1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "target/arm/cpu.h" 23 #include "exec/exec-all.h" 24 #include "qemu/log.h" 25 #include "qemu/module.h" 26 #include "trace.h" 27 28 /* IRQ number counting: 29 * 30 * the num-irq property counts the number of external IRQ lines 31 * 32 * NVICState::num_irq counts the total number of exceptions 33 * (external IRQs, the 15 internal exceptions including reset, 34 * and one for the unused exception number 0). 35 * 36 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 37 * 38 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 39 * 40 * Iterating through all exceptions should typically be done with 41 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 42 * 43 * The external qemu_irq lines are the NVIC's external IRQ lines, 44 * so line 0 is exception 16. 45 * 46 * In the terminology of the architecture manual, "interrupts" are 47 * a subcategory of exception referring to the external interrupts 48 * (which are exception numbers NVIC_FIRST_IRQ and upward). 49 * For historical reasons QEMU tends to use "interrupt" and 50 * "exception" more or less interchangeably. 51 */ 52 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 53 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 54 55 /* Effective running priority of the CPU when no exception is active 56 * (higher than the highest possible priority value) 57 */ 58 #define NVIC_NOEXC_PRIO 0x100 59 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 60 #define NVIC_NS_PRIO_LIMIT 0x80 61 62 static const uint8_t nvic_id[] = { 63 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 64 }; 65 66 static int nvic_pending_prio(NVICState *s) 67 { 68 /* return the group priority of the current pending interrupt, 69 * or NVIC_NOEXC_PRIO if no interrupt is pending 70 */ 71 return s->vectpending_prio; 72 } 73 74 /* Return the value of the ISCR RETTOBASE bit: 75 * 1 if there is exactly one active exception 76 * 0 if there is more than one active exception 77 * UNKNOWN if there are no active exceptions (we choose 1, 78 * which matches the choice Cortex-M3 is documented as making). 79 * 80 * NB: some versions of the documentation talk about this 81 * counting "active exceptions other than the one shown by IPSR"; 82 * this is only different in the obscure corner case where guest 83 * code has manually deactivated an exception and is about 84 * to fail an exception-return integrity check. The definition 85 * above is the one from the v8M ARM ARM and is also in line 86 * with the behaviour documented for the Cortex-M3. 87 */ 88 static bool nvic_rettobase(NVICState *s) 89 { 90 int irq, nhand = 0; 91 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 92 93 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 94 if (s->vectors[irq].active || 95 (check_sec && irq < NVIC_INTERNAL_VECTORS && 96 s->sec_vectors[irq].active)) { 97 nhand++; 98 if (nhand == 2) { 99 return 0; 100 } 101 } 102 } 103 104 return 1; 105 } 106 107 /* Return the value of the ISCR ISRPENDING bit: 108 * 1 if an external interrupt is pending 109 * 0 if no external interrupt is pending 110 */ 111 static bool nvic_isrpending(NVICState *s) 112 { 113 int irq; 114 115 /* We can shortcut if the highest priority pending interrupt 116 * happens to be external or if there is nothing pending. 117 */ 118 if (s->vectpending > NVIC_FIRST_IRQ) { 119 return true; 120 } 121 if (s->vectpending == 0) { 122 return false; 123 } 124 125 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 126 if (s->vectors[irq].pending) { 127 return true; 128 } 129 } 130 return false; 131 } 132 133 static bool exc_is_banked(int exc) 134 { 135 /* Return true if this is one of the limited set of exceptions which 136 * are banked (and thus have state in sec_vectors[]) 137 */ 138 return exc == ARMV7M_EXCP_HARD || 139 exc == ARMV7M_EXCP_MEM || 140 exc == ARMV7M_EXCP_USAGE || 141 exc == ARMV7M_EXCP_SVC || 142 exc == ARMV7M_EXCP_PENDSV || 143 exc == ARMV7M_EXCP_SYSTICK; 144 } 145 146 /* Return a mask word which clears the subpriority bits from 147 * a priority value for an M-profile exception, leaving only 148 * the group priority. 149 */ 150 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 151 { 152 return ~0U << (s->prigroup[secure] + 1); 153 } 154 155 static bool exc_targets_secure(NVICState *s, int exc) 156 { 157 /* Return true if this non-banked exception targets Secure state. */ 158 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 159 return false; 160 } 161 162 if (exc >= NVIC_FIRST_IRQ) { 163 return !s->itns[exc]; 164 } 165 166 /* Function shouldn't be called for banked exceptions. */ 167 assert(!exc_is_banked(exc)); 168 169 switch (exc) { 170 case ARMV7M_EXCP_NMI: 171 case ARMV7M_EXCP_BUS: 172 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 173 case ARMV7M_EXCP_SECURE: 174 return true; 175 case ARMV7M_EXCP_DEBUG: 176 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 177 return false; 178 default: 179 /* reset, and reserved (unused) low exception numbers. 180 * We'll get called by code that loops through all the exception 181 * numbers, but it doesn't matter what we return here as these 182 * non-existent exceptions will never be pended or active. 183 */ 184 return true; 185 } 186 } 187 188 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 189 { 190 /* Return the group priority for this exception, given its raw 191 * (group-and-subgroup) priority value and whether it is targeting 192 * secure state or not. 193 */ 194 if (rawprio < 0) { 195 return rawprio; 196 } 197 rawprio &= nvic_gprio_mask(s, targets_secure); 198 /* AIRCR.PRIS causes us to squash all NS priorities into the 199 * lower half of the total range 200 */ 201 if (!targets_secure && 202 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 203 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 204 } 205 return rawprio; 206 } 207 208 /* Recompute vectpending and exception_prio for a CPU which implements 209 * the Security extension 210 */ 211 static void nvic_recompute_state_secure(NVICState *s) 212 { 213 int i, bank; 214 int pend_prio = NVIC_NOEXC_PRIO; 215 int active_prio = NVIC_NOEXC_PRIO; 216 int pend_irq = 0; 217 bool pending_is_s_banked = false; 218 int pend_subprio = 0; 219 220 /* R_CQRV: precedence is by: 221 * - lowest group priority; if both the same then 222 * - lowest subpriority; if both the same then 223 * - lowest exception number; if both the same (ie banked) then 224 * - secure exception takes precedence 225 * Compare pseudocode RawExecutionPriority. 226 * Annoyingly, now we have two prigroup values (for S and NS) 227 * we can't do the loop comparison on raw priority values. 228 */ 229 for (i = 1; i < s->num_irq; i++) { 230 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 231 VecInfo *vec; 232 int prio, subprio; 233 bool targets_secure; 234 235 if (bank == M_REG_S) { 236 if (!exc_is_banked(i)) { 237 continue; 238 } 239 vec = &s->sec_vectors[i]; 240 targets_secure = true; 241 } else { 242 vec = &s->vectors[i]; 243 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 244 } 245 246 prio = exc_group_prio(s, vec->prio, targets_secure); 247 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 248 if (vec->enabled && vec->pending && 249 ((prio < pend_prio) || 250 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 251 pend_prio = prio; 252 pend_subprio = subprio; 253 pend_irq = i; 254 pending_is_s_banked = (bank == M_REG_S); 255 } 256 if (vec->active && prio < active_prio) { 257 active_prio = prio; 258 } 259 } 260 } 261 262 s->vectpending_is_s_banked = pending_is_s_banked; 263 s->vectpending = pend_irq; 264 s->vectpending_prio = pend_prio; 265 s->exception_prio = active_prio; 266 267 trace_nvic_recompute_state_secure(s->vectpending, 268 s->vectpending_is_s_banked, 269 s->vectpending_prio, 270 s->exception_prio); 271 } 272 273 /* Recompute vectpending and exception_prio */ 274 static void nvic_recompute_state(NVICState *s) 275 { 276 int i; 277 int pend_prio = NVIC_NOEXC_PRIO; 278 int active_prio = NVIC_NOEXC_PRIO; 279 int pend_irq = 0; 280 281 /* In theory we could write one function that handled both 282 * the "security extension present" and "not present"; however 283 * the security related changes significantly complicate the 284 * recomputation just by themselves and mixing both cases together 285 * would be even worse, so we retain a separate non-secure-only 286 * version for CPUs which don't implement the security extension. 287 */ 288 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 289 nvic_recompute_state_secure(s); 290 return; 291 } 292 293 for (i = 1; i < s->num_irq; i++) { 294 VecInfo *vec = &s->vectors[i]; 295 296 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 297 pend_prio = vec->prio; 298 pend_irq = i; 299 } 300 if (vec->active && vec->prio < active_prio) { 301 active_prio = vec->prio; 302 } 303 } 304 305 if (active_prio > 0) { 306 active_prio &= nvic_gprio_mask(s, false); 307 } 308 309 if (pend_prio > 0) { 310 pend_prio &= nvic_gprio_mask(s, false); 311 } 312 313 s->vectpending = pend_irq; 314 s->vectpending_prio = pend_prio; 315 s->exception_prio = active_prio; 316 317 trace_nvic_recompute_state(s->vectpending, 318 s->vectpending_prio, 319 s->exception_prio); 320 } 321 322 /* Return the current execution priority of the CPU 323 * (equivalent to the pseudocode ExecutionPriority function). 324 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 325 */ 326 static inline int nvic_exec_prio(NVICState *s) 327 { 328 CPUARMState *env = &s->cpu->env; 329 int running = NVIC_NOEXC_PRIO; 330 331 if (env->v7m.basepri[M_REG_NS] > 0) { 332 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 333 } 334 335 if (env->v7m.basepri[M_REG_S] > 0) { 336 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 337 if (running > basepri) { 338 running = basepri; 339 } 340 } 341 342 if (env->v7m.primask[M_REG_NS]) { 343 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 344 if (running > NVIC_NS_PRIO_LIMIT) { 345 running = NVIC_NS_PRIO_LIMIT; 346 } 347 } else { 348 running = 0; 349 } 350 } 351 352 if (env->v7m.primask[M_REG_S]) { 353 running = 0; 354 } 355 356 if (env->v7m.faultmask[M_REG_NS]) { 357 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 358 running = -1; 359 } else { 360 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 361 if (running > NVIC_NS_PRIO_LIMIT) { 362 running = NVIC_NS_PRIO_LIMIT; 363 } 364 } else { 365 running = 0; 366 } 367 } 368 } 369 370 if (env->v7m.faultmask[M_REG_S]) { 371 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 372 } 373 374 /* consider priority of active handler */ 375 return MIN(running, s->exception_prio); 376 } 377 378 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 379 { 380 /* Return true if the requested execution priority is negative 381 * for the specified security state, ie that security state 382 * has an active NMI or HardFault or has set its FAULTMASK. 383 * Note that this is not the same as whether the execution 384 * priority is actually negative (for instance AIRCR.PRIS may 385 * mean we don't allow FAULTMASK_NS to actually make the execution 386 * priority negative). Compare pseudocode IsReqExcPriNeg(). 387 */ 388 NVICState *s = opaque; 389 390 if (s->cpu->env.v7m.faultmask[secure]) { 391 return true; 392 } 393 394 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 395 s->vectors[ARMV7M_EXCP_HARD].active) { 396 return true; 397 } 398 399 if (s->vectors[ARMV7M_EXCP_NMI].active && 400 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 401 return true; 402 } 403 404 return false; 405 } 406 407 bool armv7m_nvic_can_take_pending_exception(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return nvic_exec_prio(s) > nvic_pending_prio(s); 412 } 413 414 int armv7m_nvic_raw_execution_priority(void *opaque) 415 { 416 NVICState *s = opaque; 417 418 return s->exception_prio; 419 } 420 421 /* caller must call nvic_irq_update() after this. 422 * secure indicates the bank to use for banked exceptions (we assert if 423 * we are passed secure=true for a non-banked exception). 424 */ 425 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 426 { 427 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 428 assert(irq < s->num_irq); 429 430 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 431 432 if (secure) { 433 assert(exc_is_banked(irq)); 434 s->sec_vectors[irq].prio = prio; 435 } else { 436 s->vectors[irq].prio = prio; 437 } 438 439 trace_nvic_set_prio(irq, secure, prio); 440 } 441 442 /* Return the current raw priority register value. 443 * secure indicates the bank to use for banked exceptions (we assert if 444 * we are passed secure=true for a non-banked exception). 445 */ 446 static int get_prio(NVICState *s, unsigned irq, bool secure) 447 { 448 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 449 assert(irq < s->num_irq); 450 451 if (secure) { 452 assert(exc_is_banked(irq)); 453 return s->sec_vectors[irq].prio; 454 } else { 455 return s->vectors[irq].prio; 456 } 457 } 458 459 /* Recompute state and assert irq line accordingly. 460 * Must be called after changes to: 461 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 462 * prigroup 463 */ 464 static void nvic_irq_update(NVICState *s) 465 { 466 int lvl; 467 int pend_prio; 468 469 nvic_recompute_state(s); 470 pend_prio = nvic_pending_prio(s); 471 472 /* Raise NVIC output if this IRQ would be taken, except that we 473 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 474 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 475 * to those CPU registers don't cause us to recalculate the NVIC 476 * pending info. 477 */ 478 lvl = (pend_prio < s->exception_prio); 479 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 480 qemu_set_irq(s->excpout, lvl); 481 } 482 483 /** 484 * armv7m_nvic_clear_pending: mark the specified exception as not pending 485 * @opaque: the NVIC 486 * @irq: the exception number to mark as not pending 487 * @secure: false for non-banked exceptions or for the nonsecure 488 * version of a banked exception, true for the secure version of a banked 489 * exception. 490 * 491 * Marks the specified exception as not pending. Note that we will assert() 492 * if @secure is true and @irq does not specify one of the fixed set 493 * of architecturally banked exceptions. 494 */ 495 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 496 { 497 NVICState *s = (NVICState *)opaque; 498 VecInfo *vec; 499 500 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 501 502 if (secure) { 503 assert(exc_is_banked(irq)); 504 vec = &s->sec_vectors[irq]; 505 } else { 506 vec = &s->vectors[irq]; 507 } 508 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 509 if (vec->pending) { 510 vec->pending = 0; 511 nvic_irq_update(s); 512 } 513 } 514 515 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 516 bool derived) 517 { 518 /* Pend an exception, including possibly escalating it to HardFault. 519 * 520 * This function handles both "normal" pending of interrupts and 521 * exceptions, and also derived exceptions (ones which occur as 522 * a result of trying to take some other exception). 523 * 524 * If derived == true, the caller guarantees that we are part way through 525 * trying to take an exception (but have not yet called 526 * armv7m_nvic_acknowledge_irq() to make it active), and so: 527 * - s->vectpending is the "original exception" we were trying to take 528 * - irq is the "derived exception" 529 * - nvic_exec_prio(s) gives the priority before exception entry 530 * Here we handle the prioritization logic which the pseudocode puts 531 * in the DerivedLateArrival() function. 532 */ 533 534 NVICState *s = (NVICState *)opaque; 535 bool banked = exc_is_banked(irq); 536 VecInfo *vec; 537 bool targets_secure; 538 539 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 540 assert(!secure || banked); 541 542 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 543 544 targets_secure = banked ? secure : exc_targets_secure(s, irq); 545 546 trace_nvic_set_pending(irq, secure, targets_secure, 547 derived, vec->enabled, vec->prio); 548 549 if (derived) { 550 /* Derived exceptions are always synchronous. */ 551 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 552 553 if (irq == ARMV7M_EXCP_DEBUG && 554 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 555 /* DebugMonitorFault, but its priority is lower than the 556 * preempted exception priority: just ignore it. 557 */ 558 return; 559 } 560 561 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 562 /* If this is a terminal exception (one which means we cannot 563 * take the original exception, like a failure to read its 564 * vector table entry), then we must take the derived exception. 565 * If the derived exception can't take priority over the 566 * original exception, then we go into Lockup. 567 * 568 * For QEMU, we rely on the fact that a derived exception is 569 * terminal if and only if it's reported to us as HardFault, 570 * which saves having to have an extra argument is_terminal 571 * that we'd only use in one place. 572 */ 573 cpu_abort(&s->cpu->parent_obj, 574 "Lockup: can't take terminal derived exception " 575 "(original exception priority %d)\n", 576 s->vectpending_prio); 577 } 578 /* We now continue with the same code as for a normal pending 579 * exception, which will cause us to pend the derived exception. 580 * We'll then take either the original or the derived exception 581 * based on which is higher priority by the usual mechanism 582 * for selecting the highest priority pending interrupt. 583 */ 584 } 585 586 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 587 /* If a synchronous exception is pending then it may be 588 * escalated to HardFault if: 589 * * it is equal or lower priority to current execution 590 * * it is disabled 591 * (ie we need to take it immediately but we can't do so). 592 * Asynchronous exceptions (and interrupts) simply remain pending. 593 * 594 * For QEMU, we don't have any imprecise (asynchronous) faults, 595 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 596 * synchronous. 597 * Debug exceptions are awkward because only Debug exceptions 598 * resulting from the BKPT instruction should be escalated, 599 * but we don't currently implement any Debug exceptions other 600 * than those that result from BKPT, so we treat all debug exceptions 601 * as needing escalation. 602 * 603 * This all means we can identify whether to escalate based only on 604 * the exception number and don't (yet) need the caller to explicitly 605 * tell us whether this exception is synchronous or not. 606 */ 607 int running = nvic_exec_prio(s); 608 bool escalate = false; 609 610 if (exc_group_prio(s, vec->prio, secure) >= running) { 611 trace_nvic_escalate_prio(irq, vec->prio, running); 612 escalate = true; 613 } else if (!vec->enabled) { 614 trace_nvic_escalate_disabled(irq); 615 escalate = true; 616 } 617 618 if (escalate) { 619 620 /* We need to escalate this exception to a synchronous HardFault. 621 * If BFHFNMINS is set then we escalate to the banked HF for 622 * the target security state of the original exception; otherwise 623 * we take a Secure HardFault. 624 */ 625 irq = ARMV7M_EXCP_HARD; 626 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 627 (targets_secure || 628 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 629 vec = &s->sec_vectors[irq]; 630 } else { 631 vec = &s->vectors[irq]; 632 } 633 if (running <= vec->prio) { 634 /* We want to escalate to HardFault but we can't take the 635 * synchronous HardFault at this point either. This is a 636 * Lockup condition due to a guest bug. We don't model 637 * Lockup, so report via cpu_abort() instead. 638 */ 639 cpu_abort(&s->cpu->parent_obj, 640 "Lockup: can't escalate %d to HardFault " 641 "(current priority %d)\n", irq, running); 642 } 643 644 /* HF may be banked but there is only one shared HFSR */ 645 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 646 } 647 } 648 649 if (!vec->pending) { 650 vec->pending = 1; 651 nvic_irq_update(s); 652 } 653 } 654 655 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 656 { 657 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 658 } 659 660 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 661 { 662 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 663 } 664 665 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 666 { 667 /* 668 * Pend an exception during lazy FP stacking. This differs 669 * from the usual exception pending because the logic for 670 * whether we should escalate depends on the saved context 671 * in the FPCCR register, not on the current state of the CPU/NVIC. 672 */ 673 NVICState *s = (NVICState *)opaque; 674 bool banked = exc_is_banked(irq); 675 VecInfo *vec; 676 bool targets_secure; 677 bool escalate = false; 678 /* 679 * We will only look at bits in fpccr if this is a banked exception 680 * (in which case 'secure' tells us whether it is the S or NS version). 681 * All the bits for the non-banked exceptions are in fpccr_s. 682 */ 683 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 684 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 685 686 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 687 assert(!secure || banked); 688 689 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 690 691 targets_secure = banked ? secure : exc_targets_secure(s, irq); 692 693 switch (irq) { 694 case ARMV7M_EXCP_DEBUG: 695 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 696 /* Ignore DebugMonitor exception */ 697 return; 698 } 699 break; 700 case ARMV7M_EXCP_MEM: 701 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 702 break; 703 case ARMV7M_EXCP_USAGE: 704 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 705 break; 706 case ARMV7M_EXCP_BUS: 707 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 708 break; 709 case ARMV7M_EXCP_SECURE: 710 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 711 break; 712 default: 713 g_assert_not_reached(); 714 } 715 716 if (escalate) { 717 /* 718 * Escalate to HardFault: faults that initially targeted Secure 719 * continue to do so, even if HF normally targets NonSecure. 720 */ 721 irq = ARMV7M_EXCP_HARD; 722 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 723 (targets_secure || 724 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 725 vec = &s->sec_vectors[irq]; 726 } else { 727 vec = &s->vectors[irq]; 728 } 729 } 730 731 if (!vec->enabled || 732 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 733 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 734 /* 735 * We want to escalate to HardFault but the context the 736 * FP state belongs to prevents the exception pre-empting. 737 */ 738 cpu_abort(&s->cpu->parent_obj, 739 "Lockup: can't escalate to HardFault during " 740 "lazy FP register stacking\n"); 741 } 742 } 743 744 if (escalate) { 745 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 746 } 747 if (!vec->pending) { 748 vec->pending = 1; 749 /* 750 * We do not call nvic_irq_update(), because we know our caller 751 * is going to handle causing us to take the exception by 752 * raising EXCP_LAZYFP, so raising the IRQ line would be 753 * pointless extra work. We just need to recompute the 754 * priorities so that armv7m_nvic_can_take_pending_exception() 755 * returns the right answer. 756 */ 757 nvic_recompute_state(s); 758 } 759 } 760 761 /* Make pending IRQ active. */ 762 void armv7m_nvic_acknowledge_irq(void *opaque) 763 { 764 NVICState *s = (NVICState *)opaque; 765 CPUARMState *env = &s->cpu->env; 766 const int pending = s->vectpending; 767 const int running = nvic_exec_prio(s); 768 VecInfo *vec; 769 770 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 771 772 if (s->vectpending_is_s_banked) { 773 vec = &s->sec_vectors[pending]; 774 } else { 775 vec = &s->vectors[pending]; 776 } 777 778 assert(vec->enabled); 779 assert(vec->pending); 780 781 assert(s->vectpending_prio < running); 782 783 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 784 785 vec->active = 1; 786 vec->pending = 0; 787 788 write_v7m_exception(env, s->vectpending); 789 790 nvic_irq_update(s); 791 } 792 793 void armv7m_nvic_get_pending_irq_info(void *opaque, 794 int *pirq, bool *ptargets_secure) 795 { 796 NVICState *s = (NVICState *)opaque; 797 const int pending = s->vectpending; 798 bool targets_secure; 799 800 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 801 802 if (s->vectpending_is_s_banked) { 803 targets_secure = true; 804 } else { 805 targets_secure = !exc_is_banked(pending) && 806 exc_targets_secure(s, pending); 807 } 808 809 trace_nvic_get_pending_irq_info(pending, targets_secure); 810 811 *ptargets_secure = targets_secure; 812 *pirq = pending; 813 } 814 815 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 816 { 817 NVICState *s = (NVICState *)opaque; 818 VecInfo *vec = NULL; 819 int ret; 820 821 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 822 823 /* 824 * For negative priorities, v8M will forcibly deactivate the appropriate 825 * NMI or HardFault regardless of what interrupt we're being asked to 826 * deactivate (compare the DeActivate() pseudocode). This is a guard 827 * against software returning from NMI or HardFault with a corrupted 828 * IPSR and leaving the CPU in a negative-priority state. 829 * v7M does not do this, but simply deactivates the requested interrupt. 830 */ 831 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 832 switch (armv7m_nvic_raw_execution_priority(s)) { 833 case -1: 834 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 835 vec = &s->vectors[ARMV7M_EXCP_HARD]; 836 } else { 837 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 838 } 839 break; 840 case -2: 841 vec = &s->vectors[ARMV7M_EXCP_NMI]; 842 break; 843 case -3: 844 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 845 break; 846 default: 847 break; 848 } 849 } 850 851 if (!vec) { 852 if (secure && exc_is_banked(irq)) { 853 vec = &s->sec_vectors[irq]; 854 } else { 855 vec = &s->vectors[irq]; 856 } 857 } 858 859 trace_nvic_complete_irq(irq, secure); 860 861 if (!vec->active) { 862 /* Tell the caller this was an illegal exception return */ 863 return -1; 864 } 865 866 /* 867 * If this is a configurable exception and it is currently 868 * targeting the opposite security state from the one we're trying 869 * to complete it for, this counts as an illegal exception return. 870 * We still need to deactivate whatever vector the logic above has 871 * selected, though, as it might not be the same as the one for the 872 * requested exception number. 873 */ 874 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 875 ret = -1; 876 } else { 877 ret = nvic_rettobase(s); 878 } 879 880 vec->active = 0; 881 if (vec->level) { 882 /* Re-pend the exception if it's still held high; only 883 * happens for extenal IRQs 884 */ 885 assert(irq >= NVIC_FIRST_IRQ); 886 vec->pending = 1; 887 } 888 889 nvic_irq_update(s); 890 891 return ret; 892 } 893 894 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 895 { 896 /* 897 * Return whether an exception is "ready", i.e. it is enabled and is 898 * configured at a priority which would allow it to interrupt the 899 * current execution priority. 900 * 901 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 902 * for non-banked exceptions secure is always false; for banked exceptions 903 * it indicates which of the exceptions is required. 904 */ 905 NVICState *s = (NVICState *)opaque; 906 bool banked = exc_is_banked(irq); 907 VecInfo *vec; 908 int running = nvic_exec_prio(s); 909 910 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 911 assert(!secure || banked); 912 913 /* 914 * HardFault is an odd special case: we always check against -1, 915 * even if we're secure and HardFault has priority -3; we never 916 * need to check for enabled state. 917 */ 918 if (irq == ARMV7M_EXCP_HARD) { 919 return running > -1; 920 } 921 922 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 923 924 return vec->enabled && 925 exc_group_prio(s, vec->prio, secure) < running; 926 } 927 928 /* callback when external interrupt line is changed */ 929 static void set_irq_level(void *opaque, int n, int level) 930 { 931 NVICState *s = opaque; 932 VecInfo *vec; 933 934 n += NVIC_FIRST_IRQ; 935 936 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 937 938 trace_nvic_set_irq_level(n, level); 939 940 /* The pending status of an external interrupt is 941 * latched on rising edge and exception handler return. 942 * 943 * Pulsing the IRQ will always run the handler 944 * once, and the handler will re-run until the 945 * level is low when the handler completes. 946 */ 947 vec = &s->vectors[n]; 948 if (level != vec->level) { 949 vec->level = level; 950 if (level) { 951 armv7m_nvic_set_pending(s, n, false); 952 } 953 } 954 } 955 956 /* callback when external NMI line is changed */ 957 static void nvic_nmi_trigger(void *opaque, int n, int level) 958 { 959 NVICState *s = opaque; 960 961 trace_nvic_set_nmi_level(level); 962 963 /* 964 * The architecture doesn't specify whether NMI should share 965 * the normal-interrupt behaviour of being resampled on 966 * exception handler return. We choose not to, so just 967 * set NMI pending here and don't track the current level. 968 */ 969 if (level) { 970 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 971 } 972 } 973 974 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 975 { 976 ARMCPU *cpu = s->cpu; 977 uint32_t val; 978 979 switch (offset) { 980 case 4: /* Interrupt Control Type. */ 981 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 982 goto bad_offset; 983 } 984 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 985 case 0xc: /* CPPWR */ 986 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 987 goto bad_offset; 988 } 989 /* We make the IMPDEF choice that nothing can ever go into a 990 * non-retentive power state, which allows us to RAZ/WI this. 991 */ 992 return 0; 993 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 994 { 995 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 996 int i; 997 998 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 999 goto bad_offset; 1000 } 1001 if (!attrs.secure) { 1002 return 0; 1003 } 1004 val = 0; 1005 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1006 if (s->itns[startvec + i]) { 1007 val |= (1 << i); 1008 } 1009 } 1010 return val; 1011 } 1012 case 0xd00: /* CPUID Base. */ 1013 return cpu->midr; 1014 case 0xd04: /* Interrupt Control State (ICSR) */ 1015 /* VECTACTIVE */ 1016 val = cpu->env.v7m.exception; 1017 /* VECTPENDING */ 1018 val |= (s->vectpending & 0xff) << 12; 1019 /* ISRPENDING - set if any external IRQ is pending */ 1020 if (nvic_isrpending(s)) { 1021 val |= (1 << 22); 1022 } 1023 /* RETTOBASE - set if only one handler is active */ 1024 if (nvic_rettobase(s)) { 1025 val |= (1 << 11); 1026 } 1027 if (attrs.secure) { 1028 /* PENDSTSET */ 1029 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1030 val |= (1 << 26); 1031 } 1032 /* PENDSVSET */ 1033 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1034 val |= (1 << 28); 1035 } 1036 } else { 1037 /* PENDSTSET */ 1038 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1039 val |= (1 << 26); 1040 } 1041 /* PENDSVSET */ 1042 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1043 val |= (1 << 28); 1044 } 1045 } 1046 /* NMIPENDSET */ 1047 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1048 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1049 val |= (1 << 31); 1050 } 1051 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1052 /* STTNS: RES0 for the Main Extension */ 1053 return val; 1054 case 0xd08: /* Vector Table Offset. */ 1055 return cpu->env.v7m.vecbase[attrs.secure]; 1056 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1057 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1058 if (attrs.secure) { 1059 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1060 val |= cpu->env.v7m.aircr; 1061 } else { 1062 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1063 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1064 * security isn't supported then BFHFNMINS is RAO (and 1065 * the bit in env.v7m.aircr is always set). 1066 */ 1067 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1068 } 1069 } 1070 return val; 1071 case 0xd10: /* System Control. */ 1072 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1073 goto bad_offset; 1074 } 1075 return cpu->env.v7m.scr[attrs.secure]; 1076 case 0xd14: /* Configuration Control. */ 1077 /* The BFHFNMIGN bit is the only non-banked bit; we 1078 * keep it in the non-secure copy of the register. 1079 */ 1080 val = cpu->env.v7m.ccr[attrs.secure]; 1081 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1082 return val; 1083 case 0xd24: /* System Handler Control and State (SHCSR) */ 1084 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1085 goto bad_offset; 1086 } 1087 val = 0; 1088 if (attrs.secure) { 1089 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1090 val |= (1 << 0); 1091 } 1092 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1093 val |= (1 << 2); 1094 } 1095 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1096 val |= (1 << 3); 1097 } 1098 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1099 val |= (1 << 7); 1100 } 1101 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1102 val |= (1 << 10); 1103 } 1104 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1105 val |= (1 << 11); 1106 } 1107 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1108 val |= (1 << 12); 1109 } 1110 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1111 val |= (1 << 13); 1112 } 1113 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1114 val |= (1 << 15); 1115 } 1116 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1117 val |= (1 << 16); 1118 } 1119 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1120 val |= (1 << 18); 1121 } 1122 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1123 val |= (1 << 21); 1124 } 1125 /* SecureFault is not banked but is always RAZ/WI to NS */ 1126 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1127 val |= (1 << 4); 1128 } 1129 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1130 val |= (1 << 19); 1131 } 1132 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1133 val |= (1 << 20); 1134 } 1135 } else { 1136 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1137 val |= (1 << 0); 1138 } 1139 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1140 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1141 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1142 val |= (1 << 2); 1143 } 1144 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1145 val |= (1 << 21); 1146 } 1147 } 1148 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1149 val |= (1 << 3); 1150 } 1151 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1152 val |= (1 << 7); 1153 } 1154 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1155 val |= (1 << 10); 1156 } 1157 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1158 val |= (1 << 11); 1159 } 1160 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1161 val |= (1 << 12); 1162 } 1163 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1164 val |= (1 << 13); 1165 } 1166 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1167 val |= (1 << 15); 1168 } 1169 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1170 val |= (1 << 16); 1171 } 1172 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1173 val |= (1 << 18); 1174 } 1175 } 1176 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1177 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1178 val |= (1 << 1); 1179 } 1180 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1181 val |= (1 << 14); 1182 } 1183 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1184 val |= (1 << 17); 1185 } 1186 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1187 s->vectors[ARMV7M_EXCP_NMI].active) { 1188 /* NMIACT is not present in v7M */ 1189 val |= (1 << 5); 1190 } 1191 } 1192 1193 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1194 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1195 val |= (1 << 8); 1196 } 1197 return val; 1198 case 0xd2c: /* Hard Fault Status. */ 1199 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1200 goto bad_offset; 1201 } 1202 return cpu->env.v7m.hfsr; 1203 case 0xd30: /* Debug Fault Status. */ 1204 return cpu->env.v7m.dfsr; 1205 case 0xd34: /* MMFAR MemManage Fault Address */ 1206 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1207 goto bad_offset; 1208 } 1209 return cpu->env.v7m.mmfar[attrs.secure]; 1210 case 0xd38: /* Bus Fault Address. */ 1211 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1212 goto bad_offset; 1213 } 1214 if (!attrs.secure && 1215 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1216 return 0; 1217 } 1218 return cpu->env.v7m.bfar; 1219 case 0xd3c: /* Aux Fault Status. */ 1220 /* TODO: Implement fault status registers. */ 1221 qemu_log_mask(LOG_UNIMP, 1222 "Aux Fault status registers unimplemented\n"); 1223 return 0; 1224 case 0xd40: /* PFR0. */ 1225 return cpu->id_pfr0; 1226 case 0xd44: /* PFR1. */ 1227 return cpu->id_pfr1; 1228 case 0xd48: /* DFR0. */ 1229 return cpu->id_dfr0; 1230 case 0xd4c: /* AFR0. */ 1231 return cpu->id_afr0; 1232 case 0xd50: /* MMFR0. */ 1233 return cpu->id_mmfr0; 1234 case 0xd54: /* MMFR1. */ 1235 return cpu->id_mmfr1; 1236 case 0xd58: /* MMFR2. */ 1237 return cpu->id_mmfr2; 1238 case 0xd5c: /* MMFR3. */ 1239 return cpu->id_mmfr3; 1240 case 0xd60: /* ISAR0. */ 1241 return cpu->isar.id_isar0; 1242 case 0xd64: /* ISAR1. */ 1243 return cpu->isar.id_isar1; 1244 case 0xd68: /* ISAR2. */ 1245 return cpu->isar.id_isar2; 1246 case 0xd6c: /* ISAR3. */ 1247 return cpu->isar.id_isar3; 1248 case 0xd70: /* ISAR4. */ 1249 return cpu->isar.id_isar4; 1250 case 0xd74: /* ISAR5. */ 1251 return cpu->isar.id_isar5; 1252 case 0xd78: /* CLIDR */ 1253 return cpu->clidr; 1254 case 0xd7c: /* CTR */ 1255 return cpu->ctr; 1256 case 0xd80: /* CSSIDR */ 1257 { 1258 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1259 return cpu->ccsidr[idx]; 1260 } 1261 case 0xd84: /* CSSELR */ 1262 return cpu->env.v7m.csselr[attrs.secure]; 1263 case 0xd88: /* CPACR */ 1264 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1265 return 0; 1266 } 1267 return cpu->env.v7m.cpacr[attrs.secure]; 1268 case 0xd8c: /* NSACR */ 1269 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1270 return 0; 1271 } 1272 return cpu->env.v7m.nsacr; 1273 /* TODO: Implement debug registers. */ 1274 case 0xd90: /* MPU_TYPE */ 1275 /* Unified MPU; if the MPU is not present this value is zero */ 1276 return cpu->pmsav7_dregion << 8; 1277 break; 1278 case 0xd94: /* MPU_CTRL */ 1279 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1280 case 0xd98: /* MPU_RNR */ 1281 return cpu->env.pmsav7.rnr[attrs.secure]; 1282 case 0xd9c: /* MPU_RBAR */ 1283 case 0xda4: /* MPU_RBAR_A1 */ 1284 case 0xdac: /* MPU_RBAR_A2 */ 1285 case 0xdb4: /* MPU_RBAR_A3 */ 1286 { 1287 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1288 1289 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1290 /* PMSAv8M handling of the aliases is different from v7M: 1291 * aliases A1, A2, A3 override the low two bits of the region 1292 * number in MPU_RNR, and there is no 'region' field in the 1293 * RBAR register. 1294 */ 1295 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1296 if (aliasno) { 1297 region = deposit32(region, 0, 2, aliasno); 1298 } 1299 if (region >= cpu->pmsav7_dregion) { 1300 return 0; 1301 } 1302 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1303 } 1304 1305 if (region >= cpu->pmsav7_dregion) { 1306 return 0; 1307 } 1308 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1309 } 1310 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1311 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1312 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1313 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1314 { 1315 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1316 1317 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1318 /* PMSAv8M handling of the aliases is different from v7M: 1319 * aliases A1, A2, A3 override the low two bits of the region 1320 * number in MPU_RNR. 1321 */ 1322 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1323 if (aliasno) { 1324 region = deposit32(region, 0, 2, aliasno); 1325 } 1326 if (region >= cpu->pmsav7_dregion) { 1327 return 0; 1328 } 1329 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1330 } 1331 1332 if (region >= cpu->pmsav7_dregion) { 1333 return 0; 1334 } 1335 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1336 (cpu->env.pmsav7.drsr[region] & 0xffff); 1337 } 1338 case 0xdc0: /* MPU_MAIR0 */ 1339 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1340 goto bad_offset; 1341 } 1342 return cpu->env.pmsav8.mair0[attrs.secure]; 1343 case 0xdc4: /* MPU_MAIR1 */ 1344 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1345 goto bad_offset; 1346 } 1347 return cpu->env.pmsav8.mair1[attrs.secure]; 1348 case 0xdd0: /* SAU_CTRL */ 1349 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1350 goto bad_offset; 1351 } 1352 if (!attrs.secure) { 1353 return 0; 1354 } 1355 return cpu->env.sau.ctrl; 1356 case 0xdd4: /* SAU_TYPE */ 1357 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1358 goto bad_offset; 1359 } 1360 if (!attrs.secure) { 1361 return 0; 1362 } 1363 return cpu->sau_sregion; 1364 case 0xdd8: /* SAU_RNR */ 1365 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1366 goto bad_offset; 1367 } 1368 if (!attrs.secure) { 1369 return 0; 1370 } 1371 return cpu->env.sau.rnr; 1372 case 0xddc: /* SAU_RBAR */ 1373 { 1374 int region = cpu->env.sau.rnr; 1375 1376 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1377 goto bad_offset; 1378 } 1379 if (!attrs.secure) { 1380 return 0; 1381 } 1382 if (region >= cpu->sau_sregion) { 1383 return 0; 1384 } 1385 return cpu->env.sau.rbar[region]; 1386 } 1387 case 0xde0: /* SAU_RLAR */ 1388 { 1389 int region = cpu->env.sau.rnr; 1390 1391 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1392 goto bad_offset; 1393 } 1394 if (!attrs.secure) { 1395 return 0; 1396 } 1397 if (region >= cpu->sau_sregion) { 1398 return 0; 1399 } 1400 return cpu->env.sau.rlar[region]; 1401 } 1402 case 0xde4: /* SFSR */ 1403 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1404 goto bad_offset; 1405 } 1406 if (!attrs.secure) { 1407 return 0; 1408 } 1409 return cpu->env.v7m.sfsr; 1410 case 0xde8: /* SFAR */ 1411 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1412 goto bad_offset; 1413 } 1414 if (!attrs.secure) { 1415 return 0; 1416 } 1417 return cpu->env.v7m.sfar; 1418 case 0xf34: /* FPCCR */ 1419 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1420 return 0; 1421 } 1422 if (attrs.secure) { 1423 return cpu->env.v7m.fpccr[M_REG_S]; 1424 } else { 1425 /* 1426 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1427 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1428 * other non-banked bits RAZ. 1429 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1430 */ 1431 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1432 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1433 R_V7M_FPCCR_CLRONRET_MASK | 1434 R_V7M_FPCCR_MONRDY_MASK; 1435 1436 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1437 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1438 } 1439 1440 value &= mask; 1441 1442 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1443 return value; 1444 } 1445 case 0xf38: /* FPCAR */ 1446 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1447 return 0; 1448 } 1449 return cpu->env.v7m.fpcar[attrs.secure]; 1450 case 0xf3c: /* FPDSCR */ 1451 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1452 return 0; 1453 } 1454 return cpu->env.v7m.fpdscr[attrs.secure]; 1455 case 0xf40: /* MVFR0 */ 1456 return cpu->isar.mvfr0; 1457 case 0xf44: /* MVFR1 */ 1458 return cpu->isar.mvfr1; 1459 case 0xf48: /* MVFR2 */ 1460 return cpu->isar.mvfr2; 1461 default: 1462 bad_offset: 1463 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1464 return 0; 1465 } 1466 } 1467 1468 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1469 MemTxAttrs attrs) 1470 { 1471 ARMCPU *cpu = s->cpu; 1472 1473 switch (offset) { 1474 case 0xc: /* CPPWR */ 1475 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1476 goto bad_offset; 1477 } 1478 /* Make the IMPDEF choice to RAZ/WI this. */ 1479 break; 1480 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1481 { 1482 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1483 int i; 1484 1485 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1486 goto bad_offset; 1487 } 1488 if (!attrs.secure) { 1489 break; 1490 } 1491 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1492 s->itns[startvec + i] = (value >> i) & 1; 1493 } 1494 nvic_irq_update(s); 1495 break; 1496 } 1497 case 0xd04: /* Interrupt Control State (ICSR) */ 1498 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1499 if (value & (1 << 31)) { 1500 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1501 } else if (value & (1 << 30) && 1502 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1503 /* PENDNMICLR didn't exist in v7M */ 1504 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1505 } 1506 } 1507 if (value & (1 << 28)) { 1508 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1509 } else if (value & (1 << 27)) { 1510 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1511 } 1512 if (value & (1 << 26)) { 1513 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1514 } else if (value & (1 << 25)) { 1515 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1516 } 1517 break; 1518 case 0xd08: /* Vector Table Offset. */ 1519 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1520 break; 1521 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1522 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1523 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1524 if (attrs.secure || 1525 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1526 qemu_irq_pulse(s->sysresetreq); 1527 } 1528 } 1529 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1530 qemu_log_mask(LOG_GUEST_ERROR, 1531 "Setting VECTCLRACTIVE when not in DEBUG mode " 1532 "is UNPREDICTABLE\n"); 1533 } 1534 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1535 /* NB: this bit is RES0 in v8M */ 1536 qemu_log_mask(LOG_GUEST_ERROR, 1537 "Setting VECTRESET when not in DEBUG mode " 1538 "is UNPREDICTABLE\n"); 1539 } 1540 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1541 s->prigroup[attrs.secure] = 1542 extract32(value, 1543 R_V7M_AIRCR_PRIGROUP_SHIFT, 1544 R_V7M_AIRCR_PRIGROUP_LENGTH); 1545 } 1546 if (attrs.secure) { 1547 /* These bits are only writable by secure */ 1548 cpu->env.v7m.aircr = value & 1549 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1550 R_V7M_AIRCR_BFHFNMINS_MASK | 1551 R_V7M_AIRCR_PRIS_MASK); 1552 /* BFHFNMINS changes the priority of Secure HardFault, and 1553 * allows a pending Non-secure HardFault to preempt (which 1554 * we implement by marking it enabled). 1555 */ 1556 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1557 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1558 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1559 } else { 1560 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1561 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1562 } 1563 } 1564 nvic_irq_update(s); 1565 } 1566 break; 1567 case 0xd10: /* System Control. */ 1568 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1569 goto bad_offset; 1570 } 1571 /* We don't implement deep-sleep so these bits are RAZ/WI. 1572 * The other bits in the register are banked. 1573 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1574 * is architecturally permitted. 1575 */ 1576 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1577 cpu->env.v7m.scr[attrs.secure] = value; 1578 break; 1579 case 0xd14: /* Configuration Control. */ 1580 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1581 goto bad_offset; 1582 } 1583 1584 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1585 value &= (R_V7M_CCR_STKALIGN_MASK | 1586 R_V7M_CCR_BFHFNMIGN_MASK | 1587 R_V7M_CCR_DIV_0_TRP_MASK | 1588 R_V7M_CCR_UNALIGN_TRP_MASK | 1589 R_V7M_CCR_USERSETMPEND_MASK | 1590 R_V7M_CCR_NONBASETHRDENA_MASK); 1591 1592 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1593 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1594 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1595 | R_V7M_CCR_STKALIGN_MASK; 1596 } 1597 if (attrs.secure) { 1598 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1599 cpu->env.v7m.ccr[M_REG_NS] = 1600 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1601 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1602 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1603 } 1604 1605 cpu->env.v7m.ccr[attrs.secure] = value; 1606 break; 1607 case 0xd24: /* System Handler Control and State (SHCSR) */ 1608 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1609 goto bad_offset; 1610 } 1611 if (attrs.secure) { 1612 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1613 /* Secure HardFault active bit cannot be written */ 1614 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1615 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1616 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1617 (value & (1 << 10)) != 0; 1618 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1619 (value & (1 << 11)) != 0; 1620 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1621 (value & (1 << 12)) != 0; 1622 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1623 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1624 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1625 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1626 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1627 (value & (1 << 18)) != 0; 1628 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1629 /* SecureFault not banked, but RAZ/WI to NS */ 1630 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1631 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1632 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1633 } else { 1634 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1635 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1636 /* HARDFAULTPENDED is not present in v7M */ 1637 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1638 } 1639 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1640 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1641 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1642 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1643 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1644 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1645 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1646 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1647 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1648 } 1649 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1650 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1651 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1652 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1653 } 1654 /* NMIACT can only be written if the write is of a zero, with 1655 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1656 */ 1657 if (!attrs.secure && cpu->env.v7m.secure && 1658 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1659 (value & (1 << 5)) == 0) { 1660 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1661 } 1662 /* HARDFAULTACT can only be written if the write is of a zero 1663 * to the non-secure HardFault state by the CPU in secure state. 1664 * The only case where we can be targeting the non-secure HF state 1665 * when in secure state is if this is a write via the NS alias 1666 * and BFHFNMINS is 1. 1667 */ 1668 if (!attrs.secure && cpu->env.v7m.secure && 1669 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1670 (value & (1 << 2)) == 0) { 1671 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1672 } 1673 1674 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1675 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1676 nvic_irq_update(s); 1677 break; 1678 case 0xd2c: /* Hard Fault Status. */ 1679 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1680 goto bad_offset; 1681 } 1682 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1683 break; 1684 case 0xd30: /* Debug Fault Status. */ 1685 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1686 break; 1687 case 0xd34: /* Mem Manage Address. */ 1688 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1689 goto bad_offset; 1690 } 1691 cpu->env.v7m.mmfar[attrs.secure] = value; 1692 return; 1693 case 0xd38: /* Bus Fault Address. */ 1694 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1695 goto bad_offset; 1696 } 1697 if (!attrs.secure && 1698 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1699 return; 1700 } 1701 cpu->env.v7m.bfar = value; 1702 return; 1703 case 0xd3c: /* Aux Fault Status. */ 1704 qemu_log_mask(LOG_UNIMP, 1705 "NVIC: Aux fault status registers unimplemented\n"); 1706 break; 1707 case 0xd84: /* CSSELR */ 1708 if (!arm_v7m_csselr_razwi(cpu)) { 1709 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1710 } 1711 break; 1712 case 0xd88: /* CPACR */ 1713 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1714 /* We implement only the Floating Point extension's CP10/CP11 */ 1715 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1716 } 1717 break; 1718 case 0xd8c: /* NSACR */ 1719 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1720 /* We implement only the Floating Point extension's CP10/CP11 */ 1721 cpu->env.v7m.nsacr = value & (3 << 10); 1722 } 1723 break; 1724 case 0xd90: /* MPU_TYPE */ 1725 return; /* RO */ 1726 case 0xd94: /* MPU_CTRL */ 1727 if ((value & 1728 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1729 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1730 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1731 "UNPREDICTABLE\n"); 1732 } 1733 cpu->env.v7m.mpu_ctrl[attrs.secure] 1734 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1735 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1736 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1737 tlb_flush(CPU(cpu)); 1738 break; 1739 case 0xd98: /* MPU_RNR */ 1740 if (value >= cpu->pmsav7_dregion) { 1741 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1742 PRIu32 "/%" PRIu32 "\n", 1743 value, cpu->pmsav7_dregion); 1744 } else { 1745 cpu->env.pmsav7.rnr[attrs.secure] = value; 1746 } 1747 break; 1748 case 0xd9c: /* MPU_RBAR */ 1749 case 0xda4: /* MPU_RBAR_A1 */ 1750 case 0xdac: /* MPU_RBAR_A2 */ 1751 case 0xdb4: /* MPU_RBAR_A3 */ 1752 { 1753 int region; 1754 1755 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1756 /* PMSAv8M handling of the aliases is different from v7M: 1757 * aliases A1, A2, A3 override the low two bits of the region 1758 * number in MPU_RNR, and there is no 'region' field in the 1759 * RBAR register. 1760 */ 1761 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1762 1763 region = cpu->env.pmsav7.rnr[attrs.secure]; 1764 if (aliasno) { 1765 region = deposit32(region, 0, 2, aliasno); 1766 } 1767 if (region >= cpu->pmsav7_dregion) { 1768 return; 1769 } 1770 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1771 tlb_flush(CPU(cpu)); 1772 return; 1773 } 1774 1775 if (value & (1 << 4)) { 1776 /* VALID bit means use the region number specified in this 1777 * value and also update MPU_RNR.REGION with that value. 1778 */ 1779 region = extract32(value, 0, 4); 1780 if (region >= cpu->pmsav7_dregion) { 1781 qemu_log_mask(LOG_GUEST_ERROR, 1782 "MPU region out of range %u/%" PRIu32 "\n", 1783 region, cpu->pmsav7_dregion); 1784 return; 1785 } 1786 cpu->env.pmsav7.rnr[attrs.secure] = region; 1787 } else { 1788 region = cpu->env.pmsav7.rnr[attrs.secure]; 1789 } 1790 1791 if (region >= cpu->pmsav7_dregion) { 1792 return; 1793 } 1794 1795 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1796 tlb_flush(CPU(cpu)); 1797 break; 1798 } 1799 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1800 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1801 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1802 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1803 { 1804 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1805 1806 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1807 /* PMSAv8M handling of the aliases is different from v7M: 1808 * aliases A1, A2, A3 override the low two bits of the region 1809 * number in MPU_RNR. 1810 */ 1811 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1812 1813 region = cpu->env.pmsav7.rnr[attrs.secure]; 1814 if (aliasno) { 1815 region = deposit32(region, 0, 2, aliasno); 1816 } 1817 if (region >= cpu->pmsav7_dregion) { 1818 return; 1819 } 1820 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1821 tlb_flush(CPU(cpu)); 1822 return; 1823 } 1824 1825 if (region >= cpu->pmsav7_dregion) { 1826 return; 1827 } 1828 1829 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1830 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1831 tlb_flush(CPU(cpu)); 1832 break; 1833 } 1834 case 0xdc0: /* MPU_MAIR0 */ 1835 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1836 goto bad_offset; 1837 } 1838 if (cpu->pmsav7_dregion) { 1839 /* Register is RES0 if no MPU regions are implemented */ 1840 cpu->env.pmsav8.mair0[attrs.secure] = value; 1841 } 1842 /* We don't need to do anything else because memory attributes 1843 * only affect cacheability, and we don't implement caching. 1844 */ 1845 break; 1846 case 0xdc4: /* MPU_MAIR1 */ 1847 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1848 goto bad_offset; 1849 } 1850 if (cpu->pmsav7_dregion) { 1851 /* Register is RES0 if no MPU regions are implemented */ 1852 cpu->env.pmsav8.mair1[attrs.secure] = value; 1853 } 1854 /* We don't need to do anything else because memory attributes 1855 * only affect cacheability, and we don't implement caching. 1856 */ 1857 break; 1858 case 0xdd0: /* SAU_CTRL */ 1859 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1860 goto bad_offset; 1861 } 1862 if (!attrs.secure) { 1863 return; 1864 } 1865 cpu->env.sau.ctrl = value & 3; 1866 break; 1867 case 0xdd4: /* SAU_TYPE */ 1868 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1869 goto bad_offset; 1870 } 1871 break; 1872 case 0xdd8: /* SAU_RNR */ 1873 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1874 goto bad_offset; 1875 } 1876 if (!attrs.secure) { 1877 return; 1878 } 1879 if (value >= cpu->sau_sregion) { 1880 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1881 PRIu32 "/%" PRIu32 "\n", 1882 value, cpu->sau_sregion); 1883 } else { 1884 cpu->env.sau.rnr = value; 1885 } 1886 break; 1887 case 0xddc: /* SAU_RBAR */ 1888 { 1889 int region = cpu->env.sau.rnr; 1890 1891 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1892 goto bad_offset; 1893 } 1894 if (!attrs.secure) { 1895 return; 1896 } 1897 if (region >= cpu->sau_sregion) { 1898 return; 1899 } 1900 cpu->env.sau.rbar[region] = value & ~0x1f; 1901 tlb_flush(CPU(cpu)); 1902 break; 1903 } 1904 case 0xde0: /* SAU_RLAR */ 1905 { 1906 int region = cpu->env.sau.rnr; 1907 1908 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1909 goto bad_offset; 1910 } 1911 if (!attrs.secure) { 1912 return; 1913 } 1914 if (region >= cpu->sau_sregion) { 1915 return; 1916 } 1917 cpu->env.sau.rlar[region] = value & ~0x1c; 1918 tlb_flush(CPU(cpu)); 1919 break; 1920 } 1921 case 0xde4: /* SFSR */ 1922 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1923 goto bad_offset; 1924 } 1925 if (!attrs.secure) { 1926 return; 1927 } 1928 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1929 break; 1930 case 0xde8: /* SFAR */ 1931 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1932 goto bad_offset; 1933 } 1934 if (!attrs.secure) { 1935 return; 1936 } 1937 cpu->env.v7m.sfsr = value; 1938 break; 1939 case 0xf00: /* Software Triggered Interrupt Register */ 1940 { 1941 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1942 1943 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1944 goto bad_offset; 1945 } 1946 1947 if (excnum < s->num_irq) { 1948 armv7m_nvic_set_pending(s, excnum, false); 1949 } 1950 break; 1951 } 1952 case 0xf34: /* FPCCR */ 1953 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1954 /* Not all bits here are banked. */ 1955 uint32_t fpccr_s; 1956 1957 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1958 /* Don't allow setting of bits not present in v7M */ 1959 value &= (R_V7M_FPCCR_LSPACT_MASK | 1960 R_V7M_FPCCR_USER_MASK | 1961 R_V7M_FPCCR_THREAD_MASK | 1962 R_V7M_FPCCR_HFRDY_MASK | 1963 R_V7M_FPCCR_MMRDY_MASK | 1964 R_V7M_FPCCR_BFRDY_MASK | 1965 R_V7M_FPCCR_MONRDY_MASK | 1966 R_V7M_FPCCR_LSPEN_MASK | 1967 R_V7M_FPCCR_ASPEN_MASK); 1968 } 1969 value &= ~R_V7M_FPCCR_RES0_MASK; 1970 1971 if (!attrs.secure) { 1972 /* Some non-banked bits are configurably writable by NS */ 1973 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 1974 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 1975 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 1976 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 1977 } 1978 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 1979 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 1980 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 1981 } 1982 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1983 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 1984 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 1985 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 1986 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 1987 } 1988 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 1989 { 1990 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 1991 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 1992 } 1993 1994 /* 1995 * All other non-banked bits are RAZ/WI from NS; write 1996 * just the banked bits to fpccr[M_REG_NS]. 1997 */ 1998 value &= R_V7M_FPCCR_BANKED_MASK; 1999 cpu->env.v7m.fpccr[M_REG_NS] = value; 2000 } else { 2001 fpccr_s = value; 2002 } 2003 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2004 } 2005 break; 2006 case 0xf38: /* FPCAR */ 2007 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 2008 value &= ~7; 2009 cpu->env.v7m.fpcar[attrs.secure] = value; 2010 } 2011 break; 2012 case 0xf3c: /* FPDSCR */ 2013 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 2014 value &= 0x07c00000; 2015 cpu->env.v7m.fpdscr[attrs.secure] = value; 2016 } 2017 break; 2018 case 0xf50: /* ICIALLU */ 2019 case 0xf58: /* ICIMVAU */ 2020 case 0xf5c: /* DCIMVAC */ 2021 case 0xf60: /* DCISW */ 2022 case 0xf64: /* DCCMVAU */ 2023 case 0xf68: /* DCCMVAC */ 2024 case 0xf6c: /* DCCSW */ 2025 case 0xf70: /* DCCIMVAC */ 2026 case 0xf74: /* DCCISW */ 2027 case 0xf78: /* BPIALL */ 2028 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2029 break; 2030 default: 2031 bad_offset: 2032 qemu_log_mask(LOG_GUEST_ERROR, 2033 "NVIC: Bad write offset 0x%x\n", offset); 2034 } 2035 } 2036 2037 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2038 { 2039 /* Return true if unprivileged access to this register is permitted. */ 2040 switch (offset) { 2041 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2042 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2043 * controls access even though the CPU is in Secure state (I_QDKX). 2044 */ 2045 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2046 default: 2047 /* All other user accesses cause a BusFault unconditionally */ 2048 return false; 2049 } 2050 } 2051 2052 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2053 { 2054 /* Behaviour for the SHPR register field for this exception: 2055 * return M_REG_NS to use the nonsecure vector (including for 2056 * non-banked exceptions), M_REG_S for the secure version of 2057 * a banked exception, and -1 if this field should RAZ/WI. 2058 */ 2059 switch (exc) { 2060 case ARMV7M_EXCP_MEM: 2061 case ARMV7M_EXCP_USAGE: 2062 case ARMV7M_EXCP_SVC: 2063 case ARMV7M_EXCP_PENDSV: 2064 case ARMV7M_EXCP_SYSTICK: 2065 /* Banked exceptions */ 2066 return attrs.secure; 2067 case ARMV7M_EXCP_BUS: 2068 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2069 if (!attrs.secure && 2070 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2071 return -1; 2072 } 2073 return M_REG_NS; 2074 case ARMV7M_EXCP_SECURE: 2075 /* Not banked, RAZ/WI from nonsecure */ 2076 if (!attrs.secure) { 2077 return -1; 2078 } 2079 return M_REG_NS; 2080 case ARMV7M_EXCP_DEBUG: 2081 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2082 return M_REG_NS; 2083 case 8 ... 10: 2084 case 13: 2085 /* RES0 */ 2086 return -1; 2087 default: 2088 /* Not reachable due to decode of SHPR register addresses */ 2089 g_assert_not_reached(); 2090 } 2091 } 2092 2093 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2094 uint64_t *data, unsigned size, 2095 MemTxAttrs attrs) 2096 { 2097 NVICState *s = (NVICState *)opaque; 2098 uint32_t offset = addr; 2099 unsigned i, startvec, end; 2100 uint32_t val; 2101 2102 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2103 /* Generate BusFault for unprivileged accesses */ 2104 return MEMTX_ERROR; 2105 } 2106 2107 switch (offset) { 2108 /* reads of set and clear both return the status */ 2109 case 0x100 ... 0x13f: /* NVIC Set enable */ 2110 offset += 0x80; 2111 /* fall through */ 2112 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2113 val = 0; 2114 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2115 2116 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2117 if (s->vectors[startvec + i].enabled && 2118 (attrs.secure || s->itns[startvec + i])) { 2119 val |= (1 << i); 2120 } 2121 } 2122 break; 2123 case 0x200 ... 0x23f: /* NVIC Set pend */ 2124 offset += 0x80; 2125 /* fall through */ 2126 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2127 val = 0; 2128 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2129 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2130 if (s->vectors[startvec + i].pending && 2131 (attrs.secure || s->itns[startvec + i])) { 2132 val |= (1 << i); 2133 } 2134 } 2135 break; 2136 case 0x300 ... 0x33f: /* NVIC Active */ 2137 val = 0; 2138 2139 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2140 break; 2141 } 2142 2143 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2144 2145 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2146 if (s->vectors[startvec + i].active && 2147 (attrs.secure || s->itns[startvec + i])) { 2148 val |= (1 << i); 2149 } 2150 } 2151 break; 2152 case 0x400 ... 0x5ef: /* NVIC Priority */ 2153 val = 0; 2154 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2155 2156 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2157 if (attrs.secure || s->itns[startvec + i]) { 2158 val |= s->vectors[startvec + i].prio << (8 * i); 2159 } 2160 } 2161 break; 2162 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2163 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2164 val = 0; 2165 break; 2166 } 2167 /* fall through */ 2168 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2169 val = 0; 2170 for (i = 0; i < size; i++) { 2171 unsigned hdlidx = (offset - 0xd14) + i; 2172 int sbank = shpr_bank(s, hdlidx, attrs); 2173 2174 if (sbank < 0) { 2175 continue; 2176 } 2177 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2178 } 2179 break; 2180 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2181 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2182 val = 0; 2183 break; 2184 }; 2185 /* 2186 * The BFSR bits [15:8] are shared between security states 2187 * and we store them in the NS copy. They are RAZ/WI for 2188 * NS code if AIRCR.BFHFNMINS is 0. 2189 */ 2190 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2191 if (!attrs.secure && 2192 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2193 val &= ~R_V7M_CFSR_BFSR_MASK; 2194 } else { 2195 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2196 } 2197 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2198 break; 2199 case 0xfe0 ... 0xfff: /* ID. */ 2200 if (offset & 3) { 2201 val = 0; 2202 } else { 2203 val = nvic_id[(offset - 0xfe0) >> 2]; 2204 } 2205 break; 2206 default: 2207 if (size == 4) { 2208 val = nvic_readl(s, offset, attrs); 2209 } else { 2210 qemu_log_mask(LOG_GUEST_ERROR, 2211 "NVIC: Bad read of size %d at offset 0x%x\n", 2212 size, offset); 2213 val = 0; 2214 } 2215 } 2216 2217 trace_nvic_sysreg_read(addr, val, size); 2218 *data = val; 2219 return MEMTX_OK; 2220 } 2221 2222 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2223 uint64_t value, unsigned size, 2224 MemTxAttrs attrs) 2225 { 2226 NVICState *s = (NVICState *)opaque; 2227 uint32_t offset = addr; 2228 unsigned i, startvec, end; 2229 unsigned setval = 0; 2230 2231 trace_nvic_sysreg_write(addr, value, size); 2232 2233 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2234 /* Generate BusFault for unprivileged accesses */ 2235 return MEMTX_ERROR; 2236 } 2237 2238 switch (offset) { 2239 case 0x100 ... 0x13f: /* NVIC Set enable */ 2240 offset += 0x80; 2241 setval = 1; 2242 /* fall through */ 2243 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2244 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2245 2246 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2247 if (value & (1 << i) && 2248 (attrs.secure || s->itns[startvec + i])) { 2249 s->vectors[startvec + i].enabled = setval; 2250 } 2251 } 2252 nvic_irq_update(s); 2253 return MEMTX_OK; 2254 case 0x200 ... 0x23f: /* NVIC Set pend */ 2255 /* the special logic in armv7m_nvic_set_pending() 2256 * is not needed since IRQs are never escalated 2257 */ 2258 offset += 0x80; 2259 setval = 1; 2260 /* fall through */ 2261 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2262 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2263 2264 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2265 if (value & (1 << i) && 2266 (attrs.secure || s->itns[startvec + i])) { 2267 s->vectors[startvec + i].pending = setval; 2268 } 2269 } 2270 nvic_irq_update(s); 2271 return MEMTX_OK; 2272 case 0x300 ... 0x33f: /* NVIC Active */ 2273 return MEMTX_OK; /* R/O */ 2274 case 0x400 ... 0x5ef: /* NVIC Priority */ 2275 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2276 2277 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2278 if (attrs.secure || s->itns[startvec + i]) { 2279 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2280 } 2281 } 2282 nvic_irq_update(s); 2283 return MEMTX_OK; 2284 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2285 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2286 return MEMTX_OK; 2287 } 2288 /* fall through */ 2289 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2290 for (i = 0; i < size; i++) { 2291 unsigned hdlidx = (offset - 0xd14) + i; 2292 int newprio = extract32(value, i * 8, 8); 2293 int sbank = shpr_bank(s, hdlidx, attrs); 2294 2295 if (sbank < 0) { 2296 continue; 2297 } 2298 set_prio(s, hdlidx, sbank, newprio); 2299 } 2300 nvic_irq_update(s); 2301 return MEMTX_OK; 2302 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2303 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2304 return MEMTX_OK; 2305 } 2306 /* All bits are W1C, so construct 32 bit value with 0s in 2307 * the parts not written by the access size 2308 */ 2309 value <<= ((offset - 0xd28) * 8); 2310 2311 if (!attrs.secure && 2312 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2313 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2314 value &= ~R_V7M_CFSR_BFSR_MASK; 2315 } 2316 2317 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2318 if (attrs.secure) { 2319 /* The BFSR bits [15:8] are shared between security states 2320 * and we store them in the NS copy. 2321 */ 2322 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2323 } 2324 return MEMTX_OK; 2325 } 2326 if (size == 4) { 2327 nvic_writel(s, offset, value, attrs); 2328 return MEMTX_OK; 2329 } 2330 qemu_log_mask(LOG_GUEST_ERROR, 2331 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2332 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2333 return MEMTX_OK; 2334 } 2335 2336 static const MemoryRegionOps nvic_sysreg_ops = { 2337 .read_with_attrs = nvic_sysreg_read, 2338 .write_with_attrs = nvic_sysreg_write, 2339 .endianness = DEVICE_NATIVE_ENDIAN, 2340 }; 2341 2342 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2343 uint64_t value, unsigned size, 2344 MemTxAttrs attrs) 2345 { 2346 MemoryRegion *mr = opaque; 2347 2348 if (attrs.secure) { 2349 /* S accesses to the alias act like NS accesses to the real region */ 2350 attrs.secure = 0; 2351 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2352 } else { 2353 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2354 if (attrs.user) { 2355 return MEMTX_ERROR; 2356 } 2357 return MEMTX_OK; 2358 } 2359 } 2360 2361 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2362 uint64_t *data, unsigned size, 2363 MemTxAttrs attrs) 2364 { 2365 MemoryRegion *mr = opaque; 2366 2367 if (attrs.secure) { 2368 /* S accesses to the alias act like NS accesses to the real region */ 2369 attrs.secure = 0; 2370 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2371 } else { 2372 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2373 if (attrs.user) { 2374 return MEMTX_ERROR; 2375 } 2376 *data = 0; 2377 return MEMTX_OK; 2378 } 2379 } 2380 2381 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2382 .read_with_attrs = nvic_sysreg_ns_read, 2383 .write_with_attrs = nvic_sysreg_ns_write, 2384 .endianness = DEVICE_NATIVE_ENDIAN, 2385 }; 2386 2387 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2388 uint64_t value, unsigned size, 2389 MemTxAttrs attrs) 2390 { 2391 NVICState *s = opaque; 2392 MemoryRegion *mr; 2393 2394 /* Direct the access to the correct systick */ 2395 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2396 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2397 } 2398 2399 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2400 uint64_t *data, unsigned size, 2401 MemTxAttrs attrs) 2402 { 2403 NVICState *s = opaque; 2404 MemoryRegion *mr; 2405 2406 /* Direct the access to the correct systick */ 2407 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2408 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2409 } 2410 2411 static const MemoryRegionOps nvic_systick_ops = { 2412 .read_with_attrs = nvic_systick_read, 2413 .write_with_attrs = nvic_systick_write, 2414 .endianness = DEVICE_NATIVE_ENDIAN, 2415 }; 2416 2417 static int nvic_post_load(void *opaque, int version_id) 2418 { 2419 NVICState *s = opaque; 2420 unsigned i; 2421 int resetprio; 2422 2423 /* Check for out of range priority settings */ 2424 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2425 2426 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2427 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2428 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2429 return 1; 2430 } 2431 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2432 if (s->vectors[i].prio & ~0xff) { 2433 return 1; 2434 } 2435 } 2436 2437 nvic_recompute_state(s); 2438 2439 return 0; 2440 } 2441 2442 static const VMStateDescription vmstate_VecInfo = { 2443 .name = "armv7m_nvic_info", 2444 .version_id = 1, 2445 .minimum_version_id = 1, 2446 .fields = (VMStateField[]) { 2447 VMSTATE_INT16(prio, VecInfo), 2448 VMSTATE_UINT8(enabled, VecInfo), 2449 VMSTATE_UINT8(pending, VecInfo), 2450 VMSTATE_UINT8(active, VecInfo), 2451 VMSTATE_UINT8(level, VecInfo), 2452 VMSTATE_END_OF_LIST() 2453 } 2454 }; 2455 2456 static bool nvic_security_needed(void *opaque) 2457 { 2458 NVICState *s = opaque; 2459 2460 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2461 } 2462 2463 static int nvic_security_post_load(void *opaque, int version_id) 2464 { 2465 NVICState *s = opaque; 2466 int i; 2467 2468 /* Check for out of range priority settings */ 2469 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2470 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2471 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2472 * if the CPU state has been migrated yet; a mismatch won't 2473 * cause the emulation to blow up, though. 2474 */ 2475 return 1; 2476 } 2477 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2478 if (s->sec_vectors[i].prio & ~0xff) { 2479 return 1; 2480 } 2481 } 2482 return 0; 2483 } 2484 2485 static const VMStateDescription vmstate_nvic_security = { 2486 .name = "armv7m_nvic/m-security", 2487 .version_id = 1, 2488 .minimum_version_id = 1, 2489 .needed = nvic_security_needed, 2490 .post_load = &nvic_security_post_load, 2491 .fields = (VMStateField[]) { 2492 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2493 vmstate_VecInfo, VecInfo), 2494 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2495 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2496 VMSTATE_END_OF_LIST() 2497 } 2498 }; 2499 2500 static const VMStateDescription vmstate_nvic = { 2501 .name = "armv7m_nvic", 2502 .version_id = 4, 2503 .minimum_version_id = 4, 2504 .post_load = &nvic_post_load, 2505 .fields = (VMStateField[]) { 2506 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2507 vmstate_VecInfo, VecInfo), 2508 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2509 VMSTATE_END_OF_LIST() 2510 }, 2511 .subsections = (const VMStateDescription*[]) { 2512 &vmstate_nvic_security, 2513 NULL 2514 } 2515 }; 2516 2517 static Property props_nvic[] = { 2518 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2519 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2520 DEFINE_PROP_END_OF_LIST() 2521 }; 2522 2523 static void armv7m_nvic_reset(DeviceState *dev) 2524 { 2525 int resetprio; 2526 NVICState *s = NVIC(dev); 2527 2528 memset(s->vectors, 0, sizeof(s->vectors)); 2529 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2530 s->prigroup[M_REG_NS] = 0; 2531 s->prigroup[M_REG_S] = 0; 2532 2533 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2534 /* MEM, BUS, and USAGE are enabled through 2535 * the System Handler Control register 2536 */ 2537 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2538 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2539 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2540 2541 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2542 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2543 2544 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2545 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2546 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2547 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2548 2549 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2550 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2551 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2552 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2553 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2554 2555 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2556 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2557 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2558 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2559 } else { 2560 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2561 } 2562 2563 /* Strictly speaking the reset handler should be enabled. 2564 * However, we don't simulate soft resets through the NVIC, 2565 * and the reset vector should never be pended. 2566 * So we leave it disabled to catch logic errors. 2567 */ 2568 2569 s->exception_prio = NVIC_NOEXC_PRIO; 2570 s->vectpending = 0; 2571 s->vectpending_is_s_banked = false; 2572 s->vectpending_prio = NVIC_NOEXC_PRIO; 2573 2574 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2575 memset(s->itns, 0, sizeof(s->itns)); 2576 } else { 2577 /* This state is constant and not guest accessible in a non-security 2578 * NVIC; we set the bits to true to avoid having to do a feature 2579 * bit check in the NVIC enable/pend/etc register accessors. 2580 */ 2581 int i; 2582 2583 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2584 s->itns[i] = true; 2585 } 2586 } 2587 } 2588 2589 static void nvic_systick_trigger(void *opaque, int n, int level) 2590 { 2591 NVICState *s = opaque; 2592 2593 if (level) { 2594 /* SysTick just asked us to pend its exception. 2595 * (This is different from an external interrupt line's 2596 * behaviour.) 2597 * n == 0 : NonSecure systick 2598 * n == 1 : Secure systick 2599 */ 2600 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2601 } 2602 } 2603 2604 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2605 { 2606 NVICState *s = NVIC(dev); 2607 Error *err = NULL; 2608 int regionlen; 2609 2610 /* The armv7m container object will have set our CPU pointer */ 2611 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2612 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2613 return; 2614 } 2615 2616 if (s->num_irq > NVIC_MAX_IRQ) { 2617 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2618 return; 2619 } 2620 2621 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2622 2623 /* include space for internal exception vectors */ 2624 s->num_irq += NVIC_FIRST_IRQ; 2625 2626 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2627 2628 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2629 "realized", &err); 2630 if (err != NULL) { 2631 error_propagate(errp, err); 2632 return; 2633 } 2634 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2635 qdev_get_gpio_in_named(dev, "systick-trigger", 2636 M_REG_NS)); 2637 2638 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2639 /* We couldn't init the secure systick device in instance_init 2640 * as we didn't know then if the CPU had the security extensions; 2641 * so we have to do it here. 2642 */ 2643 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s", 2644 &s->systick[M_REG_S], 2645 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK); 2646 2647 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2648 "realized", &err); 2649 if (err != NULL) { 2650 error_propagate(errp, err); 2651 return; 2652 } 2653 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2654 qdev_get_gpio_in_named(dev, "systick-trigger", 2655 M_REG_S)); 2656 } 2657 2658 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2659 * and looks like this: 2660 * 0x004 - ICTR 2661 * 0x010 - 0xff - systick 2662 * 0x100..0x7ec - NVIC 2663 * 0x7f0..0xcff - Reserved 2664 * 0xd00..0xd3c - SCS registers 2665 * 0xd40..0xeff - Reserved or Not implemented 2666 * 0xf00 - STIR 2667 * 2668 * Some registers within this space are banked between security states. 2669 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2670 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2671 * to the main SCS range, and non-secure accesses (including when 2672 * the security extension is not implemented) are RAZ/WI. 2673 * Note that both the main SCS range and the alias range are defined 2674 * to be exempt from memory attribution (R_BLJT) and so the memory 2675 * transaction attribute always matches the current CPU security 2676 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2677 * wrappers we change attrs.secure to indicate the NS access; so 2678 * generally code determining which banked register to use should 2679 * use attrs.secure; code determining actual behaviour of the system 2680 * should use env->v7m.secure. 2681 */ 2682 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2683 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2684 /* The system register region goes at the bottom of the priority 2685 * stack as it covers the whole page. 2686 */ 2687 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2688 "nvic_sysregs", 0x1000); 2689 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2690 2691 memory_region_init_io(&s->systickmem, OBJECT(s), 2692 &nvic_systick_ops, s, 2693 "nvic_systick", 0xe0); 2694 2695 memory_region_add_subregion_overlap(&s->container, 0x10, 2696 &s->systickmem, 1); 2697 2698 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2699 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2700 &nvic_sysreg_ns_ops, &s->sysregmem, 2701 "nvic_sysregs_ns", 0x1000); 2702 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2703 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2704 &nvic_sysreg_ns_ops, &s->systickmem, 2705 "nvic_systick_ns", 0xe0); 2706 memory_region_add_subregion_overlap(&s->container, 0x20010, 2707 &s->systick_ns_mem, 1); 2708 } 2709 2710 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2711 } 2712 2713 static void armv7m_nvic_instance_init(Object *obj) 2714 { 2715 /* We have a different default value for the num-irq property 2716 * than our superclass. This function runs after qdev init 2717 * has set the defaults from the Property array and before 2718 * any user-specified property setting, so just modify the 2719 * value in the GICState struct. 2720 */ 2721 DeviceState *dev = DEVICE(obj); 2722 NVICState *nvic = NVIC(obj); 2723 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2724 2725 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2726 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2727 /* We can't initialize the secure systick here, as we don't know 2728 * yet if we need it. 2729 */ 2730 2731 sysbus_init_irq(sbd, &nvic->excpout); 2732 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2733 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2734 M_REG_NUM_BANKS); 2735 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2736 } 2737 2738 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2739 { 2740 DeviceClass *dc = DEVICE_CLASS(klass); 2741 2742 dc->vmsd = &vmstate_nvic; 2743 dc->props = props_nvic; 2744 dc->reset = armv7m_nvic_reset; 2745 dc->realize = armv7m_nvic_realize; 2746 } 2747 2748 static const TypeInfo armv7m_nvic_info = { 2749 .name = TYPE_NVIC, 2750 .parent = TYPE_SYS_BUS_DEVICE, 2751 .instance_init = armv7m_nvic_instance_init, 2752 .instance_size = sizeof(NVICState), 2753 .class_init = armv7m_nvic_class_init, 2754 .class_size = sizeof(SysBusDeviceClass), 2755 }; 2756 2757 static void armv7m_nvic_register_types(void) 2758 { 2759 type_register_static(&armv7m_nvic_info); 2760 } 2761 2762 type_init(armv7m_nvic_register_types) 2763