1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ 16 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 58 static const uint8_t nvic_id[] = { 59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 60 }; 61 62 static int nvic_pending_prio(NVICState *s) 63 { 64 /* return the priority of the current pending interrupt, 65 * or NVIC_NOEXC_PRIO if no interrupt is pending 66 */ 67 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO; 68 } 69 70 /* Return the value of the ISCR RETTOBASE bit: 71 * 1 if there is exactly one active exception 72 * 0 if there is more than one active exception 73 * UNKNOWN if there are no active exceptions (we choose 1, 74 * which matches the choice Cortex-M3 is documented as making). 75 * 76 * NB: some versions of the documentation talk about this 77 * counting "active exceptions other than the one shown by IPSR"; 78 * this is only different in the obscure corner case where guest 79 * code has manually deactivated an exception and is about 80 * to fail an exception-return integrity check. The definition 81 * above is the one from the v8M ARM ARM and is also in line 82 * with the behaviour documented for the Cortex-M3. 83 */ 84 static bool nvic_rettobase(NVICState *s) 85 { 86 int irq, nhand = 0; 87 88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 89 if (s->vectors[irq].active) { 90 nhand++; 91 if (nhand == 2) { 92 return 0; 93 } 94 } 95 } 96 97 return 1; 98 } 99 100 /* Return the value of the ISCR ISRPENDING bit: 101 * 1 if an external interrupt is pending 102 * 0 if no external interrupt is pending 103 */ 104 static bool nvic_isrpending(NVICState *s) 105 { 106 int irq; 107 108 /* We can shortcut if the highest priority pending interrupt 109 * happens to be external or if there is nothing pending. 110 */ 111 if (s->vectpending > NVIC_FIRST_IRQ) { 112 return true; 113 } 114 if (s->vectpending == 0) { 115 return false; 116 } 117 118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 119 if (s->vectors[irq].pending) { 120 return true; 121 } 122 } 123 return false; 124 } 125 126 /* Return a mask word which clears the subpriority bits from 127 * a priority value for an M-profile exception, leaving only 128 * the group priority. 129 */ 130 static inline uint32_t nvic_gprio_mask(NVICState *s) 131 { 132 return ~0U << (s->prigroup + 1); 133 } 134 135 /* Recompute vectpending and exception_prio */ 136 static void nvic_recompute_state(NVICState *s) 137 { 138 int i; 139 int pend_prio = NVIC_NOEXC_PRIO; 140 int active_prio = NVIC_NOEXC_PRIO; 141 int pend_irq = 0; 142 143 for (i = 1; i < s->num_irq; i++) { 144 VecInfo *vec = &s->vectors[i]; 145 146 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 147 pend_prio = vec->prio; 148 pend_irq = i; 149 } 150 if (vec->active && vec->prio < active_prio) { 151 active_prio = vec->prio; 152 } 153 } 154 155 s->vectpending = pend_irq; 156 s->exception_prio = active_prio & nvic_gprio_mask(s); 157 158 trace_nvic_recompute_state(s->vectpending, s->exception_prio); 159 } 160 161 /* Return the current execution priority of the CPU 162 * (equivalent to the pseudocode ExecutionPriority function). 163 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 164 */ 165 static inline int nvic_exec_prio(NVICState *s) 166 { 167 CPUARMState *env = &s->cpu->env; 168 int running; 169 170 if (env->v7m.faultmask[env->v7m.secure]) { 171 running = -1; 172 } else if (env->v7m.primask[env->v7m.secure]) { 173 running = 0; 174 } else if (env->v7m.basepri[env->v7m.secure] > 0) { 175 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s); 176 } else { 177 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 178 } 179 /* consider priority of active handler */ 180 return MIN(running, s->exception_prio); 181 } 182 183 bool armv7m_nvic_can_take_pending_exception(void *opaque) 184 { 185 NVICState *s = opaque; 186 187 return nvic_exec_prio(s) > nvic_pending_prio(s); 188 } 189 190 int armv7m_nvic_raw_execution_priority(void *opaque) 191 { 192 NVICState *s = opaque; 193 194 return s->exception_prio; 195 } 196 197 /* caller must call nvic_irq_update() after this */ 198 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 199 { 200 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 201 assert(irq < s->num_irq); 202 203 s->vectors[irq].prio = prio; 204 205 trace_nvic_set_prio(irq, prio); 206 } 207 208 /* Recompute state and assert irq line accordingly. 209 * Must be called after changes to: 210 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 211 * prigroup 212 */ 213 static void nvic_irq_update(NVICState *s) 214 { 215 int lvl; 216 int pend_prio; 217 218 nvic_recompute_state(s); 219 pend_prio = nvic_pending_prio(s); 220 221 /* Raise NVIC output if this IRQ would be taken, except that we 222 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 223 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 224 * to those CPU registers don't cause us to recalculate the NVIC 225 * pending info. 226 */ 227 lvl = (pend_prio < s->exception_prio); 228 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 229 qemu_set_irq(s->excpout, lvl); 230 } 231 232 static void armv7m_nvic_clear_pending(void *opaque, int irq) 233 { 234 NVICState *s = (NVICState *)opaque; 235 VecInfo *vec; 236 237 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 238 239 vec = &s->vectors[irq]; 240 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 241 if (vec->pending) { 242 vec->pending = 0; 243 nvic_irq_update(s); 244 } 245 } 246 247 void armv7m_nvic_set_pending(void *opaque, int irq) 248 { 249 NVICState *s = (NVICState *)opaque; 250 VecInfo *vec; 251 252 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 253 254 vec = &s->vectors[irq]; 255 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 256 257 258 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 259 /* If a synchronous exception is pending then it may be 260 * escalated to HardFault if: 261 * * it is equal or lower priority to current execution 262 * * it is disabled 263 * (ie we need to take it immediately but we can't do so). 264 * Asynchronous exceptions (and interrupts) simply remain pending. 265 * 266 * For QEMU, we don't have any imprecise (asynchronous) faults, 267 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 268 * synchronous. 269 * Debug exceptions are awkward because only Debug exceptions 270 * resulting from the BKPT instruction should be escalated, 271 * but we don't currently implement any Debug exceptions other 272 * than those that result from BKPT, so we treat all debug exceptions 273 * as needing escalation. 274 * 275 * This all means we can identify whether to escalate based only on 276 * the exception number and don't (yet) need the caller to explicitly 277 * tell us whether this exception is synchronous or not. 278 */ 279 int running = nvic_exec_prio(s); 280 bool escalate = false; 281 282 if (vec->prio >= running) { 283 trace_nvic_escalate_prio(irq, vec->prio, running); 284 escalate = true; 285 } else if (!vec->enabled) { 286 trace_nvic_escalate_disabled(irq); 287 escalate = true; 288 } 289 290 if (escalate) { 291 if (running < 0) { 292 /* We want to escalate to HardFault but we can't take a 293 * synchronous HardFault at this point either. This is a 294 * Lockup condition due to a guest bug. We don't model 295 * Lockup, so report via cpu_abort() instead. 296 */ 297 cpu_abort(&s->cpu->parent_obj, 298 "Lockup: can't escalate %d to HardFault " 299 "(current priority %d)\n", irq, running); 300 } 301 302 /* We can do the escalation, so we take HardFault instead */ 303 irq = ARMV7M_EXCP_HARD; 304 vec = &s->vectors[irq]; 305 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 306 } 307 } 308 309 if (!vec->pending) { 310 vec->pending = 1; 311 nvic_irq_update(s); 312 } 313 } 314 315 /* Make pending IRQ active. */ 316 void armv7m_nvic_acknowledge_irq(void *opaque) 317 { 318 NVICState *s = (NVICState *)opaque; 319 CPUARMState *env = &s->cpu->env; 320 const int pending = s->vectpending; 321 const int running = nvic_exec_prio(s); 322 int pendgroupprio; 323 VecInfo *vec; 324 325 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 326 327 vec = &s->vectors[pending]; 328 329 assert(vec->enabled); 330 assert(vec->pending); 331 332 pendgroupprio = vec->prio & nvic_gprio_mask(s); 333 assert(pendgroupprio < running); 334 335 trace_nvic_acknowledge_irq(pending, vec->prio); 336 337 vec->active = 1; 338 vec->pending = 0; 339 340 env->v7m.exception = s->vectpending; 341 342 nvic_irq_update(s); 343 } 344 345 int armv7m_nvic_complete_irq(void *opaque, int irq) 346 { 347 NVICState *s = (NVICState *)opaque; 348 VecInfo *vec; 349 int ret; 350 351 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 352 353 vec = &s->vectors[irq]; 354 355 trace_nvic_complete_irq(irq); 356 357 if (!vec->active) { 358 /* Tell the caller this was an illegal exception return */ 359 return -1; 360 } 361 362 ret = nvic_rettobase(s); 363 364 vec->active = 0; 365 if (vec->level) { 366 /* Re-pend the exception if it's still held high; only 367 * happens for extenal IRQs 368 */ 369 assert(irq >= NVIC_FIRST_IRQ); 370 vec->pending = 1; 371 } 372 373 nvic_irq_update(s); 374 375 return ret; 376 } 377 378 /* callback when external interrupt line is changed */ 379 static void set_irq_level(void *opaque, int n, int level) 380 { 381 NVICState *s = opaque; 382 VecInfo *vec; 383 384 n += NVIC_FIRST_IRQ; 385 386 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 387 388 trace_nvic_set_irq_level(n, level); 389 390 /* The pending status of an external interrupt is 391 * latched on rising edge and exception handler return. 392 * 393 * Pulsing the IRQ will always run the handler 394 * once, and the handler will re-run until the 395 * level is low when the handler completes. 396 */ 397 vec = &s->vectors[n]; 398 if (level != vec->level) { 399 vec->level = level; 400 if (level) { 401 armv7m_nvic_set_pending(s, n); 402 } 403 } 404 } 405 406 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 407 { 408 ARMCPU *cpu = s->cpu; 409 uint32_t val; 410 411 switch (offset) { 412 case 4: /* Interrupt Control Type. */ 413 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 414 case 0xd00: /* CPUID Base. */ 415 return cpu->midr; 416 case 0xd04: /* Interrupt Control State. */ 417 /* VECTACTIVE */ 418 val = cpu->env.v7m.exception; 419 /* VECTPENDING */ 420 val |= (s->vectpending & 0xff) << 12; 421 /* ISRPENDING - set if any external IRQ is pending */ 422 if (nvic_isrpending(s)) { 423 val |= (1 << 22); 424 } 425 /* RETTOBASE - set if only one handler is active */ 426 if (nvic_rettobase(s)) { 427 val |= (1 << 11); 428 } 429 /* PENDSTSET */ 430 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 431 val |= (1 << 26); 432 } 433 /* PENDSVSET */ 434 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 435 val |= (1 << 28); 436 } 437 /* NMIPENDSET */ 438 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 439 val |= (1 << 31); 440 } 441 /* ISRPREEMPT not implemented */ 442 return val; 443 case 0xd08: /* Vector Table Offset. */ 444 return cpu->env.v7m.vecbase[attrs.secure]; 445 case 0xd0c: /* Application Interrupt/Reset Control. */ 446 return 0xfa050000 | (s->prigroup << 8); 447 case 0xd10: /* System Control. */ 448 /* TODO: Implement SLEEPONEXIT. */ 449 return 0; 450 case 0xd14: /* Configuration Control. */ 451 /* The BFHFNMIGN bit is the only non-banked bit; we 452 * keep it in the non-secure copy of the register. 453 */ 454 val = cpu->env.v7m.ccr[attrs.secure]; 455 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 456 return val; 457 case 0xd24: /* System Handler Status. */ 458 val = 0; 459 if (s->vectors[ARMV7M_EXCP_MEM].active) { 460 val |= (1 << 0); 461 } 462 if (s->vectors[ARMV7M_EXCP_BUS].active) { 463 val |= (1 << 1); 464 } 465 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 466 val |= (1 << 3); 467 } 468 if (s->vectors[ARMV7M_EXCP_SVC].active) { 469 val |= (1 << 7); 470 } 471 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 472 val |= (1 << 8); 473 } 474 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 475 val |= (1 << 10); 476 } 477 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 478 val |= (1 << 11); 479 } 480 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 481 val |= (1 << 12); 482 } 483 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 484 val |= (1 << 13); 485 } 486 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 487 val |= (1 << 14); 488 } 489 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 490 val |= (1 << 15); 491 } 492 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 493 val |= (1 << 16); 494 } 495 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 496 val |= (1 << 17); 497 } 498 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 499 val |= (1 << 18); 500 } 501 return val; 502 case 0xd28: /* Configurable Fault Status. */ 503 /* The BFSR bits [15:8] are shared between security states 504 * and we store them in the NS copy 505 */ 506 val = cpu->env.v7m.cfsr[attrs.secure]; 507 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 508 return val; 509 case 0xd2c: /* Hard Fault Status. */ 510 return cpu->env.v7m.hfsr; 511 case 0xd30: /* Debug Fault Status. */ 512 return cpu->env.v7m.dfsr; 513 case 0xd34: /* MMFAR MemManage Fault Address */ 514 return cpu->env.v7m.mmfar[attrs.secure]; 515 case 0xd38: /* Bus Fault Address. */ 516 return cpu->env.v7m.bfar; 517 case 0xd3c: /* Aux Fault Status. */ 518 /* TODO: Implement fault status registers. */ 519 qemu_log_mask(LOG_UNIMP, 520 "Aux Fault status registers unimplemented\n"); 521 return 0; 522 case 0xd40: /* PFR0. */ 523 return 0x00000030; 524 case 0xd44: /* PRF1. */ 525 return 0x00000200; 526 case 0xd48: /* DFR0. */ 527 return 0x00100000; 528 case 0xd4c: /* AFR0. */ 529 return 0x00000000; 530 case 0xd50: /* MMFR0. */ 531 return 0x00000030; 532 case 0xd54: /* MMFR1. */ 533 return 0x00000000; 534 case 0xd58: /* MMFR2. */ 535 return 0x00000000; 536 case 0xd5c: /* MMFR3. */ 537 return 0x00000000; 538 case 0xd60: /* ISAR0. */ 539 return 0x01141110; 540 case 0xd64: /* ISAR1. */ 541 return 0x02111000; 542 case 0xd68: /* ISAR2. */ 543 return 0x21112231; 544 case 0xd6c: /* ISAR3. */ 545 return 0x01111110; 546 case 0xd70: /* ISAR4. */ 547 return 0x01310102; 548 /* TODO: Implement debug registers. */ 549 case 0xd90: /* MPU_TYPE */ 550 /* Unified MPU; if the MPU is not present this value is zero */ 551 return cpu->pmsav7_dregion << 8; 552 break; 553 case 0xd94: /* MPU_CTRL */ 554 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 555 case 0xd98: /* MPU_RNR */ 556 return cpu->env.pmsav7.rnr[attrs.secure]; 557 case 0xd9c: /* MPU_RBAR */ 558 case 0xda4: /* MPU_RBAR_A1 */ 559 case 0xdac: /* MPU_RBAR_A2 */ 560 case 0xdb4: /* MPU_RBAR_A3 */ 561 { 562 int region = cpu->env.pmsav7.rnr[attrs.secure]; 563 564 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 565 /* PMSAv8M handling of the aliases is different from v7M: 566 * aliases A1, A2, A3 override the low two bits of the region 567 * number in MPU_RNR, and there is no 'region' field in the 568 * RBAR register. 569 */ 570 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 571 if (aliasno) { 572 region = deposit32(region, 0, 2, aliasno); 573 } 574 if (region >= cpu->pmsav7_dregion) { 575 return 0; 576 } 577 return cpu->env.pmsav8.rbar[attrs.secure][region]; 578 } 579 580 if (region >= cpu->pmsav7_dregion) { 581 return 0; 582 } 583 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 584 } 585 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 586 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 587 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 588 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 589 { 590 int region = cpu->env.pmsav7.rnr[attrs.secure]; 591 592 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 593 /* PMSAv8M handling of the aliases is different from v7M: 594 * aliases A1, A2, A3 override the low two bits of the region 595 * number in MPU_RNR. 596 */ 597 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 598 if (aliasno) { 599 region = deposit32(region, 0, 2, aliasno); 600 } 601 if (region >= cpu->pmsav7_dregion) { 602 return 0; 603 } 604 return cpu->env.pmsav8.rlar[attrs.secure][region]; 605 } 606 607 if (region >= cpu->pmsav7_dregion) { 608 return 0; 609 } 610 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 611 (cpu->env.pmsav7.drsr[region] & 0xffff); 612 } 613 case 0xdc0: /* MPU_MAIR0 */ 614 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 615 goto bad_offset; 616 } 617 return cpu->env.pmsav8.mair0[attrs.secure]; 618 case 0xdc4: /* MPU_MAIR1 */ 619 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 620 goto bad_offset; 621 } 622 return cpu->env.pmsav8.mair1[attrs.secure]; 623 default: 624 bad_offset: 625 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 626 return 0; 627 } 628 } 629 630 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 631 MemTxAttrs attrs) 632 { 633 ARMCPU *cpu = s->cpu; 634 635 switch (offset) { 636 case 0xd04: /* Interrupt Control State. */ 637 if (value & (1 << 31)) { 638 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 639 } 640 if (value & (1 << 28)) { 641 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 642 } else if (value & (1 << 27)) { 643 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 644 } 645 if (value & (1 << 26)) { 646 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 647 } else if (value & (1 << 25)) { 648 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 649 } 650 break; 651 case 0xd08: /* Vector Table Offset. */ 652 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 653 break; 654 case 0xd0c: /* Application Interrupt/Reset Control. */ 655 if ((value >> 16) == 0x05fa) { 656 if (value & 4) { 657 qemu_irq_pulse(s->sysresetreq); 658 } 659 if (value & 2) { 660 qemu_log_mask(LOG_GUEST_ERROR, 661 "Setting VECTCLRACTIVE when not in DEBUG mode " 662 "is UNPREDICTABLE\n"); 663 } 664 if (value & 1) { 665 qemu_log_mask(LOG_GUEST_ERROR, 666 "Setting VECTRESET when not in DEBUG mode " 667 "is UNPREDICTABLE\n"); 668 } 669 s->prigroup = extract32(value, 8, 3); 670 nvic_irq_update(s); 671 } 672 break; 673 case 0xd10: /* System Control. */ 674 /* TODO: Implement control registers. */ 675 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 676 break; 677 case 0xd14: /* Configuration Control. */ 678 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 679 value &= (R_V7M_CCR_STKALIGN_MASK | 680 R_V7M_CCR_BFHFNMIGN_MASK | 681 R_V7M_CCR_DIV_0_TRP_MASK | 682 R_V7M_CCR_UNALIGN_TRP_MASK | 683 R_V7M_CCR_USERSETMPEND_MASK | 684 R_V7M_CCR_NONBASETHRDENA_MASK); 685 686 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 687 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 688 value |= R_V7M_CCR_NONBASETHRDENA_MASK 689 | R_V7M_CCR_STKALIGN_MASK; 690 } 691 if (attrs.secure) { 692 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 693 cpu->env.v7m.ccr[M_REG_NS] = 694 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 695 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 696 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 697 } 698 699 cpu->env.v7m.ccr[attrs.secure] = value; 700 break; 701 case 0xd24: /* System Handler Control. */ 702 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 703 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 704 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 705 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 706 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 707 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 708 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 709 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 710 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 711 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 712 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 713 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 714 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 715 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 716 nvic_irq_update(s); 717 break; 718 case 0xd28: /* Configurable Fault Status. */ 719 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */ 720 if (attrs.secure) { 721 /* The BFSR bits [15:8] are shared between security states 722 * and we store them in the NS copy. 723 */ 724 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 725 } 726 break; 727 case 0xd2c: /* Hard Fault Status. */ 728 cpu->env.v7m.hfsr &= ~value; /* W1C */ 729 break; 730 case 0xd30: /* Debug Fault Status. */ 731 cpu->env.v7m.dfsr &= ~value; /* W1C */ 732 break; 733 case 0xd34: /* Mem Manage Address. */ 734 cpu->env.v7m.mmfar[attrs.secure] = value; 735 return; 736 case 0xd38: /* Bus Fault Address. */ 737 cpu->env.v7m.bfar = value; 738 return; 739 case 0xd3c: /* Aux Fault Status. */ 740 qemu_log_mask(LOG_UNIMP, 741 "NVIC: Aux fault status registers unimplemented\n"); 742 break; 743 case 0xd90: /* MPU_TYPE */ 744 return; /* RO */ 745 case 0xd94: /* MPU_CTRL */ 746 if ((value & 747 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 748 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 749 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 750 "UNPREDICTABLE\n"); 751 } 752 cpu->env.v7m.mpu_ctrl[attrs.secure] 753 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 754 R_V7M_MPU_CTRL_HFNMIENA_MASK | 755 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 756 tlb_flush(CPU(cpu)); 757 break; 758 case 0xd98: /* MPU_RNR */ 759 if (value >= cpu->pmsav7_dregion) { 760 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 761 PRIu32 "/%" PRIu32 "\n", 762 value, cpu->pmsav7_dregion); 763 } else { 764 cpu->env.pmsav7.rnr[attrs.secure] = value; 765 } 766 break; 767 case 0xd9c: /* MPU_RBAR */ 768 case 0xda4: /* MPU_RBAR_A1 */ 769 case 0xdac: /* MPU_RBAR_A2 */ 770 case 0xdb4: /* MPU_RBAR_A3 */ 771 { 772 int region; 773 774 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 775 /* PMSAv8M handling of the aliases is different from v7M: 776 * aliases A1, A2, A3 override the low two bits of the region 777 * number in MPU_RNR, and there is no 'region' field in the 778 * RBAR register. 779 */ 780 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 781 782 region = cpu->env.pmsav7.rnr[attrs.secure]; 783 if (aliasno) { 784 region = deposit32(region, 0, 2, aliasno); 785 } 786 if (region >= cpu->pmsav7_dregion) { 787 return; 788 } 789 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 790 tlb_flush(CPU(cpu)); 791 return; 792 } 793 794 if (value & (1 << 4)) { 795 /* VALID bit means use the region number specified in this 796 * value and also update MPU_RNR.REGION with that value. 797 */ 798 region = extract32(value, 0, 4); 799 if (region >= cpu->pmsav7_dregion) { 800 qemu_log_mask(LOG_GUEST_ERROR, 801 "MPU region out of range %u/%" PRIu32 "\n", 802 region, cpu->pmsav7_dregion); 803 return; 804 } 805 cpu->env.pmsav7.rnr[attrs.secure] = region; 806 } else { 807 region = cpu->env.pmsav7.rnr[attrs.secure]; 808 } 809 810 if (region >= cpu->pmsav7_dregion) { 811 return; 812 } 813 814 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 815 tlb_flush(CPU(cpu)); 816 break; 817 } 818 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 819 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 820 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 821 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 822 { 823 int region = cpu->env.pmsav7.rnr[attrs.secure]; 824 825 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 826 /* PMSAv8M handling of the aliases is different from v7M: 827 * aliases A1, A2, A3 override the low two bits of the region 828 * number in MPU_RNR. 829 */ 830 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 831 832 region = cpu->env.pmsav7.rnr[attrs.secure]; 833 if (aliasno) { 834 region = deposit32(region, 0, 2, aliasno); 835 } 836 if (region >= cpu->pmsav7_dregion) { 837 return; 838 } 839 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 840 tlb_flush(CPU(cpu)); 841 return; 842 } 843 844 if (region >= cpu->pmsav7_dregion) { 845 return; 846 } 847 848 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 849 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 850 tlb_flush(CPU(cpu)); 851 break; 852 } 853 case 0xdc0: /* MPU_MAIR0 */ 854 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 855 goto bad_offset; 856 } 857 if (cpu->pmsav7_dregion) { 858 /* Register is RES0 if no MPU regions are implemented */ 859 cpu->env.pmsav8.mair0[attrs.secure] = value; 860 } 861 /* We don't need to do anything else because memory attributes 862 * only affect cacheability, and we don't implement caching. 863 */ 864 break; 865 case 0xdc4: /* MPU_MAIR1 */ 866 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 867 goto bad_offset; 868 } 869 if (cpu->pmsav7_dregion) { 870 /* Register is RES0 if no MPU regions are implemented */ 871 cpu->env.pmsav8.mair1[attrs.secure] = value; 872 } 873 /* We don't need to do anything else because memory attributes 874 * only affect cacheability, and we don't implement caching. 875 */ 876 break; 877 case 0xf00: /* Software Triggered Interrupt Register */ 878 { 879 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 880 if (excnum < s->num_irq) { 881 armv7m_nvic_set_pending(s, excnum); 882 } 883 break; 884 } 885 default: 886 bad_offset: 887 qemu_log_mask(LOG_GUEST_ERROR, 888 "NVIC: Bad write offset 0x%x\n", offset); 889 } 890 } 891 892 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 893 { 894 /* Return true if unprivileged access to this register is permitted. */ 895 switch (offset) { 896 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 897 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 898 * controls access even though the CPU is in Secure state (I_QDKX). 899 */ 900 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 901 default: 902 /* All other user accesses cause a BusFault unconditionally */ 903 return false; 904 } 905 } 906 907 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 908 uint64_t *data, unsigned size, 909 MemTxAttrs attrs) 910 { 911 NVICState *s = (NVICState *)opaque; 912 uint32_t offset = addr; 913 unsigned i, startvec, end; 914 uint32_t val; 915 916 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 917 /* Generate BusFault for unprivileged accesses */ 918 return MEMTX_ERROR; 919 } 920 921 switch (offset) { 922 /* reads of set and clear both return the status */ 923 case 0x100 ... 0x13f: /* NVIC Set enable */ 924 offset += 0x80; 925 /* fall through */ 926 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 927 val = 0; 928 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 929 930 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 931 if (s->vectors[startvec + i].enabled) { 932 val |= (1 << i); 933 } 934 } 935 break; 936 case 0x200 ... 0x23f: /* NVIC Set pend */ 937 offset += 0x80; 938 /* fall through */ 939 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 940 val = 0; 941 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 942 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 943 if (s->vectors[startvec + i].pending) { 944 val |= (1 << i); 945 } 946 } 947 break; 948 case 0x300 ... 0x33f: /* NVIC Active */ 949 val = 0; 950 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 951 952 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 953 if (s->vectors[startvec + i].active) { 954 val |= (1 << i); 955 } 956 } 957 break; 958 case 0x400 ... 0x5ef: /* NVIC Priority */ 959 val = 0; 960 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 961 962 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 963 val |= s->vectors[startvec + i].prio << (8 * i); 964 } 965 break; 966 case 0xd18 ... 0xd23: /* System Handler Priority. */ 967 val = 0; 968 for (i = 0; i < size; i++) { 969 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 970 } 971 break; 972 case 0xfe0 ... 0xfff: /* ID. */ 973 if (offset & 3) { 974 val = 0; 975 } else { 976 val = nvic_id[(offset - 0xfe0) >> 2]; 977 } 978 break; 979 default: 980 if (size == 4) { 981 val = nvic_readl(s, offset, attrs); 982 } else { 983 qemu_log_mask(LOG_GUEST_ERROR, 984 "NVIC: Bad read of size %d at offset 0x%x\n", 985 size, offset); 986 val = 0; 987 } 988 } 989 990 trace_nvic_sysreg_read(addr, val, size); 991 *data = val; 992 return MEMTX_OK; 993 } 994 995 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 996 uint64_t value, unsigned size, 997 MemTxAttrs attrs) 998 { 999 NVICState *s = (NVICState *)opaque; 1000 uint32_t offset = addr; 1001 unsigned i, startvec, end; 1002 unsigned setval = 0; 1003 1004 trace_nvic_sysreg_write(addr, value, size); 1005 1006 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1007 /* Generate BusFault for unprivileged accesses */ 1008 return MEMTX_ERROR; 1009 } 1010 1011 switch (offset) { 1012 case 0x100 ... 0x13f: /* NVIC Set enable */ 1013 offset += 0x80; 1014 setval = 1; 1015 /* fall through */ 1016 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1017 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1018 1019 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1020 if (value & (1 << i)) { 1021 s->vectors[startvec + i].enabled = setval; 1022 } 1023 } 1024 nvic_irq_update(s); 1025 return MEMTX_OK; 1026 case 0x200 ... 0x23f: /* NVIC Set pend */ 1027 /* the special logic in armv7m_nvic_set_pending() 1028 * is not needed since IRQs are never escalated 1029 */ 1030 offset += 0x80; 1031 setval = 1; 1032 /* fall through */ 1033 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1034 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1035 1036 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1037 if (value & (1 << i)) { 1038 s->vectors[startvec + i].pending = setval; 1039 } 1040 } 1041 nvic_irq_update(s); 1042 return MEMTX_OK; 1043 case 0x300 ... 0x33f: /* NVIC Active */ 1044 return MEMTX_OK; /* R/O */ 1045 case 0x400 ... 0x5ef: /* NVIC Priority */ 1046 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1047 1048 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1049 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 1050 } 1051 nvic_irq_update(s); 1052 return MEMTX_OK; 1053 case 0xd18 ... 0xd23: /* System Handler Priority. */ 1054 for (i = 0; i < size; i++) { 1055 unsigned hdlidx = (offset - 0xd14) + i; 1056 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 1057 } 1058 nvic_irq_update(s); 1059 return MEMTX_OK; 1060 } 1061 if (size == 4) { 1062 nvic_writel(s, offset, value, attrs); 1063 return MEMTX_OK; 1064 } 1065 qemu_log_mask(LOG_GUEST_ERROR, 1066 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1067 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1068 return MEMTX_OK; 1069 } 1070 1071 static const MemoryRegionOps nvic_sysreg_ops = { 1072 .read_with_attrs = nvic_sysreg_read, 1073 .write_with_attrs = nvic_sysreg_write, 1074 .endianness = DEVICE_NATIVE_ENDIAN, 1075 }; 1076 1077 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1078 uint64_t value, unsigned size, 1079 MemTxAttrs attrs) 1080 { 1081 if (attrs.secure) { 1082 /* S accesses to the alias act like NS accesses to the real region */ 1083 attrs.secure = 0; 1084 return nvic_sysreg_write(opaque, addr, value, size, attrs); 1085 } else { 1086 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1087 if (attrs.user) { 1088 return MEMTX_ERROR; 1089 } 1090 return MEMTX_OK; 1091 } 1092 } 1093 1094 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1095 uint64_t *data, unsigned size, 1096 MemTxAttrs attrs) 1097 { 1098 if (attrs.secure) { 1099 /* S accesses to the alias act like NS accesses to the real region */ 1100 attrs.secure = 0; 1101 return nvic_sysreg_read(opaque, addr, data, size, attrs); 1102 } else { 1103 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1104 if (attrs.user) { 1105 return MEMTX_ERROR; 1106 } 1107 *data = 0; 1108 return MEMTX_OK; 1109 } 1110 } 1111 1112 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1113 .read_with_attrs = nvic_sysreg_ns_read, 1114 .write_with_attrs = nvic_sysreg_ns_write, 1115 .endianness = DEVICE_NATIVE_ENDIAN, 1116 }; 1117 1118 static int nvic_post_load(void *opaque, int version_id) 1119 { 1120 NVICState *s = opaque; 1121 unsigned i; 1122 1123 /* Check for out of range priority settings */ 1124 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 1125 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1126 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1127 return 1; 1128 } 1129 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1130 if (s->vectors[i].prio & ~0xff) { 1131 return 1; 1132 } 1133 } 1134 1135 nvic_recompute_state(s); 1136 1137 return 0; 1138 } 1139 1140 static const VMStateDescription vmstate_VecInfo = { 1141 .name = "armv7m_nvic_info", 1142 .version_id = 1, 1143 .minimum_version_id = 1, 1144 .fields = (VMStateField[]) { 1145 VMSTATE_INT16(prio, VecInfo), 1146 VMSTATE_UINT8(enabled, VecInfo), 1147 VMSTATE_UINT8(pending, VecInfo), 1148 VMSTATE_UINT8(active, VecInfo), 1149 VMSTATE_UINT8(level, VecInfo), 1150 VMSTATE_END_OF_LIST() 1151 } 1152 }; 1153 1154 static const VMStateDescription vmstate_nvic = { 1155 .name = "armv7m_nvic", 1156 .version_id = 4, 1157 .minimum_version_id = 4, 1158 .post_load = &nvic_post_load, 1159 .fields = (VMStateField[]) { 1160 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1161 vmstate_VecInfo, VecInfo), 1162 VMSTATE_UINT32(prigroup, NVICState), 1163 VMSTATE_END_OF_LIST() 1164 } 1165 }; 1166 1167 static Property props_nvic[] = { 1168 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1169 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1170 DEFINE_PROP_END_OF_LIST() 1171 }; 1172 1173 static void armv7m_nvic_reset(DeviceState *dev) 1174 { 1175 NVICState *s = NVIC(dev); 1176 1177 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1178 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1179 /* MEM, BUS, and USAGE are enabled through 1180 * the System Handler Control register 1181 */ 1182 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1183 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1184 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1185 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1186 1187 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 1188 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1189 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1190 1191 /* Strictly speaking the reset handler should be enabled. 1192 * However, we don't simulate soft resets through the NVIC, 1193 * and the reset vector should never be pended. 1194 * So we leave it disabled to catch logic errors. 1195 */ 1196 1197 s->exception_prio = NVIC_NOEXC_PRIO; 1198 s->vectpending = 0; 1199 } 1200 1201 static void nvic_systick_trigger(void *opaque, int n, int level) 1202 { 1203 NVICState *s = opaque; 1204 1205 if (level) { 1206 /* SysTick just asked us to pend its exception. 1207 * (This is different from an external interrupt line's 1208 * behaviour.) 1209 */ 1210 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 1211 } 1212 } 1213 1214 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 1215 { 1216 NVICState *s = NVIC(dev); 1217 SysBusDevice *systick_sbd; 1218 Error *err = NULL; 1219 int regionlen; 1220 1221 s->cpu = ARM_CPU(qemu_get_cpu(0)); 1222 assert(s->cpu); 1223 1224 if (s->num_irq > NVIC_MAX_IRQ) { 1225 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 1226 return; 1227 } 1228 1229 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 1230 1231 /* include space for internal exception vectors */ 1232 s->num_irq += NVIC_FIRST_IRQ; 1233 1234 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 1235 if (err != NULL) { 1236 error_propagate(errp, err); 1237 return; 1238 } 1239 systick_sbd = SYS_BUS_DEVICE(&s->systick); 1240 sysbus_connect_irq(systick_sbd, 0, 1241 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 1242 1243 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 1244 * and looks like this: 1245 * 0x004 - ICTR 1246 * 0x010 - 0xff - systick 1247 * 0x100..0x7ec - NVIC 1248 * 0x7f0..0xcff - Reserved 1249 * 0xd00..0xd3c - SCS registers 1250 * 0xd40..0xeff - Reserved or Not implemented 1251 * 0xf00 - STIR 1252 * 1253 * Some registers within this space are banked between security states. 1254 * In v8M there is a second range 0xe002e000..0xe002efff which is the 1255 * NonSecure alias SCS; secure accesses to this behave like NS accesses 1256 * to the main SCS range, and non-secure accesses (including when 1257 * the security extension is not implemented) are RAZ/WI. 1258 * Note that both the main SCS range and the alias range are defined 1259 * to be exempt from memory attribution (R_BLJT) and so the memory 1260 * transaction attribute always matches the current CPU security 1261 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 1262 * wrappers we change attrs.secure to indicate the NS access; so 1263 * generally code determining which banked register to use should 1264 * use attrs.secure; code determining actual behaviour of the system 1265 * should use env->v7m.secure. 1266 */ 1267 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 1268 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 1269 /* The system register region goes at the bottom of the priority 1270 * stack as it covers the whole page. 1271 */ 1272 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 1273 "nvic_sysregs", 0x1000); 1274 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 1275 memory_region_add_subregion_overlap(&s->container, 0x10, 1276 sysbus_mmio_get_region(systick_sbd, 0), 1277 1); 1278 1279 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 1280 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 1281 &nvic_sysreg_ns_ops, s, 1282 "nvic_sysregs_ns", 0x1000); 1283 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 1284 } 1285 1286 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 1287 } 1288 1289 static void armv7m_nvic_instance_init(Object *obj) 1290 { 1291 /* We have a different default value for the num-irq property 1292 * than our superclass. This function runs after qdev init 1293 * has set the defaults from the Property array and before 1294 * any user-specified property setting, so just modify the 1295 * value in the GICState struct. 1296 */ 1297 DeviceState *dev = DEVICE(obj); 1298 NVICState *nvic = NVIC(obj); 1299 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1300 1301 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 1302 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 1303 1304 sysbus_init_irq(sbd, &nvic->excpout); 1305 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 1306 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 1307 } 1308 1309 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 1310 { 1311 DeviceClass *dc = DEVICE_CLASS(klass); 1312 1313 dc->vmsd = &vmstate_nvic; 1314 dc->props = props_nvic; 1315 dc->reset = armv7m_nvic_reset; 1316 dc->realize = armv7m_nvic_realize; 1317 } 1318 1319 static const TypeInfo armv7m_nvic_info = { 1320 .name = TYPE_NVIC, 1321 .parent = TYPE_SYS_BUS_DEVICE, 1322 .instance_init = armv7m_nvic_instance_init, 1323 .instance_size = sizeof(NVICState), 1324 .class_init = armv7m_nvic_class_init, 1325 .class_size = sizeof(SysBusDeviceClass), 1326 }; 1327 1328 static void armv7m_nvic_register_types(void) 1329 { 1330 type_register_static(&armv7m_nvic_info); 1331 } 1332 1333 type_init(armv7m_nvic_register_types) 1334