xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision ab938ae4)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ 16
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 
58 static const uint8_t nvic_id[] = {
59     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
60 };
61 
62 static int nvic_pending_prio(NVICState *s)
63 {
64     /* return the priority of the current pending interrupt,
65      * or NVIC_NOEXC_PRIO if no interrupt is pending
66      */
67     return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO;
68 }
69 
70 /* Return the value of the ISCR RETTOBASE bit:
71  * 1 if there is exactly one active exception
72  * 0 if there is more than one active exception
73  * UNKNOWN if there are no active exceptions (we choose 1,
74  * which matches the choice Cortex-M3 is documented as making).
75  *
76  * NB: some versions of the documentation talk about this
77  * counting "active exceptions other than the one shown by IPSR";
78  * this is only different in the obscure corner case where guest
79  * code has manually deactivated an exception and is about
80  * to fail an exception-return integrity check. The definition
81  * above is the one from the v8M ARM ARM and is also in line
82  * with the behaviour documented for the Cortex-M3.
83  */
84 static bool nvic_rettobase(NVICState *s)
85 {
86     int irq, nhand = 0;
87 
88     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
89         if (s->vectors[irq].active) {
90             nhand++;
91             if (nhand == 2) {
92                 return 0;
93             }
94         }
95     }
96 
97     return 1;
98 }
99 
100 /* Return the value of the ISCR ISRPENDING bit:
101  * 1 if an external interrupt is pending
102  * 0 if no external interrupt is pending
103  */
104 static bool nvic_isrpending(NVICState *s)
105 {
106     int irq;
107 
108     /* We can shortcut if the highest priority pending interrupt
109      * happens to be external or if there is nothing pending.
110      */
111     if (s->vectpending > NVIC_FIRST_IRQ) {
112         return true;
113     }
114     if (s->vectpending == 0) {
115         return false;
116     }
117 
118     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
119         if (s->vectors[irq].pending) {
120             return true;
121         }
122     }
123     return false;
124 }
125 
126 /* Return a mask word which clears the subpriority bits from
127  * a priority value for an M-profile exception, leaving only
128  * the group priority.
129  */
130 static inline uint32_t nvic_gprio_mask(NVICState *s)
131 {
132     return ~0U << (s->prigroup + 1);
133 }
134 
135 /* Recompute vectpending and exception_prio */
136 static void nvic_recompute_state(NVICState *s)
137 {
138     int i;
139     int pend_prio = NVIC_NOEXC_PRIO;
140     int active_prio = NVIC_NOEXC_PRIO;
141     int pend_irq = 0;
142 
143     for (i = 1; i < s->num_irq; i++) {
144         VecInfo *vec = &s->vectors[i];
145 
146         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
147             pend_prio = vec->prio;
148             pend_irq = i;
149         }
150         if (vec->active && vec->prio < active_prio) {
151             active_prio = vec->prio;
152         }
153     }
154 
155     s->vectpending = pend_irq;
156     s->exception_prio = active_prio & nvic_gprio_mask(s);
157 
158     trace_nvic_recompute_state(s->vectpending, s->exception_prio);
159 }
160 
161 /* Return the current execution priority of the CPU
162  * (equivalent to the pseudocode ExecutionPriority function).
163  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
164  */
165 static inline int nvic_exec_prio(NVICState *s)
166 {
167     CPUARMState *env = &s->cpu->env;
168     int running;
169 
170     if (env->v7m.faultmask[env->v7m.secure]) {
171         running = -1;
172     } else if (env->v7m.primask[env->v7m.secure]) {
173         running = 0;
174     } else if (env->v7m.basepri[env->v7m.secure] > 0) {
175         running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s);
176     } else {
177         running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
178     }
179     /* consider priority of active handler */
180     return MIN(running, s->exception_prio);
181 }
182 
183 bool armv7m_nvic_can_take_pending_exception(void *opaque)
184 {
185     NVICState *s = opaque;
186 
187     return nvic_exec_prio(s) > nvic_pending_prio(s);
188 }
189 
190 int armv7m_nvic_raw_execution_priority(void *opaque)
191 {
192     NVICState *s = opaque;
193 
194     return s->exception_prio;
195 }
196 
197 /* caller must call nvic_irq_update() after this */
198 static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
199 {
200     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
201     assert(irq < s->num_irq);
202 
203     s->vectors[irq].prio = prio;
204 
205     trace_nvic_set_prio(irq, prio);
206 }
207 
208 /* Recompute state and assert irq line accordingly.
209  * Must be called after changes to:
210  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
211  *  prigroup
212  */
213 static void nvic_irq_update(NVICState *s)
214 {
215     int lvl;
216     int pend_prio;
217 
218     nvic_recompute_state(s);
219     pend_prio = nvic_pending_prio(s);
220 
221     /* Raise NVIC output if this IRQ would be taken, except that we
222      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
223      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
224      * to those CPU registers don't cause us to recalculate the NVIC
225      * pending info.
226      */
227     lvl = (pend_prio < s->exception_prio);
228     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
229     qemu_set_irq(s->excpout, lvl);
230 }
231 
232 static void armv7m_nvic_clear_pending(void *opaque, int irq)
233 {
234     NVICState *s = (NVICState *)opaque;
235     VecInfo *vec;
236 
237     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
238 
239     vec = &s->vectors[irq];
240     trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
241     if (vec->pending) {
242         vec->pending = 0;
243         nvic_irq_update(s);
244     }
245 }
246 
247 void armv7m_nvic_set_pending(void *opaque, int irq)
248 {
249     NVICState *s = (NVICState *)opaque;
250     VecInfo *vec;
251 
252     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
253 
254     vec = &s->vectors[irq];
255     trace_nvic_set_pending(irq, vec->enabled, vec->prio);
256 
257 
258     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
259         /* If a synchronous exception is pending then it may be
260          * escalated to HardFault if:
261          *  * it is equal or lower priority to current execution
262          *  * it is disabled
263          * (ie we need to take it immediately but we can't do so).
264          * Asynchronous exceptions (and interrupts) simply remain pending.
265          *
266          * For QEMU, we don't have any imprecise (asynchronous) faults,
267          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
268          * synchronous.
269          * Debug exceptions are awkward because only Debug exceptions
270          * resulting from the BKPT instruction should be escalated,
271          * but we don't currently implement any Debug exceptions other
272          * than those that result from BKPT, so we treat all debug exceptions
273          * as needing escalation.
274          *
275          * This all means we can identify whether to escalate based only on
276          * the exception number and don't (yet) need the caller to explicitly
277          * tell us whether this exception is synchronous or not.
278          */
279         int running = nvic_exec_prio(s);
280         bool escalate = false;
281 
282         if (vec->prio >= running) {
283             trace_nvic_escalate_prio(irq, vec->prio, running);
284             escalate = true;
285         } else if (!vec->enabled) {
286             trace_nvic_escalate_disabled(irq);
287             escalate = true;
288         }
289 
290         if (escalate) {
291             if (running < 0) {
292                 /* We want to escalate to HardFault but we can't take a
293                  * synchronous HardFault at this point either. This is a
294                  * Lockup condition due to a guest bug. We don't model
295                  * Lockup, so report via cpu_abort() instead.
296                  */
297                 cpu_abort(&s->cpu->parent_obj,
298                           "Lockup: can't escalate %d to HardFault "
299                           "(current priority %d)\n", irq, running);
300             }
301 
302             /* We can do the escalation, so we take HardFault instead */
303             irq = ARMV7M_EXCP_HARD;
304             vec = &s->vectors[irq];
305             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
306         }
307     }
308 
309     if (!vec->pending) {
310         vec->pending = 1;
311         nvic_irq_update(s);
312     }
313 }
314 
315 /* Make pending IRQ active.  */
316 void armv7m_nvic_acknowledge_irq(void *opaque)
317 {
318     NVICState *s = (NVICState *)opaque;
319     CPUARMState *env = &s->cpu->env;
320     const int pending = s->vectpending;
321     const int running = nvic_exec_prio(s);
322     int pendgroupprio;
323     VecInfo *vec;
324 
325     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
326 
327     vec = &s->vectors[pending];
328 
329     assert(vec->enabled);
330     assert(vec->pending);
331 
332     pendgroupprio = vec->prio & nvic_gprio_mask(s);
333     assert(pendgroupprio < running);
334 
335     trace_nvic_acknowledge_irq(pending, vec->prio);
336 
337     vec->active = 1;
338     vec->pending = 0;
339 
340     env->v7m.exception = s->vectpending;
341 
342     nvic_irq_update(s);
343 }
344 
345 int armv7m_nvic_complete_irq(void *opaque, int irq)
346 {
347     NVICState *s = (NVICState *)opaque;
348     VecInfo *vec;
349     int ret;
350 
351     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
352 
353     vec = &s->vectors[irq];
354 
355     trace_nvic_complete_irq(irq);
356 
357     if (!vec->active) {
358         /* Tell the caller this was an illegal exception return */
359         return -1;
360     }
361 
362     ret = nvic_rettobase(s);
363 
364     vec->active = 0;
365     if (vec->level) {
366         /* Re-pend the exception if it's still held high; only
367          * happens for extenal IRQs
368          */
369         assert(irq >= NVIC_FIRST_IRQ);
370         vec->pending = 1;
371     }
372 
373     nvic_irq_update(s);
374 
375     return ret;
376 }
377 
378 /* callback when external interrupt line is changed */
379 static void set_irq_level(void *opaque, int n, int level)
380 {
381     NVICState *s = opaque;
382     VecInfo *vec;
383 
384     n += NVIC_FIRST_IRQ;
385 
386     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
387 
388     trace_nvic_set_irq_level(n, level);
389 
390     /* The pending status of an external interrupt is
391      * latched on rising edge and exception handler return.
392      *
393      * Pulsing the IRQ will always run the handler
394      * once, and the handler will re-run until the
395      * level is low when the handler completes.
396      */
397     vec = &s->vectors[n];
398     if (level != vec->level) {
399         vec->level = level;
400         if (level) {
401             armv7m_nvic_set_pending(s, n);
402         }
403     }
404 }
405 
406 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
407 {
408     ARMCPU *cpu = s->cpu;
409     uint32_t val;
410 
411     switch (offset) {
412     case 4: /* Interrupt Control Type.  */
413         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
414     case 0xd00: /* CPUID Base.  */
415         return cpu->midr;
416     case 0xd04: /* Interrupt Control State.  */
417         /* VECTACTIVE */
418         val = cpu->env.v7m.exception;
419         /* VECTPENDING */
420         val |= (s->vectpending & 0xff) << 12;
421         /* ISRPENDING - set if any external IRQ is pending */
422         if (nvic_isrpending(s)) {
423             val |= (1 << 22);
424         }
425         /* RETTOBASE - set if only one handler is active */
426         if (nvic_rettobase(s)) {
427             val |= (1 << 11);
428         }
429         /* PENDSTSET */
430         if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
431             val |= (1 << 26);
432         }
433         /* PENDSVSET */
434         if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
435             val |= (1 << 28);
436         }
437         /* NMIPENDSET */
438         if (s->vectors[ARMV7M_EXCP_NMI].pending) {
439             val |= (1 << 31);
440         }
441         /* ISRPREEMPT not implemented */
442         return val;
443     case 0xd08: /* Vector Table Offset.  */
444         return cpu->env.v7m.vecbase[attrs.secure];
445     case 0xd0c: /* Application Interrupt/Reset Control.  */
446         return 0xfa050000 | (s->prigroup << 8);
447     case 0xd10: /* System Control.  */
448         /* TODO: Implement SLEEPONEXIT.  */
449         return 0;
450     case 0xd14: /* Configuration Control.  */
451         /* The BFHFNMIGN bit is the only non-banked bit; we
452          * keep it in the non-secure copy of the register.
453          */
454         val = cpu->env.v7m.ccr[attrs.secure];
455         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
456         return val;
457     case 0xd24: /* System Handler Status.  */
458         val = 0;
459         if (s->vectors[ARMV7M_EXCP_MEM].active) {
460             val |= (1 << 0);
461         }
462         if (s->vectors[ARMV7M_EXCP_BUS].active) {
463             val |= (1 << 1);
464         }
465         if (s->vectors[ARMV7M_EXCP_USAGE].active) {
466             val |= (1 << 3);
467         }
468         if (s->vectors[ARMV7M_EXCP_SVC].active) {
469             val |= (1 << 7);
470         }
471         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
472             val |= (1 << 8);
473         }
474         if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
475             val |= (1 << 10);
476         }
477         if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
478             val |= (1 << 11);
479         }
480         if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
481             val |= (1 << 12);
482         }
483         if (s->vectors[ARMV7M_EXCP_MEM].pending) {
484             val |= (1 << 13);
485         }
486         if (s->vectors[ARMV7M_EXCP_BUS].pending) {
487             val |= (1 << 14);
488         }
489         if (s->vectors[ARMV7M_EXCP_SVC].pending) {
490             val |= (1 << 15);
491         }
492         if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
493             val |= (1 << 16);
494         }
495         if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
496             val |= (1 << 17);
497         }
498         if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
499             val |= (1 << 18);
500         }
501         return val;
502     case 0xd28: /* Configurable Fault Status.  */
503         /* The BFSR bits [15:8] are shared between security states
504          * and we store them in the NS copy
505          */
506         val = cpu->env.v7m.cfsr[attrs.secure];
507         val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
508         return val;
509     case 0xd2c: /* Hard Fault Status.  */
510         return cpu->env.v7m.hfsr;
511     case 0xd30: /* Debug Fault Status.  */
512         return cpu->env.v7m.dfsr;
513     case 0xd34: /* MMFAR MemManage Fault Address */
514         return cpu->env.v7m.mmfar[attrs.secure];
515     case 0xd38: /* Bus Fault Address.  */
516         return cpu->env.v7m.bfar;
517     case 0xd3c: /* Aux Fault Status.  */
518         /* TODO: Implement fault status registers.  */
519         qemu_log_mask(LOG_UNIMP,
520                       "Aux Fault status registers unimplemented\n");
521         return 0;
522     case 0xd40: /* PFR0.  */
523         return 0x00000030;
524     case 0xd44: /* PRF1.  */
525         return 0x00000200;
526     case 0xd48: /* DFR0.  */
527         return 0x00100000;
528     case 0xd4c: /* AFR0.  */
529         return 0x00000000;
530     case 0xd50: /* MMFR0.  */
531         return 0x00000030;
532     case 0xd54: /* MMFR1.  */
533         return 0x00000000;
534     case 0xd58: /* MMFR2.  */
535         return 0x00000000;
536     case 0xd5c: /* MMFR3.  */
537         return 0x00000000;
538     case 0xd60: /* ISAR0.  */
539         return 0x01141110;
540     case 0xd64: /* ISAR1.  */
541         return 0x02111000;
542     case 0xd68: /* ISAR2.  */
543         return 0x21112231;
544     case 0xd6c: /* ISAR3.  */
545         return 0x01111110;
546     case 0xd70: /* ISAR4.  */
547         return 0x01310102;
548     /* TODO: Implement debug registers.  */
549     case 0xd90: /* MPU_TYPE */
550         /* Unified MPU; if the MPU is not present this value is zero */
551         return cpu->pmsav7_dregion << 8;
552         break;
553     case 0xd94: /* MPU_CTRL */
554         return cpu->env.v7m.mpu_ctrl[attrs.secure];
555     case 0xd98: /* MPU_RNR */
556         return cpu->env.pmsav7.rnr[attrs.secure];
557     case 0xd9c: /* MPU_RBAR */
558     case 0xda4: /* MPU_RBAR_A1 */
559     case 0xdac: /* MPU_RBAR_A2 */
560     case 0xdb4: /* MPU_RBAR_A3 */
561     {
562         int region = cpu->env.pmsav7.rnr[attrs.secure];
563 
564         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
565             /* PMSAv8M handling of the aliases is different from v7M:
566              * aliases A1, A2, A3 override the low two bits of the region
567              * number in MPU_RNR, and there is no 'region' field in the
568              * RBAR register.
569              */
570             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
571             if (aliasno) {
572                 region = deposit32(region, 0, 2, aliasno);
573             }
574             if (region >= cpu->pmsav7_dregion) {
575                 return 0;
576             }
577             return cpu->env.pmsav8.rbar[attrs.secure][region];
578         }
579 
580         if (region >= cpu->pmsav7_dregion) {
581             return 0;
582         }
583         return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
584     }
585     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
586     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
587     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
588     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
589     {
590         int region = cpu->env.pmsav7.rnr[attrs.secure];
591 
592         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
593             /* PMSAv8M handling of the aliases is different from v7M:
594              * aliases A1, A2, A3 override the low two bits of the region
595              * number in MPU_RNR.
596              */
597             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
598             if (aliasno) {
599                 region = deposit32(region, 0, 2, aliasno);
600             }
601             if (region >= cpu->pmsav7_dregion) {
602                 return 0;
603             }
604             return cpu->env.pmsav8.rlar[attrs.secure][region];
605         }
606 
607         if (region >= cpu->pmsav7_dregion) {
608             return 0;
609         }
610         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
611             (cpu->env.pmsav7.drsr[region] & 0xffff);
612     }
613     case 0xdc0: /* MPU_MAIR0 */
614         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
615             goto bad_offset;
616         }
617         return cpu->env.pmsav8.mair0[attrs.secure];
618     case 0xdc4: /* MPU_MAIR1 */
619         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
620             goto bad_offset;
621         }
622         return cpu->env.pmsav8.mair1[attrs.secure];
623     default:
624     bad_offset:
625         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
626         return 0;
627     }
628 }
629 
630 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
631                         MemTxAttrs attrs)
632 {
633     ARMCPU *cpu = s->cpu;
634 
635     switch (offset) {
636     case 0xd04: /* Interrupt Control State.  */
637         if (value & (1 << 31)) {
638             armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
639         }
640         if (value & (1 << 28)) {
641             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
642         } else if (value & (1 << 27)) {
643             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
644         }
645         if (value & (1 << 26)) {
646             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
647         } else if (value & (1 << 25)) {
648             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
649         }
650         break;
651     case 0xd08: /* Vector Table Offset.  */
652         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
653         break;
654     case 0xd0c: /* Application Interrupt/Reset Control.  */
655         if ((value >> 16) == 0x05fa) {
656             if (value & 4) {
657                 qemu_irq_pulse(s->sysresetreq);
658             }
659             if (value & 2) {
660                 qemu_log_mask(LOG_GUEST_ERROR,
661                               "Setting VECTCLRACTIVE when not in DEBUG mode "
662                               "is UNPREDICTABLE\n");
663             }
664             if (value & 1) {
665                 qemu_log_mask(LOG_GUEST_ERROR,
666                               "Setting VECTRESET when not in DEBUG mode "
667                               "is UNPREDICTABLE\n");
668             }
669             s->prigroup = extract32(value, 8, 3);
670             nvic_irq_update(s);
671         }
672         break;
673     case 0xd10: /* System Control.  */
674         /* TODO: Implement control registers.  */
675         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
676         break;
677     case 0xd14: /* Configuration Control.  */
678         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
679         value &= (R_V7M_CCR_STKALIGN_MASK |
680                   R_V7M_CCR_BFHFNMIGN_MASK |
681                   R_V7M_CCR_DIV_0_TRP_MASK |
682                   R_V7M_CCR_UNALIGN_TRP_MASK |
683                   R_V7M_CCR_USERSETMPEND_MASK |
684                   R_V7M_CCR_NONBASETHRDENA_MASK);
685 
686         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
687             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
688             value |= R_V7M_CCR_NONBASETHRDENA_MASK
689                 | R_V7M_CCR_STKALIGN_MASK;
690         }
691         if (attrs.secure) {
692             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
693             cpu->env.v7m.ccr[M_REG_NS] =
694                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
695                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
696             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
697         }
698 
699         cpu->env.v7m.ccr[attrs.secure] = value;
700         break;
701     case 0xd24: /* System Handler Control.  */
702         s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
703         s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
704         s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
705         s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
706         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
707         s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
708         s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
709         s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
710         s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
711         s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
712         s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
713         s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
714         s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
715         s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
716         nvic_irq_update(s);
717         break;
718     case 0xd28: /* Configurable Fault Status.  */
719         cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
720         if (attrs.secure) {
721             /* The BFSR bits [15:8] are shared between security states
722              * and we store them in the NS copy.
723              */
724             cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
725         }
726         break;
727     case 0xd2c: /* Hard Fault Status.  */
728         cpu->env.v7m.hfsr &= ~value; /* W1C */
729         break;
730     case 0xd30: /* Debug Fault Status.  */
731         cpu->env.v7m.dfsr &= ~value; /* W1C */
732         break;
733     case 0xd34: /* Mem Manage Address.  */
734         cpu->env.v7m.mmfar[attrs.secure] = value;
735         return;
736     case 0xd38: /* Bus Fault Address.  */
737         cpu->env.v7m.bfar = value;
738         return;
739     case 0xd3c: /* Aux Fault Status.  */
740         qemu_log_mask(LOG_UNIMP,
741                       "NVIC: Aux fault status registers unimplemented\n");
742         break;
743     case 0xd90: /* MPU_TYPE */
744         return; /* RO */
745     case 0xd94: /* MPU_CTRL */
746         if ((value &
747              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
748             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
749             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
750                           "UNPREDICTABLE\n");
751         }
752         cpu->env.v7m.mpu_ctrl[attrs.secure]
753             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
754                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
755                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
756         tlb_flush(CPU(cpu));
757         break;
758     case 0xd98: /* MPU_RNR */
759         if (value >= cpu->pmsav7_dregion) {
760             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
761                           PRIu32 "/%" PRIu32 "\n",
762                           value, cpu->pmsav7_dregion);
763         } else {
764             cpu->env.pmsav7.rnr[attrs.secure] = value;
765         }
766         break;
767     case 0xd9c: /* MPU_RBAR */
768     case 0xda4: /* MPU_RBAR_A1 */
769     case 0xdac: /* MPU_RBAR_A2 */
770     case 0xdb4: /* MPU_RBAR_A3 */
771     {
772         int region;
773 
774         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
775             /* PMSAv8M handling of the aliases is different from v7M:
776              * aliases A1, A2, A3 override the low two bits of the region
777              * number in MPU_RNR, and there is no 'region' field in the
778              * RBAR register.
779              */
780             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
781 
782             region = cpu->env.pmsav7.rnr[attrs.secure];
783             if (aliasno) {
784                 region = deposit32(region, 0, 2, aliasno);
785             }
786             if (region >= cpu->pmsav7_dregion) {
787                 return;
788             }
789             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
790             tlb_flush(CPU(cpu));
791             return;
792         }
793 
794         if (value & (1 << 4)) {
795             /* VALID bit means use the region number specified in this
796              * value and also update MPU_RNR.REGION with that value.
797              */
798             region = extract32(value, 0, 4);
799             if (region >= cpu->pmsav7_dregion) {
800                 qemu_log_mask(LOG_GUEST_ERROR,
801                               "MPU region out of range %u/%" PRIu32 "\n",
802                               region, cpu->pmsav7_dregion);
803                 return;
804             }
805             cpu->env.pmsav7.rnr[attrs.secure] = region;
806         } else {
807             region = cpu->env.pmsav7.rnr[attrs.secure];
808         }
809 
810         if (region >= cpu->pmsav7_dregion) {
811             return;
812         }
813 
814         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
815         tlb_flush(CPU(cpu));
816         break;
817     }
818     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
819     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
820     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
821     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
822     {
823         int region = cpu->env.pmsav7.rnr[attrs.secure];
824 
825         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
826             /* PMSAv8M handling of the aliases is different from v7M:
827              * aliases A1, A2, A3 override the low two bits of the region
828              * number in MPU_RNR.
829              */
830             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
831 
832             region = cpu->env.pmsav7.rnr[attrs.secure];
833             if (aliasno) {
834                 region = deposit32(region, 0, 2, aliasno);
835             }
836             if (region >= cpu->pmsav7_dregion) {
837                 return;
838             }
839             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
840             tlb_flush(CPU(cpu));
841             return;
842         }
843 
844         if (region >= cpu->pmsav7_dregion) {
845             return;
846         }
847 
848         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
849         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
850         tlb_flush(CPU(cpu));
851         break;
852     }
853     case 0xdc0: /* MPU_MAIR0 */
854         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
855             goto bad_offset;
856         }
857         if (cpu->pmsav7_dregion) {
858             /* Register is RES0 if no MPU regions are implemented */
859             cpu->env.pmsav8.mair0[attrs.secure] = value;
860         }
861         /* We don't need to do anything else because memory attributes
862          * only affect cacheability, and we don't implement caching.
863          */
864         break;
865     case 0xdc4: /* MPU_MAIR1 */
866         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
867             goto bad_offset;
868         }
869         if (cpu->pmsav7_dregion) {
870             /* Register is RES0 if no MPU regions are implemented */
871             cpu->env.pmsav8.mair1[attrs.secure] = value;
872         }
873         /* We don't need to do anything else because memory attributes
874          * only affect cacheability, and we don't implement caching.
875          */
876         break;
877     case 0xf00: /* Software Triggered Interrupt Register */
878     {
879         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
880         if (excnum < s->num_irq) {
881             armv7m_nvic_set_pending(s, excnum);
882         }
883         break;
884     }
885     default:
886     bad_offset:
887         qemu_log_mask(LOG_GUEST_ERROR,
888                       "NVIC: Bad write offset 0x%x\n", offset);
889     }
890 }
891 
892 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
893 {
894     /* Return true if unprivileged access to this register is permitted. */
895     switch (offset) {
896     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
897         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
898          * controls access even though the CPU is in Secure state (I_QDKX).
899          */
900         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
901     default:
902         /* All other user accesses cause a BusFault unconditionally */
903         return false;
904     }
905 }
906 
907 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
908                                     uint64_t *data, unsigned size,
909                                     MemTxAttrs attrs)
910 {
911     NVICState *s = (NVICState *)opaque;
912     uint32_t offset = addr;
913     unsigned i, startvec, end;
914     uint32_t val;
915 
916     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
917         /* Generate BusFault for unprivileged accesses */
918         return MEMTX_ERROR;
919     }
920 
921     switch (offset) {
922     /* reads of set and clear both return the status */
923     case 0x100 ... 0x13f: /* NVIC Set enable */
924         offset += 0x80;
925         /* fall through */
926     case 0x180 ... 0x1bf: /* NVIC Clear enable */
927         val = 0;
928         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
929 
930         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
931             if (s->vectors[startvec + i].enabled) {
932                 val |= (1 << i);
933             }
934         }
935         break;
936     case 0x200 ... 0x23f: /* NVIC Set pend */
937         offset += 0x80;
938         /* fall through */
939     case 0x280 ... 0x2bf: /* NVIC Clear pend */
940         val = 0;
941         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
942         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
943             if (s->vectors[startvec + i].pending) {
944                 val |= (1 << i);
945             }
946         }
947         break;
948     case 0x300 ... 0x33f: /* NVIC Active */
949         val = 0;
950         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
951 
952         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
953             if (s->vectors[startvec + i].active) {
954                 val |= (1 << i);
955             }
956         }
957         break;
958     case 0x400 ... 0x5ef: /* NVIC Priority */
959         val = 0;
960         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
961 
962         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
963             val |= s->vectors[startvec + i].prio << (8 * i);
964         }
965         break;
966     case 0xd18 ... 0xd23: /* System Handler Priority.  */
967         val = 0;
968         for (i = 0; i < size; i++) {
969             val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
970         }
971         break;
972     case 0xfe0 ... 0xfff: /* ID.  */
973         if (offset & 3) {
974             val = 0;
975         } else {
976             val = nvic_id[(offset - 0xfe0) >> 2];
977         }
978         break;
979     default:
980         if (size == 4) {
981             val = nvic_readl(s, offset, attrs);
982         } else {
983             qemu_log_mask(LOG_GUEST_ERROR,
984                           "NVIC: Bad read of size %d at offset 0x%x\n",
985                           size, offset);
986             val = 0;
987         }
988     }
989 
990     trace_nvic_sysreg_read(addr, val, size);
991     *data = val;
992     return MEMTX_OK;
993 }
994 
995 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
996                                      uint64_t value, unsigned size,
997                                      MemTxAttrs attrs)
998 {
999     NVICState *s = (NVICState *)opaque;
1000     uint32_t offset = addr;
1001     unsigned i, startvec, end;
1002     unsigned setval = 0;
1003 
1004     trace_nvic_sysreg_write(addr, value, size);
1005 
1006     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1007         /* Generate BusFault for unprivileged accesses */
1008         return MEMTX_ERROR;
1009     }
1010 
1011     switch (offset) {
1012     case 0x100 ... 0x13f: /* NVIC Set enable */
1013         offset += 0x80;
1014         setval = 1;
1015         /* fall through */
1016     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1017         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1018 
1019         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1020             if (value & (1 << i)) {
1021                 s->vectors[startvec + i].enabled = setval;
1022             }
1023         }
1024         nvic_irq_update(s);
1025         return MEMTX_OK;
1026     case 0x200 ... 0x23f: /* NVIC Set pend */
1027         /* the special logic in armv7m_nvic_set_pending()
1028          * is not needed since IRQs are never escalated
1029          */
1030         offset += 0x80;
1031         setval = 1;
1032         /* fall through */
1033     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1034         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1035 
1036         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1037             if (value & (1 << i)) {
1038                 s->vectors[startvec + i].pending = setval;
1039             }
1040         }
1041         nvic_irq_update(s);
1042         return MEMTX_OK;
1043     case 0x300 ... 0x33f: /* NVIC Active */
1044         return MEMTX_OK; /* R/O */
1045     case 0x400 ... 0x5ef: /* NVIC Priority */
1046         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1047 
1048         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1049             set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
1050         }
1051         nvic_irq_update(s);
1052         return MEMTX_OK;
1053     case 0xd18 ... 0xd23: /* System Handler Priority.  */
1054         for (i = 0; i < size; i++) {
1055             unsigned hdlidx = (offset - 0xd14) + i;
1056             set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
1057         }
1058         nvic_irq_update(s);
1059         return MEMTX_OK;
1060     }
1061     if (size == 4) {
1062         nvic_writel(s, offset, value, attrs);
1063         return MEMTX_OK;
1064     }
1065     qemu_log_mask(LOG_GUEST_ERROR,
1066                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1067     /* This is UNPREDICTABLE; treat as RAZ/WI */
1068     return MEMTX_OK;
1069 }
1070 
1071 static const MemoryRegionOps nvic_sysreg_ops = {
1072     .read_with_attrs = nvic_sysreg_read,
1073     .write_with_attrs = nvic_sysreg_write,
1074     .endianness = DEVICE_NATIVE_ENDIAN,
1075 };
1076 
1077 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1078                                         uint64_t value, unsigned size,
1079                                         MemTxAttrs attrs)
1080 {
1081     if (attrs.secure) {
1082         /* S accesses to the alias act like NS accesses to the real region */
1083         attrs.secure = 0;
1084         return nvic_sysreg_write(opaque, addr, value, size, attrs);
1085     } else {
1086         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1087         if (attrs.user) {
1088             return MEMTX_ERROR;
1089         }
1090         return MEMTX_OK;
1091     }
1092 }
1093 
1094 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1095                                        uint64_t *data, unsigned size,
1096                                        MemTxAttrs attrs)
1097 {
1098     if (attrs.secure) {
1099         /* S accesses to the alias act like NS accesses to the real region */
1100         attrs.secure = 0;
1101         return nvic_sysreg_read(opaque, addr, data, size, attrs);
1102     } else {
1103         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1104         if (attrs.user) {
1105             return MEMTX_ERROR;
1106         }
1107         *data = 0;
1108         return MEMTX_OK;
1109     }
1110 }
1111 
1112 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1113     .read_with_attrs = nvic_sysreg_ns_read,
1114     .write_with_attrs = nvic_sysreg_ns_write,
1115     .endianness = DEVICE_NATIVE_ENDIAN,
1116 };
1117 
1118 static int nvic_post_load(void *opaque, int version_id)
1119 {
1120     NVICState *s = opaque;
1121     unsigned i;
1122 
1123     /* Check for out of range priority settings */
1124     if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
1125         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1126         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1127         return 1;
1128     }
1129     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1130         if (s->vectors[i].prio & ~0xff) {
1131             return 1;
1132         }
1133     }
1134 
1135     nvic_recompute_state(s);
1136 
1137     return 0;
1138 }
1139 
1140 static const VMStateDescription vmstate_VecInfo = {
1141     .name = "armv7m_nvic_info",
1142     .version_id = 1,
1143     .minimum_version_id = 1,
1144     .fields = (VMStateField[]) {
1145         VMSTATE_INT16(prio, VecInfo),
1146         VMSTATE_UINT8(enabled, VecInfo),
1147         VMSTATE_UINT8(pending, VecInfo),
1148         VMSTATE_UINT8(active, VecInfo),
1149         VMSTATE_UINT8(level, VecInfo),
1150         VMSTATE_END_OF_LIST()
1151     }
1152 };
1153 
1154 static const VMStateDescription vmstate_nvic = {
1155     .name = "armv7m_nvic",
1156     .version_id = 4,
1157     .minimum_version_id = 4,
1158     .post_load = &nvic_post_load,
1159     .fields = (VMStateField[]) {
1160         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1161                              vmstate_VecInfo, VecInfo),
1162         VMSTATE_UINT32(prigroup, NVICState),
1163         VMSTATE_END_OF_LIST()
1164     }
1165 };
1166 
1167 static Property props_nvic[] = {
1168     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1169     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1170     DEFINE_PROP_END_OF_LIST()
1171 };
1172 
1173 static void armv7m_nvic_reset(DeviceState *dev)
1174 {
1175     NVICState *s = NVIC(dev);
1176 
1177     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1178     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1179     /* MEM, BUS, and USAGE are enabled through
1180      * the System Handler Control register
1181      */
1182     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1183     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1184     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1185     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1186 
1187     s->vectors[ARMV7M_EXCP_RESET].prio = -3;
1188     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1189     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1190 
1191     /* Strictly speaking the reset handler should be enabled.
1192      * However, we don't simulate soft resets through the NVIC,
1193      * and the reset vector should never be pended.
1194      * So we leave it disabled to catch logic errors.
1195      */
1196 
1197     s->exception_prio = NVIC_NOEXC_PRIO;
1198     s->vectpending = 0;
1199 }
1200 
1201 static void nvic_systick_trigger(void *opaque, int n, int level)
1202 {
1203     NVICState *s = opaque;
1204 
1205     if (level) {
1206         /* SysTick just asked us to pend its exception.
1207          * (This is different from an external interrupt line's
1208          * behaviour.)
1209          */
1210         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
1211     }
1212 }
1213 
1214 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
1215 {
1216     NVICState *s = NVIC(dev);
1217     SysBusDevice *systick_sbd;
1218     Error *err = NULL;
1219     int regionlen;
1220 
1221     s->cpu = ARM_CPU(qemu_get_cpu(0));
1222     assert(s->cpu);
1223 
1224     if (s->num_irq > NVIC_MAX_IRQ) {
1225         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
1226         return;
1227     }
1228 
1229     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
1230 
1231     /* include space for internal exception vectors */
1232     s->num_irq += NVIC_FIRST_IRQ;
1233 
1234     object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
1235     if (err != NULL) {
1236         error_propagate(errp, err);
1237         return;
1238     }
1239     systick_sbd = SYS_BUS_DEVICE(&s->systick);
1240     sysbus_connect_irq(systick_sbd, 0,
1241                        qdev_get_gpio_in_named(dev, "systick-trigger", 0));
1242 
1243     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
1244      * and looks like this:
1245      *  0x004 - ICTR
1246      *  0x010 - 0xff - systick
1247      *  0x100..0x7ec - NVIC
1248      *  0x7f0..0xcff - Reserved
1249      *  0xd00..0xd3c - SCS registers
1250      *  0xd40..0xeff - Reserved or Not implemented
1251      *  0xf00 - STIR
1252      *
1253      * Some registers within this space are banked between security states.
1254      * In v8M there is a second range 0xe002e000..0xe002efff which is the
1255      * NonSecure alias SCS; secure accesses to this behave like NS accesses
1256      * to the main SCS range, and non-secure accesses (including when
1257      * the security extension is not implemented) are RAZ/WI.
1258      * Note that both the main SCS range and the alias range are defined
1259      * to be exempt from memory attribution (R_BLJT) and so the memory
1260      * transaction attribute always matches the current CPU security
1261      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
1262      * wrappers we change attrs.secure to indicate the NS access; so
1263      * generally code determining which banked register to use should
1264      * use attrs.secure; code determining actual behaviour of the system
1265      * should use env->v7m.secure.
1266      */
1267     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
1268     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
1269     /* The system register region goes at the bottom of the priority
1270      * stack as it covers the whole page.
1271      */
1272     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
1273                           "nvic_sysregs", 0x1000);
1274     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
1275     memory_region_add_subregion_overlap(&s->container, 0x10,
1276                                         sysbus_mmio_get_region(systick_sbd, 0),
1277                                         1);
1278 
1279     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
1280         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
1281                               &nvic_sysreg_ns_ops, s,
1282                               "nvic_sysregs_ns", 0x1000);
1283         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
1284     }
1285 
1286     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
1287 }
1288 
1289 static void armv7m_nvic_instance_init(Object *obj)
1290 {
1291     /* We have a different default value for the num-irq property
1292      * than our superclass. This function runs after qdev init
1293      * has set the defaults from the Property array and before
1294      * any user-specified property setting, so just modify the
1295      * value in the GICState struct.
1296      */
1297     DeviceState *dev = DEVICE(obj);
1298     NVICState *nvic = NVIC(obj);
1299     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1300 
1301     object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
1302     qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
1303 
1304     sysbus_init_irq(sbd, &nvic->excpout);
1305     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
1306     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
1307 }
1308 
1309 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
1310 {
1311     DeviceClass *dc = DEVICE_CLASS(klass);
1312 
1313     dc->vmsd  = &vmstate_nvic;
1314     dc->props = props_nvic;
1315     dc->reset = armv7m_nvic_reset;
1316     dc->realize = armv7m_nvic_realize;
1317 }
1318 
1319 static const TypeInfo armv7m_nvic_info = {
1320     .name          = TYPE_NVIC,
1321     .parent        = TYPE_SYS_BUS_DEVICE,
1322     .instance_init = armv7m_nvic_instance_init,
1323     .instance_size = sizeof(NVICState),
1324     .class_init    = armv7m_nvic_class_init,
1325     .class_size    = sizeof(SysBusDeviceClass),
1326 };
1327 
1328 static void armv7m_nvic_register_types(void)
1329 {
1330     type_register_static(&armv7m_nvic_info);
1331 }
1332 
1333 type_init(armv7m_nvic_register_types)
1334