1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "exec/exec-all.h" 25 #include "exec/memop.h" 26 #include "qemu/log.h" 27 #include "qemu/module.h" 28 #include "trace.h" 29 30 /* IRQ number counting: 31 * 32 * the num-irq property counts the number of external IRQ lines 33 * 34 * NVICState::num_irq counts the total number of exceptions 35 * (external IRQs, the 15 internal exceptions including reset, 36 * and one for the unused exception number 0). 37 * 38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 39 * 40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 41 * 42 * Iterating through all exceptions should typically be done with 43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 44 * 45 * The external qemu_irq lines are the NVIC's external IRQ lines, 46 * so line 0 is exception 16. 47 * 48 * In the terminology of the architecture manual, "interrupts" are 49 * a subcategory of exception referring to the external interrupts 50 * (which are exception numbers NVIC_FIRST_IRQ and upward). 51 * For historical reasons QEMU tends to use "interrupt" and 52 * "exception" more or less interchangeably. 53 */ 54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 56 57 /* Effective running priority of the CPU when no exception is active 58 * (higher than the highest possible priority value) 59 */ 60 #define NVIC_NOEXC_PRIO 0x100 61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 62 #define NVIC_NS_PRIO_LIMIT 0x80 63 64 static const uint8_t nvic_id[] = { 65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 66 }; 67 68 static void signal_sysresetreq(NVICState *s) 69 { 70 if (qemu_irq_is_connected(s->sysresetreq)) { 71 qemu_irq_pulse(s->sysresetreq); 72 } else { 73 /* 74 * Default behaviour if the SoC doesn't need to wire up 75 * SYSRESETREQ (eg to a system reset controller of some kind): 76 * perform a system reset via the usual QEMU API. 77 */ 78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 79 } 80 } 81 82 static int nvic_pending_prio(NVICState *s) 83 { 84 /* return the group priority of the current pending interrupt, 85 * or NVIC_NOEXC_PRIO if no interrupt is pending 86 */ 87 return s->vectpending_prio; 88 } 89 90 /* Return the value of the ISCR RETTOBASE bit: 91 * 1 if there is exactly one active exception 92 * 0 if there is more than one active exception 93 * UNKNOWN if there are no active exceptions (we choose 1, 94 * which matches the choice Cortex-M3 is documented as making). 95 * 96 * NB: some versions of the documentation talk about this 97 * counting "active exceptions other than the one shown by IPSR"; 98 * this is only different in the obscure corner case where guest 99 * code has manually deactivated an exception and is about 100 * to fail an exception-return integrity check. The definition 101 * above is the one from the v8M ARM ARM and is also in line 102 * with the behaviour documented for the Cortex-M3. 103 */ 104 static bool nvic_rettobase(NVICState *s) 105 { 106 int irq, nhand = 0; 107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 108 109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 110 if (s->vectors[irq].active || 111 (check_sec && irq < NVIC_INTERNAL_VECTORS && 112 s->sec_vectors[irq].active)) { 113 nhand++; 114 if (nhand == 2) { 115 return 0; 116 } 117 } 118 } 119 120 return 1; 121 } 122 123 /* Return the value of the ISCR ISRPENDING bit: 124 * 1 if an external interrupt is pending 125 * 0 if no external interrupt is pending 126 */ 127 static bool nvic_isrpending(NVICState *s) 128 { 129 int irq; 130 131 /* We can shortcut if the highest priority pending interrupt 132 * happens to be external or if there is nothing pending. 133 */ 134 if (s->vectpending > NVIC_FIRST_IRQ) { 135 return true; 136 } 137 if (s->vectpending == 0) { 138 return false; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 NVICState *s = opaque; 405 406 if (s->cpu->env.v7m.faultmask[secure]) { 407 return true; 408 } 409 410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 411 s->vectors[ARMV7M_EXCP_HARD].active) { 412 return true; 413 } 414 415 if (s->vectors[ARMV7M_EXCP_NMI].active && 416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 417 return true; 418 } 419 420 return false; 421 } 422 423 bool armv7m_nvic_can_take_pending_exception(void *opaque) 424 { 425 NVICState *s = opaque; 426 427 return nvic_exec_prio(s) > nvic_pending_prio(s); 428 } 429 430 int armv7m_nvic_raw_execution_priority(void *opaque) 431 { 432 NVICState *s = opaque; 433 434 return s->exception_prio; 435 } 436 437 /* caller must call nvic_irq_update() after this. 438 * secure indicates the bank to use for banked exceptions (we assert if 439 * we are passed secure=true for a non-banked exception). 440 */ 441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 442 { 443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 444 assert(irq < s->num_irq); 445 446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 447 448 if (secure) { 449 assert(exc_is_banked(irq)); 450 s->sec_vectors[irq].prio = prio; 451 } else { 452 s->vectors[irq].prio = prio; 453 } 454 455 trace_nvic_set_prio(irq, secure, prio); 456 } 457 458 /* Return the current raw priority register value. 459 * secure indicates the bank to use for banked exceptions (we assert if 460 * we are passed secure=true for a non-banked exception). 461 */ 462 static int get_prio(NVICState *s, unsigned irq, bool secure) 463 { 464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 465 assert(irq < s->num_irq); 466 467 if (secure) { 468 assert(exc_is_banked(irq)); 469 return s->sec_vectors[irq].prio; 470 } else { 471 return s->vectors[irq].prio; 472 } 473 } 474 475 /* Recompute state and assert irq line accordingly. 476 * Must be called after changes to: 477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 478 * prigroup 479 */ 480 static void nvic_irq_update(NVICState *s) 481 { 482 int lvl; 483 int pend_prio; 484 485 nvic_recompute_state(s); 486 pend_prio = nvic_pending_prio(s); 487 488 /* Raise NVIC output if this IRQ would be taken, except that we 489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 491 * to those CPU registers don't cause us to recalculate the NVIC 492 * pending info. 493 */ 494 lvl = (pend_prio < s->exception_prio); 495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 496 qemu_set_irq(s->excpout, lvl); 497 } 498 499 /** 500 * armv7m_nvic_clear_pending: mark the specified exception as not pending 501 * @opaque: the NVIC 502 * @irq: the exception number to mark as not pending 503 * @secure: false for non-banked exceptions or for the nonsecure 504 * version of a banked exception, true for the secure version of a banked 505 * exception. 506 * 507 * Marks the specified exception as not pending. Note that we will assert() 508 * if @secure is true and @irq does not specify one of the fixed set 509 * of architecturally banked exceptions. 510 */ 511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 512 { 513 NVICState *s = (NVICState *)opaque; 514 VecInfo *vec; 515 516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 517 518 if (secure) { 519 assert(exc_is_banked(irq)); 520 vec = &s->sec_vectors[irq]; 521 } else { 522 vec = &s->vectors[irq]; 523 } 524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 525 if (vec->pending) { 526 vec->pending = 0; 527 nvic_irq_update(s); 528 } 529 } 530 531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 532 bool derived) 533 { 534 /* Pend an exception, including possibly escalating it to HardFault. 535 * 536 * This function handles both "normal" pending of interrupts and 537 * exceptions, and also derived exceptions (ones which occur as 538 * a result of trying to take some other exception). 539 * 540 * If derived == true, the caller guarantees that we are part way through 541 * trying to take an exception (but have not yet called 542 * armv7m_nvic_acknowledge_irq() to make it active), and so: 543 * - s->vectpending is the "original exception" we were trying to take 544 * - irq is the "derived exception" 545 * - nvic_exec_prio(s) gives the priority before exception entry 546 * Here we handle the prioritization logic which the pseudocode puts 547 * in the DerivedLateArrival() function. 548 */ 549 550 NVICState *s = (NVICState *)opaque; 551 bool banked = exc_is_banked(irq); 552 VecInfo *vec; 553 bool targets_secure; 554 555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 556 assert(!secure || banked); 557 558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 559 560 targets_secure = banked ? secure : exc_targets_secure(s, irq); 561 562 trace_nvic_set_pending(irq, secure, targets_secure, 563 derived, vec->enabled, vec->prio); 564 565 if (derived) { 566 /* Derived exceptions are always synchronous. */ 567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 568 569 if (irq == ARMV7M_EXCP_DEBUG && 570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 571 /* DebugMonitorFault, but its priority is lower than the 572 * preempted exception priority: just ignore it. 573 */ 574 return; 575 } 576 577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 578 /* If this is a terminal exception (one which means we cannot 579 * take the original exception, like a failure to read its 580 * vector table entry), then we must take the derived exception. 581 * If the derived exception can't take priority over the 582 * original exception, then we go into Lockup. 583 * 584 * For QEMU, we rely on the fact that a derived exception is 585 * terminal if and only if it's reported to us as HardFault, 586 * which saves having to have an extra argument is_terminal 587 * that we'd only use in one place. 588 */ 589 cpu_abort(&s->cpu->parent_obj, 590 "Lockup: can't take terminal derived exception " 591 "(original exception priority %d)\n", 592 s->vectpending_prio); 593 } 594 /* We now continue with the same code as for a normal pending 595 * exception, which will cause us to pend the derived exception. 596 * We'll then take either the original or the derived exception 597 * based on which is higher priority by the usual mechanism 598 * for selecting the highest priority pending interrupt. 599 */ 600 } 601 602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 603 /* If a synchronous exception is pending then it may be 604 * escalated to HardFault if: 605 * * it is equal or lower priority to current execution 606 * * it is disabled 607 * (ie we need to take it immediately but we can't do so). 608 * Asynchronous exceptions (and interrupts) simply remain pending. 609 * 610 * For QEMU, we don't have any imprecise (asynchronous) faults, 611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 612 * synchronous. 613 * Debug exceptions are awkward because only Debug exceptions 614 * resulting from the BKPT instruction should be escalated, 615 * but we don't currently implement any Debug exceptions other 616 * than those that result from BKPT, so we treat all debug exceptions 617 * as needing escalation. 618 * 619 * This all means we can identify whether to escalate based only on 620 * the exception number and don't (yet) need the caller to explicitly 621 * tell us whether this exception is synchronous or not. 622 */ 623 int running = nvic_exec_prio(s); 624 bool escalate = false; 625 626 if (exc_group_prio(s, vec->prio, secure) >= running) { 627 trace_nvic_escalate_prio(irq, vec->prio, running); 628 escalate = true; 629 } else if (!vec->enabled) { 630 trace_nvic_escalate_disabled(irq); 631 escalate = true; 632 } 633 634 if (escalate) { 635 636 /* We need to escalate this exception to a synchronous HardFault. 637 * If BFHFNMINS is set then we escalate to the banked HF for 638 * the target security state of the original exception; otherwise 639 * we take a Secure HardFault. 640 */ 641 irq = ARMV7M_EXCP_HARD; 642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 643 (targets_secure || 644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 645 vec = &s->sec_vectors[irq]; 646 } else { 647 vec = &s->vectors[irq]; 648 } 649 if (running <= vec->prio) { 650 /* We want to escalate to HardFault but we can't take the 651 * synchronous HardFault at this point either. This is a 652 * Lockup condition due to a guest bug. We don't model 653 * Lockup, so report via cpu_abort() instead. 654 */ 655 cpu_abort(&s->cpu->parent_obj, 656 "Lockup: can't escalate %d to HardFault " 657 "(current priority %d)\n", irq, running); 658 } 659 660 /* HF may be banked but there is only one shared HFSR */ 661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 662 } 663 } 664 665 if (!vec->pending) { 666 vec->pending = 1; 667 nvic_irq_update(s); 668 } 669 } 670 671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 672 { 673 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 674 } 675 676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 677 { 678 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 679 } 680 681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 682 { 683 /* 684 * Pend an exception during lazy FP stacking. This differs 685 * from the usual exception pending because the logic for 686 * whether we should escalate depends on the saved context 687 * in the FPCCR register, not on the current state of the CPU/NVIC. 688 */ 689 NVICState *s = (NVICState *)opaque; 690 bool banked = exc_is_banked(irq); 691 VecInfo *vec; 692 bool targets_secure; 693 bool escalate = false; 694 /* 695 * We will only look at bits in fpccr if this is a banked exception 696 * (in which case 'secure' tells us whether it is the S or NS version). 697 * All the bits for the non-banked exceptions are in fpccr_s. 698 */ 699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 701 702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 703 assert(!secure || banked); 704 705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 706 707 targets_secure = banked ? secure : exc_targets_secure(s, irq); 708 709 switch (irq) { 710 case ARMV7M_EXCP_DEBUG: 711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 712 /* Ignore DebugMonitor exception */ 713 return; 714 } 715 break; 716 case ARMV7M_EXCP_MEM: 717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 718 break; 719 case ARMV7M_EXCP_USAGE: 720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 721 break; 722 case ARMV7M_EXCP_BUS: 723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 724 break; 725 case ARMV7M_EXCP_SECURE: 726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 727 break; 728 default: 729 g_assert_not_reached(); 730 } 731 732 if (escalate) { 733 /* 734 * Escalate to HardFault: faults that initially targeted Secure 735 * continue to do so, even if HF normally targets NonSecure. 736 */ 737 irq = ARMV7M_EXCP_HARD; 738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 739 (targets_secure || 740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 741 vec = &s->sec_vectors[irq]; 742 } else { 743 vec = &s->vectors[irq]; 744 } 745 } 746 747 if (!vec->enabled || 748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 750 /* 751 * We want to escalate to HardFault but the context the 752 * FP state belongs to prevents the exception pre-empting. 753 */ 754 cpu_abort(&s->cpu->parent_obj, 755 "Lockup: can't escalate to HardFault during " 756 "lazy FP register stacking\n"); 757 } 758 } 759 760 if (escalate) { 761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 762 } 763 if (!vec->pending) { 764 vec->pending = 1; 765 /* 766 * We do not call nvic_irq_update(), because we know our caller 767 * is going to handle causing us to take the exception by 768 * raising EXCP_LAZYFP, so raising the IRQ line would be 769 * pointless extra work. We just need to recompute the 770 * priorities so that armv7m_nvic_can_take_pending_exception() 771 * returns the right answer. 772 */ 773 nvic_recompute_state(s); 774 } 775 } 776 777 /* Make pending IRQ active. */ 778 void armv7m_nvic_acknowledge_irq(void *opaque) 779 { 780 NVICState *s = (NVICState *)opaque; 781 CPUARMState *env = &s->cpu->env; 782 const int pending = s->vectpending; 783 const int running = nvic_exec_prio(s); 784 VecInfo *vec; 785 786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 787 788 if (s->vectpending_is_s_banked) { 789 vec = &s->sec_vectors[pending]; 790 } else { 791 vec = &s->vectors[pending]; 792 } 793 794 assert(vec->enabled); 795 assert(vec->pending); 796 797 assert(s->vectpending_prio < running); 798 799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 800 801 vec->active = 1; 802 vec->pending = 0; 803 804 write_v7m_exception(env, s->vectpending); 805 806 nvic_irq_update(s); 807 } 808 809 void armv7m_nvic_get_pending_irq_info(void *opaque, 810 int *pirq, bool *ptargets_secure) 811 { 812 NVICState *s = (NVICState *)opaque; 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 if (s->vectpending_is_s_banked) { 819 targets_secure = true; 820 } else { 821 targets_secure = !exc_is_banked(pending) && 822 exc_targets_secure(s, pending); 823 } 824 825 trace_nvic_get_pending_irq_info(pending, targets_secure); 826 827 *ptargets_secure = targets_secure; 828 *pirq = pending; 829 } 830 831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 832 { 833 NVICState *s = (NVICState *)opaque; 834 VecInfo *vec = NULL; 835 int ret = 0; 836 837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 838 839 trace_nvic_complete_irq(irq, secure); 840 841 if (secure && exc_is_banked(irq)) { 842 vec = &s->sec_vectors[irq]; 843 } else { 844 vec = &s->vectors[irq]; 845 } 846 847 /* 848 * Identify illegal exception return cases. We can't immediately 849 * return at this point because we still need to deactivate 850 * (either this exception or NMI/HardFault) first. 851 */ 852 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 853 /* 854 * Return from a configurable exception targeting the opposite 855 * security state from the one we're trying to complete it for. 856 * Clear vec because it's not really the VecInfo for this 857 * (irq, secstate) so we mustn't deactivate it. 858 */ 859 ret = -1; 860 vec = NULL; 861 } else if (!vec->active) { 862 /* Return from an inactive interrupt */ 863 ret = -1; 864 } else { 865 /* Legal return, we will return the RETTOBASE bit value to the caller */ 866 ret = nvic_rettobase(s); 867 } 868 869 /* 870 * For negative priorities, v8M will forcibly deactivate the appropriate 871 * NMI or HardFault regardless of what interrupt we're being asked to 872 * deactivate (compare the DeActivate() pseudocode). This is a guard 873 * against software returning from NMI or HardFault with a corrupted 874 * IPSR and leaving the CPU in a negative-priority state. 875 * v7M does not do this, but simply deactivates the requested interrupt. 876 */ 877 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 878 switch (armv7m_nvic_raw_execution_priority(s)) { 879 case -1: 880 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 881 vec = &s->vectors[ARMV7M_EXCP_HARD]; 882 } else { 883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 884 } 885 break; 886 case -2: 887 vec = &s->vectors[ARMV7M_EXCP_NMI]; 888 break; 889 case -3: 890 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 891 break; 892 default: 893 break; 894 } 895 } 896 897 if (!vec) { 898 return ret; 899 } 900 901 vec->active = 0; 902 if (vec->level) { 903 /* Re-pend the exception if it's still held high; only 904 * happens for extenal IRQs 905 */ 906 assert(irq >= NVIC_FIRST_IRQ); 907 vec->pending = 1; 908 } 909 910 nvic_irq_update(s); 911 912 return ret; 913 } 914 915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 916 { 917 /* 918 * Return whether an exception is "ready", i.e. it is enabled and is 919 * configured at a priority which would allow it to interrupt the 920 * current execution priority. 921 * 922 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 923 * for non-banked exceptions secure is always false; for banked exceptions 924 * it indicates which of the exceptions is required. 925 */ 926 NVICState *s = (NVICState *)opaque; 927 bool banked = exc_is_banked(irq); 928 VecInfo *vec; 929 int running = nvic_exec_prio(s); 930 931 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 932 assert(!secure || banked); 933 934 /* 935 * HardFault is an odd special case: we always check against -1, 936 * even if we're secure and HardFault has priority -3; we never 937 * need to check for enabled state. 938 */ 939 if (irq == ARMV7M_EXCP_HARD) { 940 return running > -1; 941 } 942 943 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 944 945 return vec->enabled && 946 exc_group_prio(s, vec->prio, secure) < running; 947 } 948 949 /* callback when external interrupt line is changed */ 950 static void set_irq_level(void *opaque, int n, int level) 951 { 952 NVICState *s = opaque; 953 VecInfo *vec; 954 955 n += NVIC_FIRST_IRQ; 956 957 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 958 959 trace_nvic_set_irq_level(n, level); 960 961 /* The pending status of an external interrupt is 962 * latched on rising edge and exception handler return. 963 * 964 * Pulsing the IRQ will always run the handler 965 * once, and the handler will re-run until the 966 * level is low when the handler completes. 967 */ 968 vec = &s->vectors[n]; 969 if (level != vec->level) { 970 vec->level = level; 971 if (level) { 972 armv7m_nvic_set_pending(s, n, false); 973 } 974 } 975 } 976 977 /* callback when external NMI line is changed */ 978 static void nvic_nmi_trigger(void *opaque, int n, int level) 979 { 980 NVICState *s = opaque; 981 982 trace_nvic_set_nmi_level(level); 983 984 /* 985 * The architecture doesn't specify whether NMI should share 986 * the normal-interrupt behaviour of being resampled on 987 * exception handler return. We choose not to, so just 988 * set NMI pending here and don't track the current level. 989 */ 990 if (level) { 991 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 992 } 993 } 994 995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 996 { 997 ARMCPU *cpu = s->cpu; 998 uint32_t val; 999 1000 switch (offset) { 1001 case 4: /* Interrupt Control Type. */ 1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1003 goto bad_offset; 1004 } 1005 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1006 case 0xc: /* CPPWR */ 1007 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1008 goto bad_offset; 1009 } 1010 /* We make the IMPDEF choice that nothing can ever go into a 1011 * non-retentive power state, which allows us to RAZ/WI this. 1012 */ 1013 return 0; 1014 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1015 { 1016 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1017 int i; 1018 1019 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1020 goto bad_offset; 1021 } 1022 if (!attrs.secure) { 1023 return 0; 1024 } 1025 val = 0; 1026 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1027 if (s->itns[startvec + i]) { 1028 val |= (1 << i); 1029 } 1030 } 1031 return val; 1032 } 1033 case 0xcfc: 1034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1035 goto bad_offset; 1036 } 1037 return cpu->revidr; 1038 case 0xd00: /* CPUID Base. */ 1039 return cpu->midr; 1040 case 0xd04: /* Interrupt Control State (ICSR) */ 1041 /* VECTACTIVE */ 1042 val = cpu->env.v7m.exception; 1043 /* VECTPENDING */ 1044 val |= (s->vectpending & 0xff) << 12; 1045 /* ISRPENDING - set if any external IRQ is pending */ 1046 if (nvic_isrpending(s)) { 1047 val |= (1 << 22); 1048 } 1049 /* RETTOBASE - set if only one handler is active */ 1050 if (nvic_rettobase(s)) { 1051 val |= (1 << 11); 1052 } 1053 if (attrs.secure) { 1054 /* PENDSTSET */ 1055 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1056 val |= (1 << 26); 1057 } 1058 /* PENDSVSET */ 1059 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1060 val |= (1 << 28); 1061 } 1062 } else { 1063 /* PENDSTSET */ 1064 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1065 val |= (1 << 26); 1066 } 1067 /* PENDSVSET */ 1068 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1069 val |= (1 << 28); 1070 } 1071 } 1072 /* NMIPENDSET */ 1073 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1074 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1075 val |= (1 << 31); 1076 } 1077 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1078 /* STTNS: RES0 for the Main Extension */ 1079 return val; 1080 case 0xd08: /* Vector Table Offset. */ 1081 return cpu->env.v7m.vecbase[attrs.secure]; 1082 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1083 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1084 if (attrs.secure) { 1085 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1086 val |= cpu->env.v7m.aircr; 1087 } else { 1088 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1089 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1090 * security isn't supported then BFHFNMINS is RAO (and 1091 * the bit in env.v7m.aircr is always set). 1092 */ 1093 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1094 } 1095 } 1096 return val; 1097 case 0xd10: /* System Control. */ 1098 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1099 goto bad_offset; 1100 } 1101 return cpu->env.v7m.scr[attrs.secure]; 1102 case 0xd14: /* Configuration Control. */ 1103 /* 1104 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1105 * and TRD (stored in the S copy of the register) 1106 */ 1107 val = cpu->env.v7m.ccr[attrs.secure]; 1108 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1109 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1110 if (!attrs.secure) { 1111 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1112 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1113 } 1114 } 1115 return val; 1116 case 0xd24: /* System Handler Control and State (SHCSR) */ 1117 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1118 goto bad_offset; 1119 } 1120 val = 0; 1121 if (attrs.secure) { 1122 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1123 val |= (1 << 0); 1124 } 1125 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1126 val |= (1 << 2); 1127 } 1128 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1129 val |= (1 << 3); 1130 } 1131 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1132 val |= (1 << 7); 1133 } 1134 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1135 val |= (1 << 10); 1136 } 1137 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1138 val |= (1 << 11); 1139 } 1140 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1141 val |= (1 << 12); 1142 } 1143 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1144 val |= (1 << 13); 1145 } 1146 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1147 val |= (1 << 15); 1148 } 1149 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1150 val |= (1 << 16); 1151 } 1152 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1153 val |= (1 << 18); 1154 } 1155 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1156 val |= (1 << 21); 1157 } 1158 /* SecureFault is not banked but is always RAZ/WI to NS */ 1159 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1160 val |= (1 << 4); 1161 } 1162 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1163 val |= (1 << 19); 1164 } 1165 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1166 val |= (1 << 20); 1167 } 1168 } else { 1169 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1170 val |= (1 << 0); 1171 } 1172 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1173 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1174 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1175 val |= (1 << 2); 1176 } 1177 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1178 val |= (1 << 21); 1179 } 1180 } 1181 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1182 val |= (1 << 3); 1183 } 1184 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1185 val |= (1 << 7); 1186 } 1187 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1188 val |= (1 << 10); 1189 } 1190 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1191 val |= (1 << 11); 1192 } 1193 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1194 val |= (1 << 12); 1195 } 1196 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1197 val |= (1 << 13); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1200 val |= (1 << 15); 1201 } 1202 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1203 val |= (1 << 16); 1204 } 1205 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1206 val |= (1 << 18); 1207 } 1208 } 1209 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1210 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1211 val |= (1 << 1); 1212 } 1213 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1214 val |= (1 << 14); 1215 } 1216 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1217 val |= (1 << 17); 1218 } 1219 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1220 s->vectors[ARMV7M_EXCP_NMI].active) { 1221 /* NMIACT is not present in v7M */ 1222 val |= (1 << 5); 1223 } 1224 } 1225 1226 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1227 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1228 val |= (1 << 8); 1229 } 1230 return val; 1231 case 0xd2c: /* Hard Fault Status. */ 1232 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1233 goto bad_offset; 1234 } 1235 return cpu->env.v7m.hfsr; 1236 case 0xd30: /* Debug Fault Status. */ 1237 return cpu->env.v7m.dfsr; 1238 case 0xd34: /* MMFAR MemManage Fault Address */ 1239 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1240 goto bad_offset; 1241 } 1242 return cpu->env.v7m.mmfar[attrs.secure]; 1243 case 0xd38: /* Bus Fault Address. */ 1244 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1245 goto bad_offset; 1246 } 1247 if (!attrs.secure && 1248 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1249 return 0; 1250 } 1251 return cpu->env.v7m.bfar; 1252 case 0xd3c: /* Aux Fault Status. */ 1253 /* TODO: Implement fault status registers. */ 1254 qemu_log_mask(LOG_UNIMP, 1255 "Aux Fault status registers unimplemented\n"); 1256 return 0; 1257 case 0xd40: /* PFR0. */ 1258 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1259 goto bad_offset; 1260 } 1261 return cpu->isar.id_pfr0; 1262 case 0xd44: /* PFR1. */ 1263 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1264 goto bad_offset; 1265 } 1266 return cpu->isar.id_pfr1; 1267 case 0xd48: /* DFR0. */ 1268 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1269 goto bad_offset; 1270 } 1271 return cpu->isar.id_dfr0; 1272 case 0xd4c: /* AFR0. */ 1273 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1274 goto bad_offset; 1275 } 1276 return cpu->id_afr0; 1277 case 0xd50: /* MMFR0. */ 1278 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1279 goto bad_offset; 1280 } 1281 return cpu->isar.id_mmfr0; 1282 case 0xd54: /* MMFR1. */ 1283 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1284 goto bad_offset; 1285 } 1286 return cpu->isar.id_mmfr1; 1287 case 0xd58: /* MMFR2. */ 1288 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1289 goto bad_offset; 1290 } 1291 return cpu->isar.id_mmfr2; 1292 case 0xd5c: /* MMFR3. */ 1293 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1294 goto bad_offset; 1295 } 1296 return cpu->isar.id_mmfr3; 1297 case 0xd60: /* ISAR0. */ 1298 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1299 goto bad_offset; 1300 } 1301 return cpu->isar.id_isar0; 1302 case 0xd64: /* ISAR1. */ 1303 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1304 goto bad_offset; 1305 } 1306 return cpu->isar.id_isar1; 1307 case 0xd68: /* ISAR2. */ 1308 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1309 goto bad_offset; 1310 } 1311 return cpu->isar.id_isar2; 1312 case 0xd6c: /* ISAR3. */ 1313 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1314 goto bad_offset; 1315 } 1316 return cpu->isar.id_isar3; 1317 case 0xd70: /* ISAR4. */ 1318 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1319 goto bad_offset; 1320 } 1321 return cpu->isar.id_isar4; 1322 case 0xd74: /* ISAR5. */ 1323 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1324 goto bad_offset; 1325 } 1326 return cpu->isar.id_isar5; 1327 case 0xd78: /* CLIDR */ 1328 return cpu->clidr; 1329 case 0xd7c: /* CTR */ 1330 return cpu->ctr; 1331 case 0xd80: /* CSSIDR */ 1332 { 1333 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1334 return cpu->ccsidr[idx]; 1335 } 1336 case 0xd84: /* CSSELR */ 1337 return cpu->env.v7m.csselr[attrs.secure]; 1338 case 0xd88: /* CPACR */ 1339 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1340 return 0; 1341 } 1342 return cpu->env.v7m.cpacr[attrs.secure]; 1343 case 0xd8c: /* NSACR */ 1344 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1345 return 0; 1346 } 1347 return cpu->env.v7m.nsacr; 1348 /* TODO: Implement debug registers. */ 1349 case 0xd90: /* MPU_TYPE */ 1350 /* Unified MPU; if the MPU is not present this value is zero */ 1351 return cpu->pmsav7_dregion << 8; 1352 case 0xd94: /* MPU_CTRL */ 1353 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1354 case 0xd98: /* MPU_RNR */ 1355 return cpu->env.pmsav7.rnr[attrs.secure]; 1356 case 0xd9c: /* MPU_RBAR */ 1357 case 0xda4: /* MPU_RBAR_A1 */ 1358 case 0xdac: /* MPU_RBAR_A2 */ 1359 case 0xdb4: /* MPU_RBAR_A3 */ 1360 { 1361 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1362 1363 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1364 /* PMSAv8M handling of the aliases is different from v7M: 1365 * aliases A1, A2, A3 override the low two bits of the region 1366 * number in MPU_RNR, and there is no 'region' field in the 1367 * RBAR register. 1368 */ 1369 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1370 if (aliasno) { 1371 region = deposit32(region, 0, 2, aliasno); 1372 } 1373 if (region >= cpu->pmsav7_dregion) { 1374 return 0; 1375 } 1376 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1377 } 1378 1379 if (region >= cpu->pmsav7_dregion) { 1380 return 0; 1381 } 1382 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1383 } 1384 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1385 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1386 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1387 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1388 { 1389 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1390 1391 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1392 /* PMSAv8M handling of the aliases is different from v7M: 1393 * aliases A1, A2, A3 override the low two bits of the region 1394 * number in MPU_RNR. 1395 */ 1396 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1397 if (aliasno) { 1398 region = deposit32(region, 0, 2, aliasno); 1399 } 1400 if (region >= cpu->pmsav7_dregion) { 1401 return 0; 1402 } 1403 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1404 } 1405 1406 if (region >= cpu->pmsav7_dregion) { 1407 return 0; 1408 } 1409 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1410 (cpu->env.pmsav7.drsr[region] & 0xffff); 1411 } 1412 case 0xdc0: /* MPU_MAIR0 */ 1413 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1414 goto bad_offset; 1415 } 1416 return cpu->env.pmsav8.mair0[attrs.secure]; 1417 case 0xdc4: /* MPU_MAIR1 */ 1418 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1419 goto bad_offset; 1420 } 1421 return cpu->env.pmsav8.mair1[attrs.secure]; 1422 case 0xdd0: /* SAU_CTRL */ 1423 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1424 goto bad_offset; 1425 } 1426 if (!attrs.secure) { 1427 return 0; 1428 } 1429 return cpu->env.sau.ctrl; 1430 case 0xdd4: /* SAU_TYPE */ 1431 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1432 goto bad_offset; 1433 } 1434 if (!attrs.secure) { 1435 return 0; 1436 } 1437 return cpu->sau_sregion; 1438 case 0xdd8: /* SAU_RNR */ 1439 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1440 goto bad_offset; 1441 } 1442 if (!attrs.secure) { 1443 return 0; 1444 } 1445 return cpu->env.sau.rnr; 1446 case 0xddc: /* SAU_RBAR */ 1447 { 1448 int region = cpu->env.sau.rnr; 1449 1450 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1451 goto bad_offset; 1452 } 1453 if (!attrs.secure) { 1454 return 0; 1455 } 1456 if (region >= cpu->sau_sregion) { 1457 return 0; 1458 } 1459 return cpu->env.sau.rbar[region]; 1460 } 1461 case 0xde0: /* SAU_RLAR */ 1462 { 1463 int region = cpu->env.sau.rnr; 1464 1465 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1466 goto bad_offset; 1467 } 1468 if (!attrs.secure) { 1469 return 0; 1470 } 1471 if (region >= cpu->sau_sregion) { 1472 return 0; 1473 } 1474 return cpu->env.sau.rlar[region]; 1475 } 1476 case 0xde4: /* SFSR */ 1477 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1478 goto bad_offset; 1479 } 1480 if (!attrs.secure) { 1481 return 0; 1482 } 1483 return cpu->env.v7m.sfsr; 1484 case 0xde8: /* SFAR */ 1485 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1486 goto bad_offset; 1487 } 1488 if (!attrs.secure) { 1489 return 0; 1490 } 1491 return cpu->env.v7m.sfar; 1492 case 0xf04: /* RFSR */ 1493 if (!cpu_isar_feature(aa32_ras, cpu)) { 1494 goto bad_offset; 1495 } 1496 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1497 return 0; 1498 case 0xf34: /* FPCCR */ 1499 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1500 return 0; 1501 } 1502 if (attrs.secure) { 1503 return cpu->env.v7m.fpccr[M_REG_S]; 1504 } else { 1505 /* 1506 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1507 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1508 * other non-banked bits RAZ. 1509 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1510 */ 1511 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1512 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1513 R_V7M_FPCCR_CLRONRET_MASK | 1514 R_V7M_FPCCR_MONRDY_MASK; 1515 1516 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1517 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1518 } 1519 1520 value &= mask; 1521 1522 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1523 return value; 1524 } 1525 case 0xf38: /* FPCAR */ 1526 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1527 return 0; 1528 } 1529 return cpu->env.v7m.fpcar[attrs.secure]; 1530 case 0xf3c: /* FPDSCR */ 1531 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1532 return 0; 1533 } 1534 return cpu->env.v7m.fpdscr[attrs.secure]; 1535 case 0xf40: /* MVFR0 */ 1536 return cpu->isar.mvfr0; 1537 case 0xf44: /* MVFR1 */ 1538 return cpu->isar.mvfr1; 1539 case 0xf48: /* MVFR2 */ 1540 return cpu->isar.mvfr2; 1541 default: 1542 bad_offset: 1543 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1544 return 0; 1545 } 1546 } 1547 1548 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1549 MemTxAttrs attrs) 1550 { 1551 ARMCPU *cpu = s->cpu; 1552 1553 switch (offset) { 1554 case 0xc: /* CPPWR */ 1555 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1556 goto bad_offset; 1557 } 1558 /* Make the IMPDEF choice to RAZ/WI this. */ 1559 break; 1560 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1561 { 1562 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1563 int i; 1564 1565 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1566 goto bad_offset; 1567 } 1568 if (!attrs.secure) { 1569 break; 1570 } 1571 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1572 s->itns[startvec + i] = (value >> i) & 1; 1573 } 1574 nvic_irq_update(s); 1575 break; 1576 } 1577 case 0xd04: /* Interrupt Control State (ICSR) */ 1578 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1579 if (value & (1 << 31)) { 1580 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1581 } else if (value & (1 << 30) && 1582 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1583 /* PENDNMICLR didn't exist in v7M */ 1584 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1585 } 1586 } 1587 if (value & (1 << 28)) { 1588 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1589 } else if (value & (1 << 27)) { 1590 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1591 } 1592 if (value & (1 << 26)) { 1593 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1594 } else if (value & (1 << 25)) { 1595 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1596 } 1597 break; 1598 case 0xd08: /* Vector Table Offset. */ 1599 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1600 break; 1601 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1602 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1603 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1604 if (attrs.secure || 1605 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1606 signal_sysresetreq(s); 1607 } 1608 } 1609 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1610 qemu_log_mask(LOG_GUEST_ERROR, 1611 "Setting VECTCLRACTIVE when not in DEBUG mode " 1612 "is UNPREDICTABLE\n"); 1613 } 1614 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1615 /* NB: this bit is RES0 in v8M */ 1616 qemu_log_mask(LOG_GUEST_ERROR, 1617 "Setting VECTRESET when not in DEBUG mode " 1618 "is UNPREDICTABLE\n"); 1619 } 1620 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1621 s->prigroup[attrs.secure] = 1622 extract32(value, 1623 R_V7M_AIRCR_PRIGROUP_SHIFT, 1624 R_V7M_AIRCR_PRIGROUP_LENGTH); 1625 } 1626 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1627 if (attrs.secure) { 1628 /* These bits are only writable by secure */ 1629 cpu->env.v7m.aircr = value & 1630 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1631 R_V7M_AIRCR_BFHFNMINS_MASK | 1632 R_V7M_AIRCR_PRIS_MASK); 1633 /* BFHFNMINS changes the priority of Secure HardFault, and 1634 * allows a pending Non-secure HardFault to preempt (which 1635 * we implement by marking it enabled). 1636 */ 1637 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1638 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1639 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1640 } else { 1641 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1642 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1643 } 1644 } 1645 nvic_irq_update(s); 1646 } 1647 break; 1648 case 0xd10: /* System Control. */ 1649 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1650 goto bad_offset; 1651 } 1652 /* We don't implement deep-sleep so these bits are RAZ/WI. 1653 * The other bits in the register are banked. 1654 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1655 * is architecturally permitted. 1656 */ 1657 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1658 cpu->env.v7m.scr[attrs.secure] = value; 1659 break; 1660 case 0xd14: /* Configuration Control. */ 1661 { 1662 uint32_t mask; 1663 1664 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1665 goto bad_offset; 1666 } 1667 1668 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1669 mask = R_V7M_CCR_STKALIGN_MASK | 1670 R_V7M_CCR_BFHFNMIGN_MASK | 1671 R_V7M_CCR_DIV_0_TRP_MASK | 1672 R_V7M_CCR_UNALIGN_TRP_MASK | 1673 R_V7M_CCR_USERSETMPEND_MASK | 1674 R_V7M_CCR_NONBASETHRDENA_MASK; 1675 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1676 /* TRD is always RAZ/WI from NS */ 1677 mask |= R_V7M_CCR_TRD_MASK; 1678 } 1679 value &= mask; 1680 1681 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1682 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1683 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1684 | R_V7M_CCR_STKALIGN_MASK; 1685 } 1686 if (attrs.secure) { 1687 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1688 cpu->env.v7m.ccr[M_REG_NS] = 1689 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1690 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1691 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1692 } else { 1693 /* 1694 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1695 * preserve the state currently in the NS element of the array 1696 */ 1697 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1698 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1699 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1700 } 1701 } 1702 1703 cpu->env.v7m.ccr[attrs.secure] = value; 1704 break; 1705 } 1706 case 0xd24: /* System Handler Control and State (SHCSR) */ 1707 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1708 goto bad_offset; 1709 } 1710 if (attrs.secure) { 1711 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1712 /* Secure HardFault active bit cannot be written */ 1713 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1714 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1715 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1716 (value & (1 << 10)) != 0; 1717 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1718 (value & (1 << 11)) != 0; 1719 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1720 (value & (1 << 12)) != 0; 1721 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1722 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1723 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1724 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1725 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1726 (value & (1 << 18)) != 0; 1727 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1728 /* SecureFault not banked, but RAZ/WI to NS */ 1729 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1730 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1731 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1732 } else { 1733 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1734 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1735 /* HARDFAULTPENDED is not present in v7M */ 1736 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1737 } 1738 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1739 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1740 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1741 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1742 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1743 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1744 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1745 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1746 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1747 } 1748 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1749 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1750 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1751 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1752 } 1753 /* NMIACT can only be written if the write is of a zero, with 1754 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1755 */ 1756 if (!attrs.secure && cpu->env.v7m.secure && 1757 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1758 (value & (1 << 5)) == 0) { 1759 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1760 } 1761 /* HARDFAULTACT can only be written if the write is of a zero 1762 * to the non-secure HardFault state by the CPU in secure state. 1763 * The only case where we can be targeting the non-secure HF state 1764 * when in secure state is if this is a write via the NS alias 1765 * and BFHFNMINS is 1. 1766 */ 1767 if (!attrs.secure && cpu->env.v7m.secure && 1768 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1769 (value & (1 << 2)) == 0) { 1770 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1771 } 1772 1773 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1774 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1775 nvic_irq_update(s); 1776 break; 1777 case 0xd2c: /* Hard Fault Status. */ 1778 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1779 goto bad_offset; 1780 } 1781 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1782 break; 1783 case 0xd30: /* Debug Fault Status. */ 1784 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1785 break; 1786 case 0xd34: /* Mem Manage Address. */ 1787 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1788 goto bad_offset; 1789 } 1790 cpu->env.v7m.mmfar[attrs.secure] = value; 1791 return; 1792 case 0xd38: /* Bus Fault Address. */ 1793 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1794 goto bad_offset; 1795 } 1796 if (!attrs.secure && 1797 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1798 return; 1799 } 1800 cpu->env.v7m.bfar = value; 1801 return; 1802 case 0xd3c: /* Aux Fault Status. */ 1803 qemu_log_mask(LOG_UNIMP, 1804 "NVIC: Aux fault status registers unimplemented\n"); 1805 break; 1806 case 0xd84: /* CSSELR */ 1807 if (!arm_v7m_csselr_razwi(cpu)) { 1808 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1809 } 1810 break; 1811 case 0xd88: /* CPACR */ 1812 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1813 /* We implement only the Floating Point extension's CP10/CP11 */ 1814 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1815 } 1816 break; 1817 case 0xd8c: /* NSACR */ 1818 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1819 /* We implement only the Floating Point extension's CP10/CP11 */ 1820 cpu->env.v7m.nsacr = value & (3 << 10); 1821 } 1822 break; 1823 case 0xd90: /* MPU_TYPE */ 1824 return; /* RO */ 1825 case 0xd94: /* MPU_CTRL */ 1826 if ((value & 1827 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1828 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1829 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1830 "UNPREDICTABLE\n"); 1831 } 1832 cpu->env.v7m.mpu_ctrl[attrs.secure] 1833 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1834 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1835 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1836 tlb_flush(CPU(cpu)); 1837 break; 1838 case 0xd98: /* MPU_RNR */ 1839 if (value >= cpu->pmsav7_dregion) { 1840 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1841 PRIu32 "/%" PRIu32 "\n", 1842 value, cpu->pmsav7_dregion); 1843 } else { 1844 cpu->env.pmsav7.rnr[attrs.secure] = value; 1845 } 1846 break; 1847 case 0xd9c: /* MPU_RBAR */ 1848 case 0xda4: /* MPU_RBAR_A1 */ 1849 case 0xdac: /* MPU_RBAR_A2 */ 1850 case 0xdb4: /* MPU_RBAR_A3 */ 1851 { 1852 int region; 1853 1854 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1855 /* PMSAv8M handling of the aliases is different from v7M: 1856 * aliases A1, A2, A3 override the low two bits of the region 1857 * number in MPU_RNR, and there is no 'region' field in the 1858 * RBAR register. 1859 */ 1860 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1861 1862 region = cpu->env.pmsav7.rnr[attrs.secure]; 1863 if (aliasno) { 1864 region = deposit32(region, 0, 2, aliasno); 1865 } 1866 if (region >= cpu->pmsav7_dregion) { 1867 return; 1868 } 1869 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1870 tlb_flush(CPU(cpu)); 1871 return; 1872 } 1873 1874 if (value & (1 << 4)) { 1875 /* VALID bit means use the region number specified in this 1876 * value and also update MPU_RNR.REGION with that value. 1877 */ 1878 region = extract32(value, 0, 4); 1879 if (region >= cpu->pmsav7_dregion) { 1880 qemu_log_mask(LOG_GUEST_ERROR, 1881 "MPU region out of range %u/%" PRIu32 "\n", 1882 region, cpu->pmsav7_dregion); 1883 return; 1884 } 1885 cpu->env.pmsav7.rnr[attrs.secure] = region; 1886 } else { 1887 region = cpu->env.pmsav7.rnr[attrs.secure]; 1888 } 1889 1890 if (region >= cpu->pmsav7_dregion) { 1891 return; 1892 } 1893 1894 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1895 tlb_flush(CPU(cpu)); 1896 break; 1897 } 1898 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1899 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1900 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1901 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1902 { 1903 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1904 1905 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1906 /* PMSAv8M handling of the aliases is different from v7M: 1907 * aliases A1, A2, A3 override the low two bits of the region 1908 * number in MPU_RNR. 1909 */ 1910 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1911 1912 region = cpu->env.pmsav7.rnr[attrs.secure]; 1913 if (aliasno) { 1914 region = deposit32(region, 0, 2, aliasno); 1915 } 1916 if (region >= cpu->pmsav7_dregion) { 1917 return; 1918 } 1919 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1920 tlb_flush(CPU(cpu)); 1921 return; 1922 } 1923 1924 if (region >= cpu->pmsav7_dregion) { 1925 return; 1926 } 1927 1928 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1929 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1930 tlb_flush(CPU(cpu)); 1931 break; 1932 } 1933 case 0xdc0: /* MPU_MAIR0 */ 1934 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1935 goto bad_offset; 1936 } 1937 if (cpu->pmsav7_dregion) { 1938 /* Register is RES0 if no MPU regions are implemented */ 1939 cpu->env.pmsav8.mair0[attrs.secure] = value; 1940 } 1941 /* We don't need to do anything else because memory attributes 1942 * only affect cacheability, and we don't implement caching. 1943 */ 1944 break; 1945 case 0xdc4: /* MPU_MAIR1 */ 1946 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1947 goto bad_offset; 1948 } 1949 if (cpu->pmsav7_dregion) { 1950 /* Register is RES0 if no MPU regions are implemented */ 1951 cpu->env.pmsav8.mair1[attrs.secure] = value; 1952 } 1953 /* We don't need to do anything else because memory attributes 1954 * only affect cacheability, and we don't implement caching. 1955 */ 1956 break; 1957 case 0xdd0: /* SAU_CTRL */ 1958 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1959 goto bad_offset; 1960 } 1961 if (!attrs.secure) { 1962 return; 1963 } 1964 cpu->env.sau.ctrl = value & 3; 1965 break; 1966 case 0xdd4: /* SAU_TYPE */ 1967 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1968 goto bad_offset; 1969 } 1970 break; 1971 case 0xdd8: /* SAU_RNR */ 1972 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1973 goto bad_offset; 1974 } 1975 if (!attrs.secure) { 1976 return; 1977 } 1978 if (value >= cpu->sau_sregion) { 1979 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1980 PRIu32 "/%" PRIu32 "\n", 1981 value, cpu->sau_sregion); 1982 } else { 1983 cpu->env.sau.rnr = value; 1984 } 1985 break; 1986 case 0xddc: /* SAU_RBAR */ 1987 { 1988 int region = cpu->env.sau.rnr; 1989 1990 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1991 goto bad_offset; 1992 } 1993 if (!attrs.secure) { 1994 return; 1995 } 1996 if (region >= cpu->sau_sregion) { 1997 return; 1998 } 1999 cpu->env.sau.rbar[region] = value & ~0x1f; 2000 tlb_flush(CPU(cpu)); 2001 break; 2002 } 2003 case 0xde0: /* SAU_RLAR */ 2004 { 2005 int region = cpu->env.sau.rnr; 2006 2007 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2008 goto bad_offset; 2009 } 2010 if (!attrs.secure) { 2011 return; 2012 } 2013 if (region >= cpu->sau_sregion) { 2014 return; 2015 } 2016 cpu->env.sau.rlar[region] = value & ~0x1c; 2017 tlb_flush(CPU(cpu)); 2018 break; 2019 } 2020 case 0xde4: /* SFSR */ 2021 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2022 goto bad_offset; 2023 } 2024 if (!attrs.secure) { 2025 return; 2026 } 2027 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2028 break; 2029 case 0xde8: /* SFAR */ 2030 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2031 goto bad_offset; 2032 } 2033 if (!attrs.secure) { 2034 return; 2035 } 2036 cpu->env.v7m.sfsr = value; 2037 break; 2038 case 0xf00: /* Software Triggered Interrupt Register */ 2039 { 2040 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2041 2042 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2043 goto bad_offset; 2044 } 2045 2046 if (excnum < s->num_irq) { 2047 armv7m_nvic_set_pending(s, excnum, false); 2048 } 2049 break; 2050 } 2051 case 0xf04: /* RFSR */ 2052 if (!cpu_isar_feature(aa32_ras, cpu)) { 2053 goto bad_offset; 2054 } 2055 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2056 break; 2057 case 0xf34: /* FPCCR */ 2058 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2059 /* Not all bits here are banked. */ 2060 uint32_t fpccr_s; 2061 2062 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2063 /* Don't allow setting of bits not present in v7M */ 2064 value &= (R_V7M_FPCCR_LSPACT_MASK | 2065 R_V7M_FPCCR_USER_MASK | 2066 R_V7M_FPCCR_THREAD_MASK | 2067 R_V7M_FPCCR_HFRDY_MASK | 2068 R_V7M_FPCCR_MMRDY_MASK | 2069 R_V7M_FPCCR_BFRDY_MASK | 2070 R_V7M_FPCCR_MONRDY_MASK | 2071 R_V7M_FPCCR_LSPEN_MASK | 2072 R_V7M_FPCCR_ASPEN_MASK); 2073 } 2074 value &= ~R_V7M_FPCCR_RES0_MASK; 2075 2076 if (!attrs.secure) { 2077 /* Some non-banked bits are configurably writable by NS */ 2078 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2079 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2080 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2081 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2082 } 2083 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2084 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2085 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2086 } 2087 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2088 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2089 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2090 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2091 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2092 } 2093 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2094 { 2095 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2097 } 2098 2099 /* 2100 * All other non-banked bits are RAZ/WI from NS; write 2101 * just the banked bits to fpccr[M_REG_NS]. 2102 */ 2103 value &= R_V7M_FPCCR_BANKED_MASK; 2104 cpu->env.v7m.fpccr[M_REG_NS] = value; 2105 } else { 2106 fpccr_s = value; 2107 } 2108 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2109 } 2110 break; 2111 case 0xf38: /* FPCAR */ 2112 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2113 value &= ~7; 2114 cpu->env.v7m.fpcar[attrs.secure] = value; 2115 } 2116 break; 2117 case 0xf3c: /* FPDSCR */ 2118 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2119 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2120 if (cpu_isar_feature(any_fp16, cpu)) { 2121 mask |= FPCR_FZ16; 2122 } 2123 value &= mask; 2124 if (cpu_isar_feature(aa32_lob, cpu)) { 2125 value |= 4 << FPCR_LTPSIZE_SHIFT; 2126 } 2127 cpu->env.v7m.fpdscr[attrs.secure] = value; 2128 } 2129 break; 2130 case 0xf50: /* ICIALLU */ 2131 case 0xf58: /* ICIMVAU */ 2132 case 0xf5c: /* DCIMVAC */ 2133 case 0xf60: /* DCISW */ 2134 case 0xf64: /* DCCMVAU */ 2135 case 0xf68: /* DCCMVAC */ 2136 case 0xf6c: /* DCCSW */ 2137 case 0xf70: /* DCCIMVAC */ 2138 case 0xf74: /* DCCISW */ 2139 case 0xf78: /* BPIALL */ 2140 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2141 break; 2142 default: 2143 bad_offset: 2144 qemu_log_mask(LOG_GUEST_ERROR, 2145 "NVIC: Bad write offset 0x%x\n", offset); 2146 } 2147 } 2148 2149 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2150 { 2151 /* Return true if unprivileged access to this register is permitted. */ 2152 switch (offset) { 2153 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2154 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2155 * controls access even though the CPU is in Secure state (I_QDKX). 2156 */ 2157 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2158 default: 2159 /* All other user accesses cause a BusFault unconditionally */ 2160 return false; 2161 } 2162 } 2163 2164 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2165 { 2166 /* Behaviour for the SHPR register field for this exception: 2167 * return M_REG_NS to use the nonsecure vector (including for 2168 * non-banked exceptions), M_REG_S for the secure version of 2169 * a banked exception, and -1 if this field should RAZ/WI. 2170 */ 2171 switch (exc) { 2172 case ARMV7M_EXCP_MEM: 2173 case ARMV7M_EXCP_USAGE: 2174 case ARMV7M_EXCP_SVC: 2175 case ARMV7M_EXCP_PENDSV: 2176 case ARMV7M_EXCP_SYSTICK: 2177 /* Banked exceptions */ 2178 return attrs.secure; 2179 case ARMV7M_EXCP_BUS: 2180 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2181 if (!attrs.secure && 2182 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2183 return -1; 2184 } 2185 return M_REG_NS; 2186 case ARMV7M_EXCP_SECURE: 2187 /* Not banked, RAZ/WI from nonsecure */ 2188 if (!attrs.secure) { 2189 return -1; 2190 } 2191 return M_REG_NS; 2192 case ARMV7M_EXCP_DEBUG: 2193 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2194 return M_REG_NS; 2195 case 8 ... 10: 2196 case 13: 2197 /* RES0 */ 2198 return -1; 2199 default: 2200 /* Not reachable due to decode of SHPR register addresses */ 2201 g_assert_not_reached(); 2202 } 2203 } 2204 2205 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2206 uint64_t *data, unsigned size, 2207 MemTxAttrs attrs) 2208 { 2209 NVICState *s = (NVICState *)opaque; 2210 uint32_t offset = addr; 2211 unsigned i, startvec, end; 2212 uint32_t val; 2213 2214 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2215 /* Generate BusFault for unprivileged accesses */ 2216 return MEMTX_ERROR; 2217 } 2218 2219 switch (offset) { 2220 /* reads of set and clear both return the status */ 2221 case 0x100 ... 0x13f: /* NVIC Set enable */ 2222 offset += 0x80; 2223 /* fall through */ 2224 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2225 val = 0; 2226 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2227 2228 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2229 if (s->vectors[startvec + i].enabled && 2230 (attrs.secure || s->itns[startvec + i])) { 2231 val |= (1 << i); 2232 } 2233 } 2234 break; 2235 case 0x200 ... 0x23f: /* NVIC Set pend */ 2236 offset += 0x80; 2237 /* fall through */ 2238 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2239 val = 0; 2240 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2241 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2242 if (s->vectors[startvec + i].pending && 2243 (attrs.secure || s->itns[startvec + i])) { 2244 val |= (1 << i); 2245 } 2246 } 2247 break; 2248 case 0x300 ... 0x33f: /* NVIC Active */ 2249 val = 0; 2250 2251 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2252 break; 2253 } 2254 2255 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2256 2257 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2258 if (s->vectors[startvec + i].active && 2259 (attrs.secure || s->itns[startvec + i])) { 2260 val |= (1 << i); 2261 } 2262 } 2263 break; 2264 case 0x400 ... 0x5ef: /* NVIC Priority */ 2265 val = 0; 2266 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2267 2268 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2269 if (attrs.secure || s->itns[startvec + i]) { 2270 val |= s->vectors[startvec + i].prio << (8 * i); 2271 } 2272 } 2273 break; 2274 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2275 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2276 val = 0; 2277 break; 2278 } 2279 /* fall through */ 2280 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2281 val = 0; 2282 for (i = 0; i < size; i++) { 2283 unsigned hdlidx = (offset - 0xd14) + i; 2284 int sbank = shpr_bank(s, hdlidx, attrs); 2285 2286 if (sbank < 0) { 2287 continue; 2288 } 2289 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2290 } 2291 break; 2292 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2293 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2294 val = 0; 2295 break; 2296 }; 2297 /* 2298 * The BFSR bits [15:8] are shared between security states 2299 * and we store them in the NS copy. They are RAZ/WI for 2300 * NS code if AIRCR.BFHFNMINS is 0. 2301 */ 2302 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2303 if (!attrs.secure && 2304 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2305 val &= ~R_V7M_CFSR_BFSR_MASK; 2306 } else { 2307 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2308 } 2309 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2310 break; 2311 case 0xfe0 ... 0xfff: /* ID. */ 2312 if (offset & 3) { 2313 val = 0; 2314 } else { 2315 val = nvic_id[(offset - 0xfe0) >> 2]; 2316 } 2317 break; 2318 default: 2319 if (size == 4) { 2320 val = nvic_readl(s, offset, attrs); 2321 } else { 2322 qemu_log_mask(LOG_GUEST_ERROR, 2323 "NVIC: Bad read of size %d at offset 0x%x\n", 2324 size, offset); 2325 val = 0; 2326 } 2327 } 2328 2329 trace_nvic_sysreg_read(addr, val, size); 2330 *data = val; 2331 return MEMTX_OK; 2332 } 2333 2334 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2335 uint64_t value, unsigned size, 2336 MemTxAttrs attrs) 2337 { 2338 NVICState *s = (NVICState *)opaque; 2339 uint32_t offset = addr; 2340 unsigned i, startvec, end; 2341 unsigned setval = 0; 2342 2343 trace_nvic_sysreg_write(addr, value, size); 2344 2345 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2346 /* Generate BusFault for unprivileged accesses */ 2347 return MEMTX_ERROR; 2348 } 2349 2350 switch (offset) { 2351 case 0x100 ... 0x13f: /* NVIC Set enable */ 2352 offset += 0x80; 2353 setval = 1; 2354 /* fall through */ 2355 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2356 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2357 2358 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2359 if (value & (1 << i) && 2360 (attrs.secure || s->itns[startvec + i])) { 2361 s->vectors[startvec + i].enabled = setval; 2362 } 2363 } 2364 nvic_irq_update(s); 2365 goto exit_ok; 2366 case 0x200 ... 0x23f: /* NVIC Set pend */ 2367 /* the special logic in armv7m_nvic_set_pending() 2368 * is not needed since IRQs are never escalated 2369 */ 2370 offset += 0x80; 2371 setval = 1; 2372 /* fall through */ 2373 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2374 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2375 2376 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2377 if (value & (1 << i) && 2378 (attrs.secure || s->itns[startvec + i])) { 2379 s->vectors[startvec + i].pending = setval; 2380 } 2381 } 2382 nvic_irq_update(s); 2383 goto exit_ok; 2384 case 0x300 ... 0x33f: /* NVIC Active */ 2385 goto exit_ok; /* R/O */ 2386 case 0x400 ... 0x5ef: /* NVIC Priority */ 2387 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2388 2389 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2390 if (attrs.secure || s->itns[startvec + i]) { 2391 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2392 } 2393 } 2394 nvic_irq_update(s); 2395 goto exit_ok; 2396 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2397 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2398 goto exit_ok; 2399 } 2400 /* fall through */ 2401 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2402 for (i = 0; i < size; i++) { 2403 unsigned hdlidx = (offset - 0xd14) + i; 2404 int newprio = extract32(value, i * 8, 8); 2405 int sbank = shpr_bank(s, hdlidx, attrs); 2406 2407 if (sbank < 0) { 2408 continue; 2409 } 2410 set_prio(s, hdlidx, sbank, newprio); 2411 } 2412 nvic_irq_update(s); 2413 goto exit_ok; 2414 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2415 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2416 goto exit_ok; 2417 } 2418 /* All bits are W1C, so construct 32 bit value with 0s in 2419 * the parts not written by the access size 2420 */ 2421 value <<= ((offset - 0xd28) * 8); 2422 2423 if (!attrs.secure && 2424 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2425 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2426 value &= ~R_V7M_CFSR_BFSR_MASK; 2427 } 2428 2429 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2430 if (attrs.secure) { 2431 /* The BFSR bits [15:8] are shared between security states 2432 * and we store them in the NS copy. 2433 */ 2434 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2435 } 2436 goto exit_ok; 2437 } 2438 if (size == 4) { 2439 nvic_writel(s, offset, value, attrs); 2440 goto exit_ok; 2441 } 2442 qemu_log_mask(LOG_GUEST_ERROR, 2443 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2444 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2445 2446 exit_ok: 2447 /* Ensure any changes made are reflected in the cached hflags. */ 2448 arm_rebuild_hflags(&s->cpu->env); 2449 return MEMTX_OK; 2450 } 2451 2452 static const MemoryRegionOps nvic_sysreg_ops = { 2453 .read_with_attrs = nvic_sysreg_read, 2454 .write_with_attrs = nvic_sysreg_write, 2455 .endianness = DEVICE_NATIVE_ENDIAN, 2456 }; 2457 2458 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2459 uint64_t value, unsigned size, 2460 MemTxAttrs attrs) 2461 { 2462 MemoryRegion *mr = opaque; 2463 2464 if (attrs.secure) { 2465 /* S accesses to the alias act like NS accesses to the real region */ 2466 attrs.secure = 0; 2467 return memory_region_dispatch_write(mr, addr, value, 2468 size_memop(size) | MO_TE, attrs); 2469 } else { 2470 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2471 if (attrs.user) { 2472 return MEMTX_ERROR; 2473 } 2474 return MEMTX_OK; 2475 } 2476 } 2477 2478 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2479 uint64_t *data, unsigned size, 2480 MemTxAttrs attrs) 2481 { 2482 MemoryRegion *mr = opaque; 2483 2484 if (attrs.secure) { 2485 /* S accesses to the alias act like NS accesses to the real region */ 2486 attrs.secure = 0; 2487 return memory_region_dispatch_read(mr, addr, data, 2488 size_memop(size) | MO_TE, attrs); 2489 } else { 2490 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2491 if (attrs.user) { 2492 return MEMTX_ERROR; 2493 } 2494 *data = 0; 2495 return MEMTX_OK; 2496 } 2497 } 2498 2499 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2500 .read_with_attrs = nvic_sysreg_ns_read, 2501 .write_with_attrs = nvic_sysreg_ns_write, 2502 .endianness = DEVICE_NATIVE_ENDIAN, 2503 }; 2504 2505 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2506 uint64_t value, unsigned size, 2507 MemTxAttrs attrs) 2508 { 2509 NVICState *s = opaque; 2510 MemoryRegion *mr; 2511 2512 /* Direct the access to the correct systick */ 2513 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2514 return memory_region_dispatch_write(mr, addr, value, 2515 size_memop(size) | MO_TE, attrs); 2516 } 2517 2518 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2519 uint64_t *data, unsigned size, 2520 MemTxAttrs attrs) 2521 { 2522 NVICState *s = opaque; 2523 MemoryRegion *mr; 2524 2525 /* Direct the access to the correct systick */ 2526 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2527 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2528 attrs); 2529 } 2530 2531 static const MemoryRegionOps nvic_systick_ops = { 2532 .read_with_attrs = nvic_systick_read, 2533 .write_with_attrs = nvic_systick_write, 2534 .endianness = DEVICE_NATIVE_ENDIAN, 2535 }; 2536 2537 2538 static MemTxResult ras_read(void *opaque, hwaddr addr, 2539 uint64_t *data, unsigned size, 2540 MemTxAttrs attrs) 2541 { 2542 if (attrs.user) { 2543 return MEMTX_ERROR; 2544 } 2545 2546 switch (addr) { 2547 case 0xe10: /* ERRIIDR */ 2548 /* architect field = Arm; product/variant/revision 0 */ 2549 *data = 0x43b; 2550 break; 2551 case 0xfc8: /* ERRDEVID */ 2552 /* Minimal RAS: we implement 0 error record indexes */ 2553 *data = 0; 2554 break; 2555 default: 2556 qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n", 2557 (uint32_t)addr); 2558 *data = 0; 2559 break; 2560 } 2561 return MEMTX_OK; 2562 } 2563 2564 static MemTxResult ras_write(void *opaque, hwaddr addr, 2565 uint64_t value, unsigned size, 2566 MemTxAttrs attrs) 2567 { 2568 if (attrs.user) { 2569 return MEMTX_ERROR; 2570 } 2571 2572 switch (addr) { 2573 default: 2574 qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n", 2575 (uint32_t)addr); 2576 break; 2577 } 2578 return MEMTX_OK; 2579 } 2580 2581 static const MemoryRegionOps ras_ops = { 2582 .read_with_attrs = ras_read, 2583 .write_with_attrs = ras_write, 2584 .endianness = DEVICE_NATIVE_ENDIAN, 2585 }; 2586 2587 /* 2588 * Unassigned portions of the PPB space are RAZ/WI for privileged 2589 * accesses, and fault for non-privileged accesses. 2590 */ 2591 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 2592 uint64_t *data, unsigned size, 2593 MemTxAttrs attrs) 2594 { 2595 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 2596 (uint32_t)addr); 2597 if (attrs.user) { 2598 return MEMTX_ERROR; 2599 } 2600 *data = 0; 2601 return MEMTX_OK; 2602 } 2603 2604 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 2605 uint64_t value, unsigned size, 2606 MemTxAttrs attrs) 2607 { 2608 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 2609 (uint32_t)addr); 2610 if (attrs.user) { 2611 return MEMTX_ERROR; 2612 } 2613 return MEMTX_OK; 2614 } 2615 2616 static const MemoryRegionOps ppb_default_ops = { 2617 .read_with_attrs = ppb_default_read, 2618 .write_with_attrs = ppb_default_write, 2619 .endianness = DEVICE_NATIVE_ENDIAN, 2620 .valid.min_access_size = 1, 2621 .valid.max_access_size = 8, 2622 }; 2623 2624 static int nvic_post_load(void *opaque, int version_id) 2625 { 2626 NVICState *s = opaque; 2627 unsigned i; 2628 int resetprio; 2629 2630 /* Check for out of range priority settings */ 2631 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2632 2633 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2634 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2635 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2636 return 1; 2637 } 2638 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2639 if (s->vectors[i].prio & ~0xff) { 2640 return 1; 2641 } 2642 } 2643 2644 nvic_recompute_state(s); 2645 2646 return 0; 2647 } 2648 2649 static const VMStateDescription vmstate_VecInfo = { 2650 .name = "armv7m_nvic_info", 2651 .version_id = 1, 2652 .minimum_version_id = 1, 2653 .fields = (VMStateField[]) { 2654 VMSTATE_INT16(prio, VecInfo), 2655 VMSTATE_UINT8(enabled, VecInfo), 2656 VMSTATE_UINT8(pending, VecInfo), 2657 VMSTATE_UINT8(active, VecInfo), 2658 VMSTATE_UINT8(level, VecInfo), 2659 VMSTATE_END_OF_LIST() 2660 } 2661 }; 2662 2663 static bool nvic_security_needed(void *opaque) 2664 { 2665 NVICState *s = opaque; 2666 2667 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2668 } 2669 2670 static int nvic_security_post_load(void *opaque, int version_id) 2671 { 2672 NVICState *s = opaque; 2673 int i; 2674 2675 /* Check for out of range priority settings */ 2676 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2677 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2678 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2679 * if the CPU state has been migrated yet; a mismatch won't 2680 * cause the emulation to blow up, though. 2681 */ 2682 return 1; 2683 } 2684 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2685 if (s->sec_vectors[i].prio & ~0xff) { 2686 return 1; 2687 } 2688 } 2689 return 0; 2690 } 2691 2692 static const VMStateDescription vmstate_nvic_security = { 2693 .name = "armv7m_nvic/m-security", 2694 .version_id = 1, 2695 .minimum_version_id = 1, 2696 .needed = nvic_security_needed, 2697 .post_load = &nvic_security_post_load, 2698 .fields = (VMStateField[]) { 2699 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2700 vmstate_VecInfo, VecInfo), 2701 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2702 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2703 VMSTATE_END_OF_LIST() 2704 } 2705 }; 2706 2707 static const VMStateDescription vmstate_nvic = { 2708 .name = "armv7m_nvic", 2709 .version_id = 4, 2710 .minimum_version_id = 4, 2711 .post_load = &nvic_post_load, 2712 .fields = (VMStateField[]) { 2713 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2714 vmstate_VecInfo, VecInfo), 2715 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2716 VMSTATE_END_OF_LIST() 2717 }, 2718 .subsections = (const VMStateDescription*[]) { 2719 &vmstate_nvic_security, 2720 NULL 2721 } 2722 }; 2723 2724 static Property props_nvic[] = { 2725 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2726 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2727 DEFINE_PROP_END_OF_LIST() 2728 }; 2729 2730 static void armv7m_nvic_reset(DeviceState *dev) 2731 { 2732 int resetprio; 2733 NVICState *s = NVIC(dev); 2734 2735 memset(s->vectors, 0, sizeof(s->vectors)); 2736 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2737 s->prigroup[M_REG_NS] = 0; 2738 s->prigroup[M_REG_S] = 0; 2739 2740 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2741 /* MEM, BUS, and USAGE are enabled through 2742 * the System Handler Control register 2743 */ 2744 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2745 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2746 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2747 2748 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2749 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2750 2751 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2752 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2753 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2754 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2755 2756 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2757 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2758 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2759 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2760 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2761 2762 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2763 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2764 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2765 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2766 } else { 2767 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2768 } 2769 2770 /* Strictly speaking the reset handler should be enabled. 2771 * However, we don't simulate soft resets through the NVIC, 2772 * and the reset vector should never be pended. 2773 * So we leave it disabled to catch logic errors. 2774 */ 2775 2776 s->exception_prio = NVIC_NOEXC_PRIO; 2777 s->vectpending = 0; 2778 s->vectpending_is_s_banked = false; 2779 s->vectpending_prio = NVIC_NOEXC_PRIO; 2780 2781 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2782 memset(s->itns, 0, sizeof(s->itns)); 2783 } else { 2784 /* This state is constant and not guest accessible in a non-security 2785 * NVIC; we set the bits to true to avoid having to do a feature 2786 * bit check in the NVIC enable/pend/etc register accessors. 2787 */ 2788 int i; 2789 2790 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2791 s->itns[i] = true; 2792 } 2793 } 2794 2795 /* 2796 * We updated state that affects the CPU's MMUidx and thus its hflags; 2797 * and we can't guarantee that we run before the CPU reset function. 2798 */ 2799 arm_rebuild_hflags(&s->cpu->env); 2800 } 2801 2802 static void nvic_systick_trigger(void *opaque, int n, int level) 2803 { 2804 NVICState *s = opaque; 2805 2806 if (level) { 2807 /* SysTick just asked us to pend its exception. 2808 * (This is different from an external interrupt line's 2809 * behaviour.) 2810 * n == 0 : NonSecure systick 2811 * n == 1 : Secure systick 2812 */ 2813 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2814 } 2815 } 2816 2817 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2818 { 2819 NVICState *s = NVIC(dev); 2820 2821 /* The armv7m container object will have set our CPU pointer */ 2822 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2823 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2824 return; 2825 } 2826 2827 if (s->num_irq > NVIC_MAX_IRQ) { 2828 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2829 return; 2830 } 2831 2832 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2833 2834 /* include space for internal exception vectors */ 2835 s->num_irq += NVIC_FIRST_IRQ; 2836 2837 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2838 2839 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2840 return; 2841 } 2842 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2843 qdev_get_gpio_in_named(dev, "systick-trigger", 2844 M_REG_NS)); 2845 2846 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2847 /* We couldn't init the secure systick device in instance_init 2848 * as we didn't know then if the CPU had the security extensions; 2849 * so we have to do it here. 2850 */ 2851 object_initialize_child(OBJECT(dev), "systick-reg-s", 2852 &s->systick[M_REG_S], TYPE_SYSTICK); 2853 2854 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2855 return; 2856 } 2857 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2858 qdev_get_gpio_in_named(dev, "systick-trigger", 2859 M_REG_S)); 2860 } 2861 2862 /* 2863 * This device provides a single sysbus memory region which 2864 * represents the whole of the "System PPB" space. This is the 2865 * range from 0xe0000000 to 0xe00fffff and includes the NVIC, 2866 * the System Control Space (system registers), the systick timer, 2867 * and for CPUs with the Security extension an NS banked version 2868 * of all of these. 2869 * 2870 * The default behaviour for unimplemented registers/ranges 2871 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 2872 * is to RAZ/WI for privileged access and BusFault for non-privileged 2873 * access. 2874 * 2875 * The NVIC and System Control Space (SCS) starts at 0xe000e000 2876 * and looks like this: 2877 * 0x004 - ICTR 2878 * 0x010 - 0xff - systick 2879 * 0x100..0x7ec - NVIC 2880 * 0x7f0..0xcff - Reserved 2881 * 0xd00..0xd3c - SCS registers 2882 * 0xd40..0xeff - Reserved or Not implemented 2883 * 0xf00 - STIR 2884 * 2885 * Some registers within this space are banked between security states. 2886 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2887 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2888 * to the main SCS range, and non-secure accesses (including when 2889 * the security extension is not implemented) are RAZ/WI. 2890 * Note that both the main SCS range and the alias range are defined 2891 * to be exempt from memory attribution (R_BLJT) and so the memory 2892 * transaction attribute always matches the current CPU security 2893 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2894 * wrappers we change attrs.secure to indicate the NS access; so 2895 * generally code determining which banked register to use should 2896 * use attrs.secure; code determining actual behaviour of the system 2897 * should use env->v7m.secure. 2898 * 2899 * The container covers the whole PPB space. Within it the priority 2900 * of overlapping regions is: 2901 * - default region (for RAZ/WI and BusFault) : -1 2902 * - system register regions : 0 2903 * - systick : 1 2904 * This is because the systick device is a small block of registers 2905 * in the middle of the other system control registers. 2906 */ 2907 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000); 2908 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 2909 "nvic-default", 0x100000); 2910 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1); 2911 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2912 "nvic_sysregs", 0x1000); 2913 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); 2914 2915 memory_region_init_io(&s->systickmem, OBJECT(s), 2916 &nvic_systick_ops, s, 2917 "nvic_systick", 0xe0); 2918 2919 memory_region_add_subregion_overlap(&s->container, 0xe010, 2920 &s->systickmem, 1); 2921 2922 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2923 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2924 &nvic_sysreg_ns_ops, &s->sysregmem, 2925 "nvic_sysregs_ns", 0x1000); 2926 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem); 2927 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2928 &nvic_sysreg_ns_ops, &s->systickmem, 2929 "nvic_systick_ns", 0xe0); 2930 memory_region_add_subregion_overlap(&s->container, 0x2e010, 2931 &s->systick_ns_mem, 1); 2932 } 2933 2934 if (cpu_isar_feature(aa32_ras, s->cpu)) { 2935 memory_region_init_io(&s->ras_mem, OBJECT(s), 2936 &ras_ops, s, "nvic_ras", 0x1000); 2937 memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem); 2938 } 2939 2940 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2941 } 2942 2943 static void armv7m_nvic_instance_init(Object *obj) 2944 { 2945 /* We have a different default value for the num-irq property 2946 * than our superclass. This function runs after qdev init 2947 * has set the defaults from the Property array and before 2948 * any user-specified property setting, so just modify the 2949 * value in the GICState struct. 2950 */ 2951 DeviceState *dev = DEVICE(obj); 2952 NVICState *nvic = NVIC(obj); 2953 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2954 2955 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2956 TYPE_SYSTICK); 2957 /* We can't initialize the secure systick here, as we don't know 2958 * yet if we need it. 2959 */ 2960 2961 sysbus_init_irq(sbd, &nvic->excpout); 2962 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2963 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2964 M_REG_NUM_BANKS); 2965 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2966 } 2967 2968 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2969 { 2970 DeviceClass *dc = DEVICE_CLASS(klass); 2971 2972 dc->vmsd = &vmstate_nvic; 2973 device_class_set_props(dc, props_nvic); 2974 dc->reset = armv7m_nvic_reset; 2975 dc->realize = armv7m_nvic_realize; 2976 } 2977 2978 static const TypeInfo armv7m_nvic_info = { 2979 .name = TYPE_NVIC, 2980 .parent = TYPE_SYS_BUS_DEVICE, 2981 .instance_init = armv7m_nvic_instance_init, 2982 .instance_size = sizeof(NVICState), 2983 .class_init = armv7m_nvic_class_init, 2984 .class_size = sizeof(SysBusDeviceClass), 2985 }; 2986 2987 static void armv7m_nvic_register_types(void) 2988 { 2989 type_register_static(&armv7m_nvic_info); 2990 } 2991 2992 type_init(armv7m_nvic_register_types) 2993