xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision ae7c5c855b71f2de23dbad3b97bbe1c0375d6fd3)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528 
529     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530     assert(!secure || banked);
531 
532     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
533 
534     trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
535 
536     if (derived) {
537         /* Derived exceptions are always synchronous. */
538         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
539 
540         if (irq == ARMV7M_EXCP_DEBUG &&
541             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542             /* DebugMonitorFault, but its priority is lower than the
543              * preempted exception priority: just ignore it.
544              */
545             return;
546         }
547 
548         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549             /* If this is a terminal exception (one which means we cannot
550              * take the original exception, like a failure to read its
551              * vector table entry), then we must take the derived exception.
552              * If the derived exception can't take priority over the
553              * original exception, then we go into Lockup.
554              *
555              * For QEMU, we rely on the fact that a derived exception is
556              * terminal if and only if it's reported to us as HardFault,
557              * which saves having to have an extra argument is_terminal
558              * that we'd only use in one place.
559              */
560             cpu_abort(&s->cpu->parent_obj,
561                       "Lockup: can't take terminal derived exception "
562                       "(original exception priority %d)\n",
563                       s->vectpending_prio);
564         }
565         /* We now continue with the same code as for a normal pending
566          * exception, which will cause us to pend the derived exception.
567          * We'll then take either the original or the derived exception
568          * based on which is higher priority by the usual mechanism
569          * for selecting the highest priority pending interrupt.
570          */
571     }
572 
573     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574         /* If a synchronous exception is pending then it may be
575          * escalated to HardFault if:
576          *  * it is equal or lower priority to current execution
577          *  * it is disabled
578          * (ie we need to take it immediately but we can't do so).
579          * Asynchronous exceptions (and interrupts) simply remain pending.
580          *
581          * For QEMU, we don't have any imprecise (asynchronous) faults,
582          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583          * synchronous.
584          * Debug exceptions are awkward because only Debug exceptions
585          * resulting from the BKPT instruction should be escalated,
586          * but we don't currently implement any Debug exceptions other
587          * than those that result from BKPT, so we treat all debug exceptions
588          * as needing escalation.
589          *
590          * This all means we can identify whether to escalate based only on
591          * the exception number and don't (yet) need the caller to explicitly
592          * tell us whether this exception is synchronous or not.
593          */
594         int running = nvic_exec_prio(s);
595         bool escalate = false;
596 
597         if (exc_group_prio(s, vec->prio, secure) >= running) {
598             trace_nvic_escalate_prio(irq, vec->prio, running);
599             escalate = true;
600         } else if (!vec->enabled) {
601             trace_nvic_escalate_disabled(irq);
602             escalate = true;
603         }
604 
605         if (escalate) {
606 
607             /* We need to escalate this exception to a synchronous HardFault.
608              * If BFHFNMINS is set then we escalate to the banked HF for
609              * the target security state of the original exception; otherwise
610              * we take a Secure HardFault.
611              */
612             irq = ARMV7M_EXCP_HARD;
613             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614                 (secure ||
615                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616                 vec = &s->sec_vectors[irq];
617             } else {
618                 vec = &s->vectors[irq];
619             }
620             if (running <= vec->prio) {
621                 /* We want to escalate to HardFault but we can't take the
622                  * synchronous HardFault at this point either. This is a
623                  * Lockup condition due to a guest bug. We don't model
624                  * Lockup, so report via cpu_abort() instead.
625                  */
626                 cpu_abort(&s->cpu->parent_obj,
627                           "Lockup: can't escalate %d to HardFault "
628                           "(current priority %d)\n", irq, running);
629             }
630 
631             /* HF may be banked but there is only one shared HFSR */
632             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
633         }
634     }
635 
636     if (!vec->pending) {
637         vec->pending = 1;
638         nvic_irq_update(s);
639     }
640 }
641 
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
643 {
644     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
645 }
646 
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
648 {
649     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
650 }
651 
652 /* Make pending IRQ active.  */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
654 {
655     NVICState *s = (NVICState *)opaque;
656     CPUARMState *env = &s->cpu->env;
657     const int pending = s->vectpending;
658     const int running = nvic_exec_prio(s);
659     VecInfo *vec;
660 
661     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
662 
663     if (s->vectpending_is_s_banked) {
664         vec = &s->sec_vectors[pending];
665     } else {
666         vec = &s->vectors[pending];
667     }
668 
669     assert(vec->enabled);
670     assert(vec->pending);
671 
672     assert(s->vectpending_prio < running);
673 
674     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
675 
676     vec->active = 1;
677     vec->pending = 0;
678 
679     write_v7m_exception(env, s->vectpending);
680 
681     nvic_irq_update(s);
682 }
683 
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685                                       int *pirq, bool *ptargets_secure)
686 {
687     NVICState *s = (NVICState *)opaque;
688     const int pending = s->vectpending;
689     bool targets_secure;
690 
691     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
692 
693     if (s->vectpending_is_s_banked) {
694         targets_secure = true;
695     } else {
696         targets_secure = !exc_is_banked(pending) &&
697             exc_targets_secure(s, pending);
698     }
699 
700     trace_nvic_get_pending_irq_info(pending, targets_secure);
701 
702     *ptargets_secure = targets_secure;
703     *pirq = pending;
704 }
705 
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
707 {
708     NVICState *s = (NVICState *)opaque;
709     VecInfo *vec;
710     int ret;
711 
712     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
713 
714     if (secure && exc_is_banked(irq)) {
715         vec = &s->sec_vectors[irq];
716     } else {
717         vec = &s->vectors[irq];
718     }
719 
720     trace_nvic_complete_irq(irq, secure);
721 
722     if (!vec->active) {
723         /* Tell the caller this was an illegal exception return */
724         return -1;
725     }
726 
727     ret = nvic_rettobase(s);
728 
729     vec->active = 0;
730     if (vec->level) {
731         /* Re-pend the exception if it's still held high; only
732          * happens for extenal IRQs
733          */
734         assert(irq >= NVIC_FIRST_IRQ);
735         vec->pending = 1;
736     }
737 
738     nvic_irq_update(s);
739 
740     return ret;
741 }
742 
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
745 {
746     NVICState *s = opaque;
747     VecInfo *vec;
748 
749     n += NVIC_FIRST_IRQ;
750 
751     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
752 
753     trace_nvic_set_irq_level(n, level);
754 
755     /* The pending status of an external interrupt is
756      * latched on rising edge and exception handler return.
757      *
758      * Pulsing the IRQ will always run the handler
759      * once, and the handler will re-run until the
760      * level is low when the handler completes.
761      */
762     vec = &s->vectors[n];
763     if (level != vec->level) {
764         vec->level = level;
765         if (level) {
766             armv7m_nvic_set_pending(s, n, false);
767         }
768     }
769 }
770 
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
772 {
773     ARMCPU *cpu = s->cpu;
774     uint32_t val;
775 
776     switch (offset) {
777     case 4: /* Interrupt Control Type.  */
778         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779     case 0xc: /* CPPWR */
780         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
781             goto bad_offset;
782         }
783         /* We make the IMPDEF choice that nothing can ever go into a
784          * non-retentive power state, which allows us to RAZ/WI this.
785          */
786         return 0;
787     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
788     {
789         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
790         int i;
791 
792         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
793             goto bad_offset;
794         }
795         if (!attrs.secure) {
796             return 0;
797         }
798         val = 0;
799         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
800             if (s->itns[startvec + i]) {
801                 val |= (1 << i);
802             }
803         }
804         return val;
805     }
806     case 0xd00: /* CPUID Base.  */
807         return cpu->midr;
808     case 0xd04: /* Interrupt Control State (ICSR) */
809         /* VECTACTIVE */
810         val = cpu->env.v7m.exception;
811         /* VECTPENDING */
812         val |= (s->vectpending & 0xff) << 12;
813         /* ISRPENDING - set if any external IRQ is pending */
814         if (nvic_isrpending(s)) {
815             val |= (1 << 22);
816         }
817         /* RETTOBASE - set if only one handler is active */
818         if (nvic_rettobase(s)) {
819             val |= (1 << 11);
820         }
821         if (attrs.secure) {
822             /* PENDSTSET */
823             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
824                 val |= (1 << 26);
825             }
826             /* PENDSVSET */
827             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
828                 val |= (1 << 28);
829             }
830         } else {
831             /* PENDSTSET */
832             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
833                 val |= (1 << 26);
834             }
835             /* PENDSVSET */
836             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
837                 val |= (1 << 28);
838             }
839         }
840         /* NMIPENDSET */
841         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
842             && s->vectors[ARMV7M_EXCP_NMI].pending) {
843             val |= (1 << 31);
844         }
845         /* ISRPREEMPT: RES0 when halting debug not implemented */
846         /* STTNS: RES0 for the Main Extension */
847         return val;
848     case 0xd08: /* Vector Table Offset.  */
849         return cpu->env.v7m.vecbase[attrs.secure];
850     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
851         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
852         if (attrs.secure) {
853             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
854             val |= cpu->env.v7m.aircr;
855         } else {
856             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
857                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
858                  * security isn't supported then BFHFNMINS is RAO (and
859                  * the bit in env.v7m.aircr is always set).
860                  */
861                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
862             }
863         }
864         return val;
865     case 0xd10: /* System Control.  */
866         /* TODO: Implement SLEEPONEXIT.  */
867         return 0;
868     case 0xd14: /* Configuration Control.  */
869         /* The BFHFNMIGN bit is the only non-banked bit; we
870          * keep it in the non-secure copy of the register.
871          */
872         val = cpu->env.v7m.ccr[attrs.secure];
873         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
874         return val;
875     case 0xd24: /* System Handler Control and State (SHCSR) */
876         val = 0;
877         if (attrs.secure) {
878             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
879                 val |= (1 << 0);
880             }
881             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
882                 val |= (1 << 2);
883             }
884             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
885                 val |= (1 << 3);
886             }
887             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
888                 val |= (1 << 7);
889             }
890             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
891                 val |= (1 << 10);
892             }
893             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
894                 val |= (1 << 11);
895             }
896             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
897                 val |= (1 << 12);
898             }
899             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
900                 val |= (1 << 13);
901             }
902             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
903                 val |= (1 << 15);
904             }
905             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
906                 val |= (1 << 16);
907             }
908             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
909                 val |= (1 << 18);
910             }
911             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
912                 val |= (1 << 21);
913             }
914             /* SecureFault is not banked but is always RAZ/WI to NS */
915             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
916                 val |= (1 << 4);
917             }
918             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
919                 val |= (1 << 19);
920             }
921             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
922                 val |= (1 << 20);
923             }
924         } else {
925             if (s->vectors[ARMV7M_EXCP_MEM].active) {
926                 val |= (1 << 0);
927             }
928             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
929                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
930                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
931                     val |= (1 << 2);
932                 }
933                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
934                     val |= (1 << 21);
935                 }
936             }
937             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
938                 val |= (1 << 3);
939             }
940             if (s->vectors[ARMV7M_EXCP_SVC].active) {
941                 val |= (1 << 7);
942             }
943             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
944                 val |= (1 << 10);
945             }
946             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
947                 val |= (1 << 11);
948             }
949             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
950                 val |= (1 << 12);
951             }
952             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
953                 val |= (1 << 13);
954             }
955             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
956                 val |= (1 << 15);
957             }
958             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
959                 val |= (1 << 16);
960             }
961             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
962                 val |= (1 << 18);
963             }
964         }
965         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
966             if (s->vectors[ARMV7M_EXCP_BUS].active) {
967                 val |= (1 << 1);
968             }
969             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
970                 val |= (1 << 14);
971             }
972             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
973                 val |= (1 << 17);
974             }
975             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
976                 s->vectors[ARMV7M_EXCP_NMI].active) {
977                 /* NMIACT is not present in v7M */
978                 val |= (1 << 5);
979             }
980         }
981 
982         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
983         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
984             val |= (1 << 8);
985         }
986         return val;
987     case 0xd2c: /* Hard Fault Status.  */
988         return cpu->env.v7m.hfsr;
989     case 0xd30: /* Debug Fault Status.  */
990         return cpu->env.v7m.dfsr;
991     case 0xd34: /* MMFAR MemManage Fault Address */
992         return cpu->env.v7m.mmfar[attrs.secure];
993     case 0xd38: /* Bus Fault Address.  */
994         return cpu->env.v7m.bfar;
995     case 0xd3c: /* Aux Fault Status.  */
996         /* TODO: Implement fault status registers.  */
997         qemu_log_mask(LOG_UNIMP,
998                       "Aux Fault status registers unimplemented\n");
999         return 0;
1000     case 0xd40: /* PFR0.  */
1001         return cpu->id_pfr0;
1002     case 0xd44: /* PFR1.  */
1003         return cpu->id_pfr1;
1004     case 0xd48: /* DFR0.  */
1005         return cpu->id_dfr0;
1006     case 0xd4c: /* AFR0.  */
1007         return cpu->id_afr0;
1008     case 0xd50: /* MMFR0.  */
1009         return cpu->id_mmfr0;
1010     case 0xd54: /* MMFR1.  */
1011         return cpu->id_mmfr1;
1012     case 0xd58: /* MMFR2.  */
1013         return cpu->id_mmfr2;
1014     case 0xd5c: /* MMFR3.  */
1015         return cpu->id_mmfr3;
1016     case 0xd60: /* ISAR0.  */
1017         return cpu->id_isar0;
1018     case 0xd64: /* ISAR1.  */
1019         return cpu->id_isar1;
1020     case 0xd68: /* ISAR2.  */
1021         return cpu->id_isar2;
1022     case 0xd6c: /* ISAR3.  */
1023         return cpu->id_isar3;
1024     case 0xd70: /* ISAR4.  */
1025         return cpu->id_isar4;
1026     case 0xd74: /* ISAR5.  */
1027         return cpu->id_isar5;
1028     /* TODO: Implement debug registers.  */
1029     case 0xd90: /* MPU_TYPE */
1030         /* Unified MPU; if the MPU is not present this value is zero */
1031         return cpu->pmsav7_dregion << 8;
1032         break;
1033     case 0xd94: /* MPU_CTRL */
1034         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1035     case 0xd98: /* MPU_RNR */
1036         return cpu->env.pmsav7.rnr[attrs.secure];
1037     case 0xd9c: /* MPU_RBAR */
1038     case 0xda4: /* MPU_RBAR_A1 */
1039     case 0xdac: /* MPU_RBAR_A2 */
1040     case 0xdb4: /* MPU_RBAR_A3 */
1041     {
1042         int region = cpu->env.pmsav7.rnr[attrs.secure];
1043 
1044         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1045             /* PMSAv8M handling of the aliases is different from v7M:
1046              * aliases A1, A2, A3 override the low two bits of the region
1047              * number in MPU_RNR, and there is no 'region' field in the
1048              * RBAR register.
1049              */
1050             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1051             if (aliasno) {
1052                 region = deposit32(region, 0, 2, aliasno);
1053             }
1054             if (region >= cpu->pmsav7_dregion) {
1055                 return 0;
1056             }
1057             return cpu->env.pmsav8.rbar[attrs.secure][region];
1058         }
1059 
1060         if (region >= cpu->pmsav7_dregion) {
1061             return 0;
1062         }
1063         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1064     }
1065     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1066     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1067     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1068     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1069     {
1070         int region = cpu->env.pmsav7.rnr[attrs.secure];
1071 
1072         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1073             /* PMSAv8M handling of the aliases is different from v7M:
1074              * aliases A1, A2, A3 override the low two bits of the region
1075              * number in MPU_RNR.
1076              */
1077             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1078             if (aliasno) {
1079                 region = deposit32(region, 0, 2, aliasno);
1080             }
1081             if (region >= cpu->pmsav7_dregion) {
1082                 return 0;
1083             }
1084             return cpu->env.pmsav8.rlar[attrs.secure][region];
1085         }
1086 
1087         if (region >= cpu->pmsav7_dregion) {
1088             return 0;
1089         }
1090         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1091             (cpu->env.pmsav7.drsr[region] & 0xffff);
1092     }
1093     case 0xdc0: /* MPU_MAIR0 */
1094         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1095             goto bad_offset;
1096         }
1097         return cpu->env.pmsav8.mair0[attrs.secure];
1098     case 0xdc4: /* MPU_MAIR1 */
1099         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1100             goto bad_offset;
1101         }
1102         return cpu->env.pmsav8.mair1[attrs.secure];
1103     case 0xdd0: /* SAU_CTRL */
1104         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1105             goto bad_offset;
1106         }
1107         if (!attrs.secure) {
1108             return 0;
1109         }
1110         return cpu->env.sau.ctrl;
1111     case 0xdd4: /* SAU_TYPE */
1112         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1113             goto bad_offset;
1114         }
1115         if (!attrs.secure) {
1116             return 0;
1117         }
1118         return cpu->sau_sregion;
1119     case 0xdd8: /* SAU_RNR */
1120         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1121             goto bad_offset;
1122         }
1123         if (!attrs.secure) {
1124             return 0;
1125         }
1126         return cpu->env.sau.rnr;
1127     case 0xddc: /* SAU_RBAR */
1128     {
1129         int region = cpu->env.sau.rnr;
1130 
1131         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1132             goto bad_offset;
1133         }
1134         if (!attrs.secure) {
1135             return 0;
1136         }
1137         if (region >= cpu->sau_sregion) {
1138             return 0;
1139         }
1140         return cpu->env.sau.rbar[region];
1141     }
1142     case 0xde0: /* SAU_RLAR */
1143     {
1144         int region = cpu->env.sau.rnr;
1145 
1146         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147             goto bad_offset;
1148         }
1149         if (!attrs.secure) {
1150             return 0;
1151         }
1152         if (region >= cpu->sau_sregion) {
1153             return 0;
1154         }
1155         return cpu->env.sau.rlar[region];
1156     }
1157     case 0xde4: /* SFSR */
1158         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1159             goto bad_offset;
1160         }
1161         if (!attrs.secure) {
1162             return 0;
1163         }
1164         return cpu->env.v7m.sfsr;
1165     case 0xde8: /* SFAR */
1166         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1167             goto bad_offset;
1168         }
1169         if (!attrs.secure) {
1170             return 0;
1171         }
1172         return cpu->env.v7m.sfar;
1173     default:
1174     bad_offset:
1175         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1176         return 0;
1177     }
1178 }
1179 
1180 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1181                         MemTxAttrs attrs)
1182 {
1183     ARMCPU *cpu = s->cpu;
1184 
1185     switch (offset) {
1186     case 0xc: /* CPPWR */
1187         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1188             goto bad_offset;
1189         }
1190         /* Make the IMPDEF choice to RAZ/WI this. */
1191         break;
1192     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1193     {
1194         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1195         int i;
1196 
1197         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1198             goto bad_offset;
1199         }
1200         if (!attrs.secure) {
1201             break;
1202         }
1203         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1204             s->itns[startvec + i] = (value >> i) & 1;
1205         }
1206         nvic_irq_update(s);
1207         break;
1208     }
1209     case 0xd04: /* Interrupt Control State (ICSR) */
1210         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1211             if (value & (1 << 31)) {
1212                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1213             } else if (value & (1 << 30) &&
1214                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1215                 /* PENDNMICLR didn't exist in v7M */
1216                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1217             }
1218         }
1219         if (value & (1 << 28)) {
1220             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1221         } else if (value & (1 << 27)) {
1222             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1223         }
1224         if (value & (1 << 26)) {
1225             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1226         } else if (value & (1 << 25)) {
1227             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1228         }
1229         break;
1230     case 0xd08: /* Vector Table Offset.  */
1231         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1232         break;
1233     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1234         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1235             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1236                 if (attrs.secure ||
1237                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1238                     qemu_irq_pulse(s->sysresetreq);
1239                 }
1240             }
1241             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1242                 qemu_log_mask(LOG_GUEST_ERROR,
1243                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1244                               "is UNPREDICTABLE\n");
1245             }
1246             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1247                 /* NB: this bit is RES0 in v8M */
1248                 qemu_log_mask(LOG_GUEST_ERROR,
1249                               "Setting VECTRESET when not in DEBUG mode "
1250                               "is UNPREDICTABLE\n");
1251             }
1252             s->prigroup[attrs.secure] = extract32(value,
1253                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1254                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1255             if (attrs.secure) {
1256                 /* These bits are only writable by secure */
1257                 cpu->env.v7m.aircr = value &
1258                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1259                      R_V7M_AIRCR_BFHFNMINS_MASK |
1260                      R_V7M_AIRCR_PRIS_MASK);
1261                 /* BFHFNMINS changes the priority of Secure HardFault, and
1262                  * allows a pending Non-secure HardFault to preempt (which
1263                  * we implement by marking it enabled).
1264                  */
1265                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1266                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1267                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1268                 } else {
1269                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1270                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1271                 }
1272             }
1273             nvic_irq_update(s);
1274         }
1275         break;
1276     case 0xd10: /* System Control.  */
1277         /* TODO: Implement control registers.  */
1278         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1279         break;
1280     case 0xd14: /* Configuration Control.  */
1281         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1282         value &= (R_V7M_CCR_STKALIGN_MASK |
1283                   R_V7M_CCR_BFHFNMIGN_MASK |
1284                   R_V7M_CCR_DIV_0_TRP_MASK |
1285                   R_V7M_CCR_UNALIGN_TRP_MASK |
1286                   R_V7M_CCR_USERSETMPEND_MASK |
1287                   R_V7M_CCR_NONBASETHRDENA_MASK);
1288 
1289         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1290             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1291             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1292                 | R_V7M_CCR_STKALIGN_MASK;
1293         }
1294         if (attrs.secure) {
1295             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1296             cpu->env.v7m.ccr[M_REG_NS] =
1297                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1298                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1299             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1300         }
1301 
1302         cpu->env.v7m.ccr[attrs.secure] = value;
1303         break;
1304     case 0xd24: /* System Handler Control and State (SHCSR) */
1305         if (attrs.secure) {
1306             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1307             /* Secure HardFault active bit cannot be written */
1308             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1309             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1310             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1311                 (value & (1 << 10)) != 0;
1312             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1313                 (value & (1 << 11)) != 0;
1314             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1315                 (value & (1 << 12)) != 0;
1316             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1317             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1318             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1319             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1320             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1321                 (value & (1 << 18)) != 0;
1322             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1323             /* SecureFault not banked, but RAZ/WI to NS */
1324             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1325             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1326             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1327         } else {
1328             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1329             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1330                 /* HARDFAULTPENDED is not present in v7M */
1331                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1332             }
1333             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1334             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1335             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1336             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1337             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1338             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1339             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1340             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1341             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1342         }
1343         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1344             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1345             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1346             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1347         }
1348         /* NMIACT can only be written if the write is of a zero, with
1349          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1350          */
1351         if (!attrs.secure && cpu->env.v7m.secure &&
1352             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1353             (value & (1 << 5)) == 0) {
1354             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1355         }
1356         /* HARDFAULTACT can only be written if the write is of a zero
1357          * to the non-secure HardFault state by the CPU in secure state.
1358          * The only case where we can be targeting the non-secure HF state
1359          * when in secure state is if this is a write via the NS alias
1360          * and BFHFNMINS is 1.
1361          */
1362         if (!attrs.secure && cpu->env.v7m.secure &&
1363             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1364             (value & (1 << 2)) == 0) {
1365             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1366         }
1367 
1368         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1369         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1370         nvic_irq_update(s);
1371         break;
1372     case 0xd2c: /* Hard Fault Status.  */
1373         cpu->env.v7m.hfsr &= ~value; /* W1C */
1374         break;
1375     case 0xd30: /* Debug Fault Status.  */
1376         cpu->env.v7m.dfsr &= ~value; /* W1C */
1377         break;
1378     case 0xd34: /* Mem Manage Address.  */
1379         cpu->env.v7m.mmfar[attrs.secure] = value;
1380         return;
1381     case 0xd38: /* Bus Fault Address.  */
1382         cpu->env.v7m.bfar = value;
1383         return;
1384     case 0xd3c: /* Aux Fault Status.  */
1385         qemu_log_mask(LOG_UNIMP,
1386                       "NVIC: Aux fault status registers unimplemented\n");
1387         break;
1388     case 0xd90: /* MPU_TYPE */
1389         return; /* RO */
1390     case 0xd94: /* MPU_CTRL */
1391         if ((value &
1392              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1393             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1394             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1395                           "UNPREDICTABLE\n");
1396         }
1397         cpu->env.v7m.mpu_ctrl[attrs.secure]
1398             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1399                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1400                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1401         tlb_flush(CPU(cpu));
1402         break;
1403     case 0xd98: /* MPU_RNR */
1404         if (value >= cpu->pmsav7_dregion) {
1405             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1406                           PRIu32 "/%" PRIu32 "\n",
1407                           value, cpu->pmsav7_dregion);
1408         } else {
1409             cpu->env.pmsav7.rnr[attrs.secure] = value;
1410         }
1411         break;
1412     case 0xd9c: /* MPU_RBAR */
1413     case 0xda4: /* MPU_RBAR_A1 */
1414     case 0xdac: /* MPU_RBAR_A2 */
1415     case 0xdb4: /* MPU_RBAR_A3 */
1416     {
1417         int region;
1418 
1419         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1420             /* PMSAv8M handling of the aliases is different from v7M:
1421              * aliases A1, A2, A3 override the low two bits of the region
1422              * number in MPU_RNR, and there is no 'region' field in the
1423              * RBAR register.
1424              */
1425             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1426 
1427             region = cpu->env.pmsav7.rnr[attrs.secure];
1428             if (aliasno) {
1429                 region = deposit32(region, 0, 2, aliasno);
1430             }
1431             if (region >= cpu->pmsav7_dregion) {
1432                 return;
1433             }
1434             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1435             tlb_flush(CPU(cpu));
1436             return;
1437         }
1438 
1439         if (value & (1 << 4)) {
1440             /* VALID bit means use the region number specified in this
1441              * value and also update MPU_RNR.REGION with that value.
1442              */
1443             region = extract32(value, 0, 4);
1444             if (region >= cpu->pmsav7_dregion) {
1445                 qemu_log_mask(LOG_GUEST_ERROR,
1446                               "MPU region out of range %u/%" PRIu32 "\n",
1447                               region, cpu->pmsav7_dregion);
1448                 return;
1449             }
1450             cpu->env.pmsav7.rnr[attrs.secure] = region;
1451         } else {
1452             region = cpu->env.pmsav7.rnr[attrs.secure];
1453         }
1454 
1455         if (region >= cpu->pmsav7_dregion) {
1456             return;
1457         }
1458 
1459         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1460         tlb_flush(CPU(cpu));
1461         break;
1462     }
1463     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1464     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1465     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1466     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1467     {
1468         int region = cpu->env.pmsav7.rnr[attrs.secure];
1469 
1470         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1471             /* PMSAv8M handling of the aliases is different from v7M:
1472              * aliases A1, A2, A3 override the low two bits of the region
1473              * number in MPU_RNR.
1474              */
1475             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1476 
1477             region = cpu->env.pmsav7.rnr[attrs.secure];
1478             if (aliasno) {
1479                 region = deposit32(region, 0, 2, aliasno);
1480             }
1481             if (region >= cpu->pmsav7_dregion) {
1482                 return;
1483             }
1484             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1485             tlb_flush(CPU(cpu));
1486             return;
1487         }
1488 
1489         if (region >= cpu->pmsav7_dregion) {
1490             return;
1491         }
1492 
1493         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1494         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1495         tlb_flush(CPU(cpu));
1496         break;
1497     }
1498     case 0xdc0: /* MPU_MAIR0 */
1499         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1500             goto bad_offset;
1501         }
1502         if (cpu->pmsav7_dregion) {
1503             /* Register is RES0 if no MPU regions are implemented */
1504             cpu->env.pmsav8.mair0[attrs.secure] = value;
1505         }
1506         /* We don't need to do anything else because memory attributes
1507          * only affect cacheability, and we don't implement caching.
1508          */
1509         break;
1510     case 0xdc4: /* MPU_MAIR1 */
1511         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1512             goto bad_offset;
1513         }
1514         if (cpu->pmsav7_dregion) {
1515             /* Register is RES0 if no MPU regions are implemented */
1516             cpu->env.pmsav8.mair1[attrs.secure] = value;
1517         }
1518         /* We don't need to do anything else because memory attributes
1519          * only affect cacheability, and we don't implement caching.
1520          */
1521         break;
1522     case 0xdd0: /* SAU_CTRL */
1523         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1524             goto bad_offset;
1525         }
1526         if (!attrs.secure) {
1527             return;
1528         }
1529         cpu->env.sau.ctrl = value & 3;
1530         break;
1531     case 0xdd4: /* SAU_TYPE */
1532         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1533             goto bad_offset;
1534         }
1535         break;
1536     case 0xdd8: /* SAU_RNR */
1537         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1538             goto bad_offset;
1539         }
1540         if (!attrs.secure) {
1541             return;
1542         }
1543         if (value >= cpu->sau_sregion) {
1544             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1545                           PRIu32 "/%" PRIu32 "\n",
1546                           value, cpu->sau_sregion);
1547         } else {
1548             cpu->env.sau.rnr = value;
1549         }
1550         break;
1551     case 0xddc: /* SAU_RBAR */
1552     {
1553         int region = cpu->env.sau.rnr;
1554 
1555         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1556             goto bad_offset;
1557         }
1558         if (!attrs.secure) {
1559             return;
1560         }
1561         if (region >= cpu->sau_sregion) {
1562             return;
1563         }
1564         cpu->env.sau.rbar[region] = value & ~0x1f;
1565         tlb_flush(CPU(cpu));
1566         break;
1567     }
1568     case 0xde0: /* SAU_RLAR */
1569     {
1570         int region = cpu->env.sau.rnr;
1571 
1572         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1573             goto bad_offset;
1574         }
1575         if (!attrs.secure) {
1576             return;
1577         }
1578         if (region >= cpu->sau_sregion) {
1579             return;
1580         }
1581         cpu->env.sau.rlar[region] = value & ~0x1c;
1582         tlb_flush(CPU(cpu));
1583         break;
1584     }
1585     case 0xde4: /* SFSR */
1586         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1587             goto bad_offset;
1588         }
1589         if (!attrs.secure) {
1590             return;
1591         }
1592         cpu->env.v7m.sfsr &= ~value; /* W1C */
1593         break;
1594     case 0xde8: /* SFAR */
1595         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1596             goto bad_offset;
1597         }
1598         if (!attrs.secure) {
1599             return;
1600         }
1601         cpu->env.v7m.sfsr = value;
1602         break;
1603     case 0xf00: /* Software Triggered Interrupt Register */
1604     {
1605         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1606         if (excnum < s->num_irq) {
1607             armv7m_nvic_set_pending(s, excnum, false);
1608         }
1609         break;
1610     }
1611     case 0xf50: /* ICIALLU */
1612     case 0xf58: /* ICIMVAU */
1613     case 0xf5c: /* DCIMVAC */
1614     case 0xf60: /* DCISW */
1615     case 0xf64: /* DCCMVAU */
1616     case 0xf68: /* DCCMVAC */
1617     case 0xf6c: /* DCCSW */
1618     case 0xf70: /* DCCIMVAC */
1619     case 0xf74: /* DCCISW */
1620     case 0xf78: /* BPIALL */
1621         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1622         break;
1623     default:
1624     bad_offset:
1625         qemu_log_mask(LOG_GUEST_ERROR,
1626                       "NVIC: Bad write offset 0x%x\n", offset);
1627     }
1628 }
1629 
1630 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1631 {
1632     /* Return true if unprivileged access to this register is permitted. */
1633     switch (offset) {
1634     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1635         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1636          * controls access even though the CPU is in Secure state (I_QDKX).
1637          */
1638         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1639     default:
1640         /* All other user accesses cause a BusFault unconditionally */
1641         return false;
1642     }
1643 }
1644 
1645 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1646 {
1647     /* Behaviour for the SHPR register field for this exception:
1648      * return M_REG_NS to use the nonsecure vector (including for
1649      * non-banked exceptions), M_REG_S for the secure version of
1650      * a banked exception, and -1 if this field should RAZ/WI.
1651      */
1652     switch (exc) {
1653     case ARMV7M_EXCP_MEM:
1654     case ARMV7M_EXCP_USAGE:
1655     case ARMV7M_EXCP_SVC:
1656     case ARMV7M_EXCP_PENDSV:
1657     case ARMV7M_EXCP_SYSTICK:
1658         /* Banked exceptions */
1659         return attrs.secure;
1660     case ARMV7M_EXCP_BUS:
1661         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1662         if (!attrs.secure &&
1663             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1664             return -1;
1665         }
1666         return M_REG_NS;
1667     case ARMV7M_EXCP_SECURE:
1668         /* Not banked, RAZ/WI from nonsecure */
1669         if (!attrs.secure) {
1670             return -1;
1671         }
1672         return M_REG_NS;
1673     case ARMV7M_EXCP_DEBUG:
1674         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1675         return M_REG_NS;
1676     case 8 ... 10:
1677     case 13:
1678         /* RES0 */
1679         return -1;
1680     default:
1681         /* Not reachable due to decode of SHPR register addresses */
1682         g_assert_not_reached();
1683     }
1684 }
1685 
1686 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1687                                     uint64_t *data, unsigned size,
1688                                     MemTxAttrs attrs)
1689 {
1690     NVICState *s = (NVICState *)opaque;
1691     uint32_t offset = addr;
1692     unsigned i, startvec, end;
1693     uint32_t val;
1694 
1695     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1696         /* Generate BusFault for unprivileged accesses */
1697         return MEMTX_ERROR;
1698     }
1699 
1700     switch (offset) {
1701     /* reads of set and clear both return the status */
1702     case 0x100 ... 0x13f: /* NVIC Set enable */
1703         offset += 0x80;
1704         /* fall through */
1705     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1706         val = 0;
1707         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1708 
1709         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1710             if (s->vectors[startvec + i].enabled &&
1711                 (attrs.secure || s->itns[startvec + i])) {
1712                 val |= (1 << i);
1713             }
1714         }
1715         break;
1716     case 0x200 ... 0x23f: /* NVIC Set pend */
1717         offset += 0x80;
1718         /* fall through */
1719     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1720         val = 0;
1721         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1722         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1723             if (s->vectors[startvec + i].pending &&
1724                 (attrs.secure || s->itns[startvec + i])) {
1725                 val |= (1 << i);
1726             }
1727         }
1728         break;
1729     case 0x300 ... 0x33f: /* NVIC Active */
1730         val = 0;
1731         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1732 
1733         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1734             if (s->vectors[startvec + i].active &&
1735                 (attrs.secure || s->itns[startvec + i])) {
1736                 val |= (1 << i);
1737             }
1738         }
1739         break;
1740     case 0x400 ... 0x5ef: /* NVIC Priority */
1741         val = 0;
1742         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1743 
1744         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1745             if (attrs.secure || s->itns[startvec + i]) {
1746                 val |= s->vectors[startvec + i].prio << (8 * i);
1747             }
1748         }
1749         break;
1750     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1751         val = 0;
1752         for (i = 0; i < size; i++) {
1753             unsigned hdlidx = (offset - 0xd14) + i;
1754             int sbank = shpr_bank(s, hdlidx, attrs);
1755 
1756             if (sbank < 0) {
1757                 continue;
1758             }
1759             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1760         }
1761         break;
1762     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1763         /* The BFSR bits [15:8] are shared between security states
1764          * and we store them in the NS copy
1765          */
1766         val = s->cpu->env.v7m.cfsr[attrs.secure];
1767         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1768         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1769         break;
1770     case 0xfe0 ... 0xfff: /* ID.  */
1771         if (offset & 3) {
1772             val = 0;
1773         } else {
1774             val = nvic_id[(offset - 0xfe0) >> 2];
1775         }
1776         break;
1777     default:
1778         if (size == 4) {
1779             val = nvic_readl(s, offset, attrs);
1780         } else {
1781             qemu_log_mask(LOG_GUEST_ERROR,
1782                           "NVIC: Bad read of size %d at offset 0x%x\n",
1783                           size, offset);
1784             val = 0;
1785         }
1786     }
1787 
1788     trace_nvic_sysreg_read(addr, val, size);
1789     *data = val;
1790     return MEMTX_OK;
1791 }
1792 
1793 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1794                                      uint64_t value, unsigned size,
1795                                      MemTxAttrs attrs)
1796 {
1797     NVICState *s = (NVICState *)opaque;
1798     uint32_t offset = addr;
1799     unsigned i, startvec, end;
1800     unsigned setval = 0;
1801 
1802     trace_nvic_sysreg_write(addr, value, size);
1803 
1804     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1805         /* Generate BusFault for unprivileged accesses */
1806         return MEMTX_ERROR;
1807     }
1808 
1809     switch (offset) {
1810     case 0x100 ... 0x13f: /* NVIC Set enable */
1811         offset += 0x80;
1812         setval = 1;
1813         /* fall through */
1814     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1815         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1816 
1817         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1818             if (value & (1 << i) &&
1819                 (attrs.secure || s->itns[startvec + i])) {
1820                 s->vectors[startvec + i].enabled = setval;
1821             }
1822         }
1823         nvic_irq_update(s);
1824         return MEMTX_OK;
1825     case 0x200 ... 0x23f: /* NVIC Set pend */
1826         /* the special logic in armv7m_nvic_set_pending()
1827          * is not needed since IRQs are never escalated
1828          */
1829         offset += 0x80;
1830         setval = 1;
1831         /* fall through */
1832     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1833         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1834 
1835         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1836             if (value & (1 << i) &&
1837                 (attrs.secure || s->itns[startvec + i])) {
1838                 s->vectors[startvec + i].pending = setval;
1839             }
1840         }
1841         nvic_irq_update(s);
1842         return MEMTX_OK;
1843     case 0x300 ... 0x33f: /* NVIC Active */
1844         return MEMTX_OK; /* R/O */
1845     case 0x400 ... 0x5ef: /* NVIC Priority */
1846         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1847 
1848         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1849             if (attrs.secure || s->itns[startvec + i]) {
1850                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1851             }
1852         }
1853         nvic_irq_update(s);
1854         return MEMTX_OK;
1855     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1856         for (i = 0; i < size; i++) {
1857             unsigned hdlidx = (offset - 0xd14) + i;
1858             int newprio = extract32(value, i * 8, 8);
1859             int sbank = shpr_bank(s, hdlidx, attrs);
1860 
1861             if (sbank < 0) {
1862                 continue;
1863             }
1864             set_prio(s, hdlidx, sbank, newprio);
1865         }
1866         nvic_irq_update(s);
1867         return MEMTX_OK;
1868     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1869         /* All bits are W1C, so construct 32 bit value with 0s in
1870          * the parts not written by the access size
1871          */
1872         value <<= ((offset - 0xd28) * 8);
1873 
1874         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1875         if (attrs.secure) {
1876             /* The BFSR bits [15:8] are shared between security states
1877              * and we store them in the NS copy.
1878              */
1879             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1880         }
1881         return MEMTX_OK;
1882     }
1883     if (size == 4) {
1884         nvic_writel(s, offset, value, attrs);
1885         return MEMTX_OK;
1886     }
1887     qemu_log_mask(LOG_GUEST_ERROR,
1888                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1889     /* This is UNPREDICTABLE; treat as RAZ/WI */
1890     return MEMTX_OK;
1891 }
1892 
1893 static const MemoryRegionOps nvic_sysreg_ops = {
1894     .read_with_attrs = nvic_sysreg_read,
1895     .write_with_attrs = nvic_sysreg_write,
1896     .endianness = DEVICE_NATIVE_ENDIAN,
1897 };
1898 
1899 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1900                                         uint64_t value, unsigned size,
1901                                         MemTxAttrs attrs)
1902 {
1903     MemoryRegion *mr = opaque;
1904 
1905     if (attrs.secure) {
1906         /* S accesses to the alias act like NS accesses to the real region */
1907         attrs.secure = 0;
1908         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1909     } else {
1910         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1911         if (attrs.user) {
1912             return MEMTX_ERROR;
1913         }
1914         return MEMTX_OK;
1915     }
1916 }
1917 
1918 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1919                                        uint64_t *data, unsigned size,
1920                                        MemTxAttrs attrs)
1921 {
1922     MemoryRegion *mr = opaque;
1923 
1924     if (attrs.secure) {
1925         /* S accesses to the alias act like NS accesses to the real region */
1926         attrs.secure = 0;
1927         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1928     } else {
1929         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1930         if (attrs.user) {
1931             return MEMTX_ERROR;
1932         }
1933         *data = 0;
1934         return MEMTX_OK;
1935     }
1936 }
1937 
1938 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1939     .read_with_attrs = nvic_sysreg_ns_read,
1940     .write_with_attrs = nvic_sysreg_ns_write,
1941     .endianness = DEVICE_NATIVE_ENDIAN,
1942 };
1943 
1944 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1945                                       uint64_t value, unsigned size,
1946                                       MemTxAttrs attrs)
1947 {
1948     NVICState *s = opaque;
1949     MemoryRegion *mr;
1950 
1951     /* Direct the access to the correct systick */
1952     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1953     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1954 }
1955 
1956 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1957                                      uint64_t *data, unsigned size,
1958                                      MemTxAttrs attrs)
1959 {
1960     NVICState *s = opaque;
1961     MemoryRegion *mr;
1962 
1963     /* Direct the access to the correct systick */
1964     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1965     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1966 }
1967 
1968 static const MemoryRegionOps nvic_systick_ops = {
1969     .read_with_attrs = nvic_systick_read,
1970     .write_with_attrs = nvic_systick_write,
1971     .endianness = DEVICE_NATIVE_ENDIAN,
1972 };
1973 
1974 static int nvic_post_load(void *opaque, int version_id)
1975 {
1976     NVICState *s = opaque;
1977     unsigned i;
1978     int resetprio;
1979 
1980     /* Check for out of range priority settings */
1981     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1982 
1983     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1984         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1985         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1986         return 1;
1987     }
1988     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1989         if (s->vectors[i].prio & ~0xff) {
1990             return 1;
1991         }
1992     }
1993 
1994     nvic_recompute_state(s);
1995 
1996     return 0;
1997 }
1998 
1999 static const VMStateDescription vmstate_VecInfo = {
2000     .name = "armv7m_nvic_info",
2001     .version_id = 1,
2002     .minimum_version_id = 1,
2003     .fields = (VMStateField[]) {
2004         VMSTATE_INT16(prio, VecInfo),
2005         VMSTATE_UINT8(enabled, VecInfo),
2006         VMSTATE_UINT8(pending, VecInfo),
2007         VMSTATE_UINT8(active, VecInfo),
2008         VMSTATE_UINT8(level, VecInfo),
2009         VMSTATE_END_OF_LIST()
2010     }
2011 };
2012 
2013 static bool nvic_security_needed(void *opaque)
2014 {
2015     NVICState *s = opaque;
2016 
2017     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2018 }
2019 
2020 static int nvic_security_post_load(void *opaque, int version_id)
2021 {
2022     NVICState *s = opaque;
2023     int i;
2024 
2025     /* Check for out of range priority settings */
2026     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2027         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2028         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2029          * if the CPU state has been migrated yet; a mismatch won't
2030          * cause the emulation to blow up, though.
2031          */
2032         return 1;
2033     }
2034     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2035         if (s->sec_vectors[i].prio & ~0xff) {
2036             return 1;
2037         }
2038     }
2039     return 0;
2040 }
2041 
2042 static const VMStateDescription vmstate_nvic_security = {
2043     .name = "nvic/m-security",
2044     .version_id = 1,
2045     .minimum_version_id = 1,
2046     .needed = nvic_security_needed,
2047     .post_load = &nvic_security_post_load,
2048     .fields = (VMStateField[]) {
2049         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2050                              vmstate_VecInfo, VecInfo),
2051         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2052         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2053         VMSTATE_END_OF_LIST()
2054     }
2055 };
2056 
2057 static const VMStateDescription vmstate_nvic = {
2058     .name = "armv7m_nvic",
2059     .version_id = 4,
2060     .minimum_version_id = 4,
2061     .post_load = &nvic_post_load,
2062     .fields = (VMStateField[]) {
2063         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2064                              vmstate_VecInfo, VecInfo),
2065         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2066         VMSTATE_END_OF_LIST()
2067     },
2068     .subsections = (const VMStateDescription*[]) {
2069         &vmstate_nvic_security,
2070         NULL
2071     }
2072 };
2073 
2074 static Property props_nvic[] = {
2075     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2076     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2077     DEFINE_PROP_END_OF_LIST()
2078 };
2079 
2080 static void armv7m_nvic_reset(DeviceState *dev)
2081 {
2082     int resetprio;
2083     NVICState *s = NVIC(dev);
2084 
2085     memset(s->vectors, 0, sizeof(s->vectors));
2086     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2087     s->prigroup[M_REG_NS] = 0;
2088     s->prigroup[M_REG_S] = 0;
2089 
2090     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2091     /* MEM, BUS, and USAGE are enabled through
2092      * the System Handler Control register
2093      */
2094     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2095     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2096     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2097     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2098 
2099     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2100     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2101     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2102     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2103 
2104     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2105         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2106         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2107         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2108         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2109 
2110         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2111         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2112         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2113         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2114     } else {
2115         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2116     }
2117 
2118     /* Strictly speaking the reset handler should be enabled.
2119      * However, we don't simulate soft resets through the NVIC,
2120      * and the reset vector should never be pended.
2121      * So we leave it disabled to catch logic errors.
2122      */
2123 
2124     s->exception_prio = NVIC_NOEXC_PRIO;
2125     s->vectpending = 0;
2126     s->vectpending_is_s_banked = false;
2127     s->vectpending_prio = NVIC_NOEXC_PRIO;
2128 
2129     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2130         memset(s->itns, 0, sizeof(s->itns));
2131     } else {
2132         /* This state is constant and not guest accessible in a non-security
2133          * NVIC; we set the bits to true to avoid having to do a feature
2134          * bit check in the NVIC enable/pend/etc register accessors.
2135          */
2136         int i;
2137 
2138         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2139             s->itns[i] = true;
2140         }
2141     }
2142 }
2143 
2144 static void nvic_systick_trigger(void *opaque, int n, int level)
2145 {
2146     NVICState *s = opaque;
2147 
2148     if (level) {
2149         /* SysTick just asked us to pend its exception.
2150          * (This is different from an external interrupt line's
2151          * behaviour.)
2152          * n == 0 : NonSecure systick
2153          * n == 1 : Secure systick
2154          */
2155         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2156     }
2157 }
2158 
2159 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2160 {
2161     NVICState *s = NVIC(dev);
2162     Error *err = NULL;
2163     int regionlen;
2164 
2165     s->cpu = ARM_CPU(qemu_get_cpu(0));
2166     assert(s->cpu);
2167 
2168     if (s->num_irq > NVIC_MAX_IRQ) {
2169         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2170         return;
2171     }
2172 
2173     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2174 
2175     /* include space for internal exception vectors */
2176     s->num_irq += NVIC_FIRST_IRQ;
2177 
2178     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2179                              "realized", &err);
2180     if (err != NULL) {
2181         error_propagate(errp, err);
2182         return;
2183     }
2184     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2185                        qdev_get_gpio_in_named(dev, "systick-trigger",
2186                                               M_REG_NS));
2187 
2188     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2189         /* We couldn't init the secure systick device in instance_init
2190          * as we didn't know then if the CPU had the security extensions;
2191          * so we have to do it here.
2192          */
2193         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2194                           TYPE_SYSTICK);
2195         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2196 
2197         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2198                                  "realized", &err);
2199         if (err != NULL) {
2200             error_propagate(errp, err);
2201             return;
2202         }
2203         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2204                            qdev_get_gpio_in_named(dev, "systick-trigger",
2205                                                   M_REG_S));
2206     }
2207 
2208     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2209      * and looks like this:
2210      *  0x004 - ICTR
2211      *  0x010 - 0xff - systick
2212      *  0x100..0x7ec - NVIC
2213      *  0x7f0..0xcff - Reserved
2214      *  0xd00..0xd3c - SCS registers
2215      *  0xd40..0xeff - Reserved or Not implemented
2216      *  0xf00 - STIR
2217      *
2218      * Some registers within this space are banked between security states.
2219      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2220      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2221      * to the main SCS range, and non-secure accesses (including when
2222      * the security extension is not implemented) are RAZ/WI.
2223      * Note that both the main SCS range and the alias range are defined
2224      * to be exempt from memory attribution (R_BLJT) and so the memory
2225      * transaction attribute always matches the current CPU security
2226      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2227      * wrappers we change attrs.secure to indicate the NS access; so
2228      * generally code determining which banked register to use should
2229      * use attrs.secure; code determining actual behaviour of the system
2230      * should use env->v7m.secure.
2231      */
2232     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2233     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2234     /* The system register region goes at the bottom of the priority
2235      * stack as it covers the whole page.
2236      */
2237     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2238                           "nvic_sysregs", 0x1000);
2239     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2240 
2241     memory_region_init_io(&s->systickmem, OBJECT(s),
2242                           &nvic_systick_ops, s,
2243                           "nvic_systick", 0xe0);
2244 
2245     memory_region_add_subregion_overlap(&s->container, 0x10,
2246                                         &s->systickmem, 1);
2247 
2248     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2249         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2250                               &nvic_sysreg_ns_ops, &s->sysregmem,
2251                               "nvic_sysregs_ns", 0x1000);
2252         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2253         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2254                               &nvic_sysreg_ns_ops, &s->systickmem,
2255                               "nvic_systick_ns", 0xe0);
2256         memory_region_add_subregion_overlap(&s->container, 0x20010,
2257                                             &s->systick_ns_mem, 1);
2258     }
2259 
2260     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2261 }
2262 
2263 static void armv7m_nvic_instance_init(Object *obj)
2264 {
2265     /* We have a different default value for the num-irq property
2266      * than our superclass. This function runs after qdev init
2267      * has set the defaults from the Property array and before
2268      * any user-specified property setting, so just modify the
2269      * value in the GICState struct.
2270      */
2271     DeviceState *dev = DEVICE(obj);
2272     NVICState *nvic = NVIC(obj);
2273     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2274 
2275     object_initialize(&nvic->systick[M_REG_NS],
2276                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2277     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2278     /* We can't initialize the secure systick here, as we don't know
2279      * yet if we need it.
2280      */
2281 
2282     sysbus_init_irq(sbd, &nvic->excpout);
2283     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2284     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2285                             M_REG_NUM_BANKS);
2286 }
2287 
2288 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2289 {
2290     DeviceClass *dc = DEVICE_CLASS(klass);
2291 
2292     dc->vmsd  = &vmstate_nvic;
2293     dc->props = props_nvic;
2294     dc->reset = armv7m_nvic_reset;
2295     dc->realize = armv7m_nvic_realize;
2296 }
2297 
2298 static const TypeInfo armv7m_nvic_info = {
2299     .name          = TYPE_NVIC,
2300     .parent        = TYPE_SYS_BUS_DEVICE,
2301     .instance_init = armv7m_nvic_instance_init,
2302     .instance_size = sizeof(NVICState),
2303     .class_init    = armv7m_nvic_class_init,
2304     .class_size    = sizeof(SysBusDeviceClass),
2305 };
2306 
2307 static void armv7m_nvic_register_types(void)
2308 {
2309     type_register_static(&armv7m_nvic_info);
2310 }
2311 
2312 type_init(armv7m_nvic_register_types)
2313