line's 2003 * behaviour.) 2004 * TODO: when we implement the banked systicks we must make 2005 * this pend the correct banked exception. 2006 */ 2007 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, false); 2008 } 2009 } 2010 2011 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2012 { 2013 NVICState *s = NVIC(dev); 2014 SysBusDevice *systick_sbd; 2015 Error *err = NULL; 2016 int regionlen; 2017 2018 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2019 assert(s->cpu); 2020 2021 if (s->num_irq > NVIC_MAX_IRQ) { 2022 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2023 return; 2024 } 2025 2026 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2027 2028 /* include space for internal exception vectors */ 2029 s->num_irq += NVIC_FIRST_IRQ; 2030 2031 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 2032 if (err != NULL) { 2033 error_propagate(errp, err); 2034 return; 2035 } 2036 systick_sbd = SYS_BUS_DEVICE(&s->systick); 2037 sysbus_connect_irq(systick_sbd, 0, 2038 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 2039 2040 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2041 * and looks like this: 2042 * 0x004 - ICTR 2043 * 0x010 - 0xff - systick 2044 * 0x100..0x7ec - NVIC 2045 * 0x7f0..0xcff - Reserved 2046 * 0xd00..0xd3c - SCS registers 2047 * 0xd40..0xeff - Reserved or Not implemented 2048 * 0xf00 - STIR 2049 * 2050 * Some registers within this space are banked between security states. 2051 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2052 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2053 * to the main SCS range, and non-secure accesses (including when 2054 * the security extension is not implemented) are RAZ/WI. 2055 * Note that both the main SCS range and the alias range are defined 2056 * to be exempt from memory attribution (R_BLJT) and so the memory 2057 * transaction attribute always matches the current CPU security 2058 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2059 * wrappers we change attrs.secure to indicate the NS access; so 2060 * generally code determining which banked register to use should 2061 * use attrs.secure; code determining actual behaviour of the system 2062 * should use env->v7m.secure. 2063 */ 2064 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2065 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2066 /* The system register region goes at the bottom of the priority 2067 * stack as it covers the whole page. 2068 */ 2069 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2070 "nvic_sysregs", 0x1000); 2071 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2072 memory_region_add_subregion_overlap(&s->container, 0x10, 2073 sysbus_mmio_get_region(systick_sbd, 0), 2074 1); 2075 2076 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2077 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2078 &nvic_sysreg_ns_ops, s, 2079 "nvic_sysregs_ns", 0x1000); 2080 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2081 } 2082 2083 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2084 } 2085 2086 static void armv7m_nvic_instance_init(Object *obj) 2087 { 2088 /* We have a different default value for the num-irq property 2089 * than our superclass. This function runs after qdev init 2090 * has set the defaults from the Property array and before 2091 * any user-specified property setting, so just modify the 2092 * value in the GICState struct. 2093 */ 2094 DeviceState *dev = DEVICE(obj); 2095 NVICState *nvic = NVIC(obj); 2096 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2097 2098 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 2099 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 2100 2101 sysbus_init_irq(sbd, &nvic->excpout); 2102 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2103 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 2104 } 2105 2106 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2107 { 2108 DeviceClass *dc = DEVICE_CLASS(klass); 2109 2110 dc->vmsd = &vmstate_nvic; 2111 dc->props = props_nvic; 2112 dc->reset = armv7m_nvic_reset; 2113 dc->realize = armv7m_nvic_realize; 2114 } 2115 2116 static const TypeInfo armv7m_nvic_info = { 2117 .name = TYPE_NVIC, 2118 .parent = TYPE_SYS_BUS_DEVICE, 2119 .instance_init = armv7m_nvic_instance_init, 2120 .instance_size = sizeof(NVICState), 2121 .class_init = armv7m_nvic_class_init, 2122 .class_size = sizeof(SysBusDeviceClass), 2123 }; 2124 2125 static void armv7m_nvic_register_types(void) 2126 { 2127 type_register_static(&armv7m_nvic_info); 2128 } 2129 2130 type_init(armv7m_nvic_register_types) 2131