xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 9901c576f6c02d43206e5faaf6e362ab7ea83246)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
507 {
508     NVICState *s = (NVICState *)opaque;
509     bool banked = exc_is_banked(irq);
510     VecInfo *vec;
511 
512     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
513     assert(!secure || banked);
514 
515     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
516 
517     trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio);
518 
519     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
520         /* If a synchronous exception is pending then it may be
521          * escalated to HardFault if:
522          *  * it is equal or lower priority to current execution
523          *  * it is disabled
524          * (ie we need to take it immediately but we can't do so).
525          * Asynchronous exceptions (and interrupts) simply remain pending.
526          *
527          * For QEMU, we don't have any imprecise (asynchronous) faults,
528          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
529          * synchronous.
530          * Debug exceptions are awkward because only Debug exceptions
531          * resulting from the BKPT instruction should be escalated,
532          * but we don't currently implement any Debug exceptions other
533          * than those that result from BKPT, so we treat all debug exceptions
534          * as needing escalation.
535          *
536          * This all means we can identify whether to escalate based only on
537          * the exception number and don't (yet) need the caller to explicitly
538          * tell us whether this exception is synchronous or not.
539          */
540         int running = nvic_exec_prio(s);
541         bool escalate = false;
542 
543         if (exc_group_prio(s, vec->prio, secure) >= running) {
544             trace_nvic_escalate_prio(irq, vec->prio, running);
545             escalate = true;
546         } else if (!vec->enabled) {
547             trace_nvic_escalate_disabled(irq);
548             escalate = true;
549         }
550 
551         if (escalate) {
552 
553             /* We need to escalate this exception to a synchronous HardFault.
554              * If BFHFNMINS is set then we escalate to the banked HF for
555              * the target security state of the original exception; otherwise
556              * we take a Secure HardFault.
557              */
558             irq = ARMV7M_EXCP_HARD;
559             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
560                 (secure ||
561                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
562                 vec = &s->sec_vectors[irq];
563             } else {
564                 vec = &s->vectors[irq];
565             }
566             if (running <= vec->prio) {
567                 /* We want to escalate to HardFault but we can't take the
568                  * synchronous HardFault at this point either. This is a
569                  * Lockup condition due to a guest bug. We don't model
570                  * Lockup, so report via cpu_abort() instead.
571                  */
572                 cpu_abort(&s->cpu->parent_obj,
573                           "Lockup: can't escalate %d to HardFault "
574                           "(current priority %d)\n", irq, running);
575             }
576 
577             /* HF may be banked but there is only one shared HFSR */
578             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
579         }
580     }
581 
582     if (!vec->pending) {
583         vec->pending = 1;
584         nvic_irq_update(s);
585     }
586 }
587 
588 /* Make pending IRQ active.  */
589 bool armv7m_nvic_acknowledge_irq(void *opaque)
590 {
591     NVICState *s = (NVICState *)opaque;
592     CPUARMState *env = &s->cpu->env;
593     const int pending = s->vectpending;
594     const int running = nvic_exec_prio(s);
595     VecInfo *vec;
596     bool targets_secure;
597 
598     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
599 
600     if (s->vectpending_is_s_banked) {
601         vec = &s->sec_vectors[pending];
602         targets_secure = true;
603     } else {
604         vec = &s->vectors[pending];
605         targets_secure = !exc_is_banked(s->vectpending) &&
606             exc_targets_secure(s, s->vectpending);
607     }
608 
609     assert(vec->enabled);
610     assert(vec->pending);
611 
612     assert(s->vectpending_prio < running);
613 
614     trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure);
615 
616     vec->active = 1;
617     vec->pending = 0;
618 
619     write_v7m_exception(env, s->vectpending);
620 
621     nvic_irq_update(s);
622 
623     return targets_secure;
624 }
625 
626 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
627 {
628     NVICState *s = (NVICState *)opaque;
629     VecInfo *vec;
630     int ret;
631 
632     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
633 
634     if (secure && exc_is_banked(irq)) {
635         vec = &s->sec_vectors[irq];
636     } else {
637         vec = &s->vectors[irq];
638     }
639 
640     trace_nvic_complete_irq(irq, secure);
641 
642     if (!vec->active) {
643         /* Tell the caller this was an illegal exception return */
644         return -1;
645     }
646 
647     ret = nvic_rettobase(s);
648 
649     vec->active = 0;
650     if (vec->level) {
651         /* Re-pend the exception if it's still held high; only
652          * happens for extenal IRQs
653          */
654         assert(irq >= NVIC_FIRST_IRQ);
655         vec->pending = 1;
656     }
657 
658     nvic_irq_update(s);
659 
660     return ret;
661 }
662 
663 /* callback when external interrupt line is changed */
664 static void set_irq_level(void *opaque, int n, int level)
665 {
666     NVICState *s = opaque;
667     VecInfo *vec;
668 
669     n += NVIC_FIRST_IRQ;
670 
671     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
672 
673     trace_nvic_set_irq_level(n, level);
674 
675     /* The pending status of an external interrupt is
676      * latched on rising edge and exception handler return.
677      *
678      * Pulsing the IRQ will always run the handler
679      * once, and the handler will re-run until the
680      * level is low when the handler completes.
681      */
682     vec = &s->vectors[n];
683     if (level != vec->level) {
684         vec->level = level;
685         if (level) {
686             armv7m_nvic_set_pending(s, n, false);
687         }
688     }
689 }
690 
691 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
692 {
693     ARMCPU *cpu = s->cpu;
694     uint32_t val;
695 
696     switch (offset) {
697     case 4: /* Interrupt Control Type.  */
698         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
699     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
700     {
701         int startvec = 32 * (offset - 0x380) + NVIC_FIRST_IRQ;
702         int i;
703 
704         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
705             goto bad_offset;
706         }
707         if (!attrs.secure) {
708             return 0;
709         }
710         val = 0;
711         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
712             if (s->itns[startvec + i]) {
713                 val |= (1 << i);
714             }
715         }
716         return val;
717     }
718     case 0xd00: /* CPUID Base.  */
719         return cpu->midr;
720     case 0xd04: /* Interrupt Control State (ICSR) */
721         /* VECTACTIVE */
722         val = cpu->env.v7m.exception;
723         /* VECTPENDING */
724         val |= (s->vectpending & 0xff) << 12;
725         /* ISRPENDING - set if any external IRQ is pending */
726         if (nvic_isrpending(s)) {
727             val |= (1 << 22);
728         }
729         /* RETTOBASE - set if only one handler is active */
730         if (nvic_rettobase(s)) {
731             val |= (1 << 11);
732         }
733         if (attrs.secure) {
734             /* PENDSTSET */
735             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
736                 val |= (1 << 26);
737             }
738             /* PENDSVSET */
739             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
740                 val |= (1 << 28);
741             }
742         } else {
743             /* PENDSTSET */
744             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
745                 val |= (1 << 26);
746             }
747             /* PENDSVSET */
748             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
749                 val |= (1 << 28);
750             }
751         }
752         /* NMIPENDSET */
753         if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
754             s->vectors[ARMV7M_EXCP_NMI].pending) {
755             val |= (1 << 31);
756         }
757         /* ISRPREEMPT: RES0 when halting debug not implemented */
758         /* STTNS: RES0 for the Main Extension */
759         return val;
760     case 0xd08: /* Vector Table Offset.  */
761         return cpu->env.v7m.vecbase[attrs.secure];
762     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
763         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
764         if (attrs.secure) {
765             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
766             val |= cpu->env.v7m.aircr;
767         } else {
768             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
769                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
770                  * security isn't supported then BFHFNMINS is RAO (and
771                  * the bit in env.v7m.aircr is always set).
772                  */
773                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
774             }
775         }
776         return val;
777     case 0xd10: /* System Control.  */
778         /* TODO: Implement SLEEPONEXIT.  */
779         return 0;
780     case 0xd14: /* Configuration Control.  */
781         /* The BFHFNMIGN bit is the only non-banked bit; we
782          * keep it in the non-secure copy of the register.
783          */
784         val = cpu->env.v7m.ccr[attrs.secure];
785         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
786         return val;
787     case 0xd24: /* System Handler Control and State (SHCSR) */
788         val = 0;
789         if (attrs.secure) {
790             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
791                 val |= (1 << 0);
792             }
793             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
794                 val |= (1 << 2);
795             }
796             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
797                 val |= (1 << 3);
798             }
799             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
800                 val |= (1 << 7);
801             }
802             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
803                 val |= (1 << 10);
804             }
805             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
806                 val |= (1 << 11);
807             }
808             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
809                 val |= (1 << 12);
810             }
811             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
812                 val |= (1 << 13);
813             }
814             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
815                 val |= (1 << 15);
816             }
817             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
818                 val |= (1 << 16);
819             }
820             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
821                 val |= (1 << 18);
822             }
823             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
824                 val |= (1 << 21);
825             }
826             /* SecureFault is not banked but is always RAZ/WI to NS */
827             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
828                 val |= (1 << 4);
829             }
830             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
831                 val |= (1 << 19);
832             }
833             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
834                 val |= (1 << 20);
835             }
836         } else {
837             if (s->vectors[ARMV7M_EXCP_MEM].active) {
838                 val |= (1 << 0);
839             }
840             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
841                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
842                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
843                     val |= (1 << 2);
844                 }
845                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
846                     val |= (1 << 21);
847                 }
848             }
849             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
850                 val |= (1 << 3);
851             }
852             if (s->vectors[ARMV7M_EXCP_SVC].active) {
853                 val |= (1 << 7);
854             }
855             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
856                 val |= (1 << 10);
857             }
858             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
859                 val |= (1 << 11);
860             }
861             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
862                 val |= (1 << 12);
863             }
864             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
865                 val |= (1 << 13);
866             }
867             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
868                 val |= (1 << 15);
869             }
870             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
871                 val |= (1 << 16);
872             }
873             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
874                 val |= (1 << 18);
875             }
876         }
877         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
878             if (s->vectors[ARMV7M_EXCP_BUS].active) {
879                 val |= (1 << 1);
880             }
881             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
882                 val |= (1 << 14);
883             }
884             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
885                 val |= (1 << 17);
886             }
887             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
888                 s->vectors[ARMV7M_EXCP_NMI].active) {
889                 /* NMIACT is not present in v7M */
890                 val |= (1 << 5);
891             }
892         }
893 
894         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
895         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
896             val |= (1 << 8);
897         }
898         return val;
899     case 0xd28: /* Configurable Fault Status.  */
900         /* The BFSR bits [15:8] are shared between security states
901          * and we store them in the NS copy
902          */
903         val = cpu->env.v7m.cfsr[attrs.secure];
904         val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
905         return val;
906     case 0xd2c: /* Hard Fault Status.  */
907         return cpu->env.v7m.hfsr;
908     case 0xd30: /* Debug Fault Status.  */
909         return cpu->env.v7m.dfsr;
910     case 0xd34: /* MMFAR MemManage Fault Address */
911         return cpu->env.v7m.mmfar[attrs.secure];
912     case 0xd38: /* Bus Fault Address.  */
913         return cpu->env.v7m.bfar;
914     case 0xd3c: /* Aux Fault Status.  */
915         /* TODO: Implement fault status registers.  */
916         qemu_log_mask(LOG_UNIMP,
917                       "Aux Fault status registers unimplemented\n");
918         return 0;
919     case 0xd40: /* PFR0.  */
920         return 0x00000030;
921     case 0xd44: /* PRF1.  */
922         return 0x00000200;
923     case 0xd48: /* DFR0.  */
924         return 0x00100000;
925     case 0xd4c: /* AFR0.  */
926         return 0x00000000;
927     case 0xd50: /* MMFR0.  */
928         return 0x00000030;
929     case 0xd54: /* MMFR1.  */
930         return 0x00000000;
931     case 0xd58: /* MMFR2.  */
932         return 0x00000000;
933     case 0xd5c: /* MMFR3.  */
934         return 0x00000000;
935     case 0xd60: /* ISAR0.  */
936         return 0x01141110;
937     case 0xd64: /* ISAR1.  */
938         return 0x02111000;
939     case 0xd68: /* ISAR2.  */
940         return 0x21112231;
941     case 0xd6c: /* ISAR3.  */
942         return 0x01111110;
943     case 0xd70: /* ISAR4.  */
944         return 0x01310102;
945     /* TODO: Implement debug registers.  */
946     case 0xd90: /* MPU_TYPE */
947         /* Unified MPU; if the MPU is not present this value is zero */
948         return cpu->pmsav7_dregion << 8;
949         break;
950     case 0xd94: /* MPU_CTRL */
951         return cpu->env.v7m.mpu_ctrl[attrs.secure];
952     case 0xd98: /* MPU_RNR */
953         return cpu->env.pmsav7.rnr[attrs.secure];
954     case 0xd9c: /* MPU_RBAR */
955     case 0xda4: /* MPU_RBAR_A1 */
956     case 0xdac: /* MPU_RBAR_A2 */
957     case 0xdb4: /* MPU_RBAR_A3 */
958     {
959         int region = cpu->env.pmsav7.rnr[attrs.secure];
960 
961         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
962             /* PMSAv8M handling of the aliases is different from v7M:
963              * aliases A1, A2, A3 override the low two bits of the region
964              * number in MPU_RNR, and there is no 'region' field in the
965              * RBAR register.
966              */
967             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
968             if (aliasno) {
969                 region = deposit32(region, 0, 2, aliasno);
970             }
971             if (region >= cpu->pmsav7_dregion) {
972                 return 0;
973             }
974             return cpu->env.pmsav8.rbar[attrs.secure][region];
975         }
976 
977         if (region >= cpu->pmsav7_dregion) {
978             return 0;
979         }
980         return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
981     }
982     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
983     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
984     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
985     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
986     {
987         int region = cpu->env.pmsav7.rnr[attrs.secure];
988 
989         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
990             /* PMSAv8M handling of the aliases is different from v7M:
991              * aliases A1, A2, A3 override the low two bits of the region
992              * number in MPU_RNR.
993              */
994             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
995             if (aliasno) {
996                 region = deposit32(region, 0, 2, aliasno);
997             }
998             if (region >= cpu->pmsav7_dregion) {
999                 return 0;
1000             }
1001             return cpu->env.pmsav8.rlar[attrs.secure][region];
1002         }
1003 
1004         if (region >= cpu->pmsav7_dregion) {
1005             return 0;
1006         }
1007         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1008             (cpu->env.pmsav7.drsr[region] & 0xffff);
1009     }
1010     case 0xdc0: /* MPU_MAIR0 */
1011         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1012             goto bad_offset;
1013         }
1014         return cpu->env.pmsav8.mair0[attrs.secure];
1015     case 0xdc4: /* MPU_MAIR1 */
1016         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1017             goto bad_offset;
1018         }
1019         return cpu->env.pmsav8.mair1[attrs.secure];
1020     case 0xdd0: /* SAU_CTRL */
1021         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1022             goto bad_offset;
1023         }
1024         if (!attrs.secure) {
1025             return 0;
1026         }
1027         return cpu->env.sau.ctrl;
1028     case 0xdd4: /* SAU_TYPE */
1029         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1030             goto bad_offset;
1031         }
1032         if (!attrs.secure) {
1033             return 0;
1034         }
1035         return cpu->sau_sregion;
1036     case 0xdd8: /* SAU_RNR */
1037         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1038             goto bad_offset;
1039         }
1040         if (!attrs.secure) {
1041             return 0;
1042         }
1043         return cpu->env.sau.rnr;
1044     case 0xddc: /* SAU_RBAR */
1045     {
1046         int region = cpu->env.sau.rnr;
1047 
1048         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1049             goto bad_offset;
1050         }
1051         if (!attrs.secure) {
1052             return 0;
1053         }
1054         if (region >= cpu->sau_sregion) {
1055             return 0;
1056         }
1057         return cpu->env.sau.rbar[region];
1058     }
1059     case 0xde0: /* SAU_RLAR */
1060     {
1061         int region = cpu->env.sau.rnr;
1062 
1063         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1064             goto bad_offset;
1065         }
1066         if (!attrs.secure) {
1067             return 0;
1068         }
1069         if (region >= cpu->sau_sregion) {
1070             return 0;
1071         }
1072         return cpu->env.sau.rlar[region];
1073     }
1074     case 0xde4: /* SFSR */
1075         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1076             goto bad_offset;
1077         }
1078         if (!attrs.secure) {
1079             return 0;
1080         }
1081         return cpu->env.v7m.sfsr;
1082     case 0xde8: /* SFAR */
1083         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1084             goto bad_offset;
1085         }
1086         if (!attrs.secure) {
1087             return 0;
1088         }
1089         return cpu->env.v7m.sfar;
1090     default:
1091     bad_offset:
1092         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1093         return 0;
1094     }
1095 }
1096 
1097 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1098                         MemTxAttrs attrs)
1099 {
1100     ARMCPU *cpu = s->cpu;
1101 
1102     switch (offset) {
1103     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1104     {
1105         int startvec = 32 * (offset - 0x380) + NVIC_FIRST_IRQ;
1106         int i;
1107 
1108         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1109             goto bad_offset;
1110         }
1111         if (!attrs.secure) {
1112             break;
1113         }
1114         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1115             s->itns[startvec + i] = (value >> i) & 1;
1116         }
1117         nvic_irq_update(s);
1118         break;
1119     }
1120     case 0xd04: /* Interrupt Control State (ICSR) */
1121         if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1122             if (value & (1 << 31)) {
1123                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1124             } else if (value & (1 << 30) &&
1125                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1126                 /* PENDNMICLR didn't exist in v7M */
1127                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1128             }
1129         }
1130         if (value & (1 << 28)) {
1131             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1132         } else if (value & (1 << 27)) {
1133             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1134         }
1135         if (value & (1 << 26)) {
1136             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1137         } else if (value & (1 << 25)) {
1138             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1139         }
1140         break;
1141     case 0xd08: /* Vector Table Offset.  */
1142         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1143         break;
1144     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1145         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1146             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1147                 if (attrs.secure ||
1148                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1149                     qemu_irq_pulse(s->sysresetreq);
1150                 }
1151             }
1152             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1153                 qemu_log_mask(LOG_GUEST_ERROR,
1154                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1155                               "is UNPREDICTABLE\n");
1156             }
1157             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1158                 /* NB: this bit is RES0 in v8M */
1159                 qemu_log_mask(LOG_GUEST_ERROR,
1160                               "Setting VECTRESET when not in DEBUG mode "
1161                               "is UNPREDICTABLE\n");
1162             }
1163             s->prigroup[attrs.secure] = extract32(value,
1164                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1165                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1166             if (attrs.secure) {
1167                 /* These bits are only writable by secure */
1168                 cpu->env.v7m.aircr = value &
1169                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1170                      R_V7M_AIRCR_BFHFNMINS_MASK |
1171                      R_V7M_AIRCR_PRIS_MASK);
1172                 /* BFHFNMINS changes the priority of Secure HardFault, and
1173                  * allows a pending Non-secure HardFault to preempt (which
1174                  * we implement by marking it enabled).
1175                  */
1176                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1177                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1178                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1179                 } else {
1180                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1181                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1182                 }
1183             }
1184             nvic_irq_update(s);
1185         }
1186         break;
1187     case 0xd10: /* System Control.  */
1188         /* TODO: Implement control registers.  */
1189         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1190         break;
1191     case 0xd14: /* Configuration Control.  */
1192         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1193         value &= (R_V7M_CCR_STKALIGN_MASK |
1194                   R_V7M_CCR_BFHFNMIGN_MASK |
1195                   R_V7M_CCR_DIV_0_TRP_MASK |
1196                   R_V7M_CCR_UNALIGN_TRP_MASK |
1197                   R_V7M_CCR_USERSETMPEND_MASK |
1198                   R_V7M_CCR_NONBASETHRDENA_MASK);
1199 
1200         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1201             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1202             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1203                 | R_V7M_CCR_STKALIGN_MASK;
1204         }
1205         if (attrs.secure) {
1206             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1207             cpu->env.v7m.ccr[M_REG_NS] =
1208                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1209                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1210             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1211         }
1212 
1213         cpu->env.v7m.ccr[attrs.secure] = value;
1214         break;
1215     case 0xd24: /* System Handler Control and State (SHCSR) */
1216         if (attrs.secure) {
1217             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1218             /* Secure HardFault active bit cannot be written */
1219             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1220             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1221             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1222                 (value & (1 << 10)) != 0;
1223             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1224                 (value & (1 << 11)) != 0;
1225             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1226                 (value & (1 << 12)) != 0;
1227             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1228             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1229             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1230             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1231             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1232                 (value & (1 << 18)) != 0;
1233             /* SecureFault not banked, but RAZ/WI to NS */
1234             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1235             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1236             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1237         } else {
1238             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1239             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1240                 /* HARDFAULTPENDED is not present in v7M */
1241                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1242             }
1243             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1244             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1245             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1246             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1247             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1248             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1249             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1250             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1251             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1252         }
1253         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1254             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1255             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1256             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1257         }
1258         /* NMIACT can only be written if the write is of a zero, with
1259          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1260          */
1261         if (!attrs.secure && cpu->env.v7m.secure &&
1262             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1263             (value & (1 << 5)) == 0) {
1264             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1265         }
1266         /* HARDFAULTACT can only be written if the write is of a zero
1267          * to the non-secure HardFault state by the CPU in secure state.
1268          * The only case where we can be targeting the non-secure HF state
1269          * when in secure state is if this is a write via the NS alias
1270          * and BFHFNMINS is 1.
1271          */
1272         if (!attrs.secure && cpu->env.v7m.secure &&
1273             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1274             (value & (1 << 2)) == 0) {
1275             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1276         }
1277 
1278         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1279         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1280         nvic_irq_update(s);
1281         break;
1282     case 0xd28: /* Configurable Fault Status.  */
1283         cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
1284         if (attrs.secure) {
1285             /* The BFSR bits [15:8] are shared between security states
1286              * and we store them in the NS copy.
1287              */
1288             cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1289         }
1290         break;
1291     case 0xd2c: /* Hard Fault Status.  */
1292         cpu->env.v7m.hfsr &= ~value; /* W1C */
1293         break;
1294     case 0xd30: /* Debug Fault Status.  */
1295         cpu->env.v7m.dfsr &= ~value; /* W1C */
1296         break;
1297     case 0xd34: /* Mem Manage Address.  */
1298         cpu->env.v7m.mmfar[attrs.secure] = value;
1299         return;
1300     case 0xd38: /* Bus Fault Address.  */
1301         cpu->env.v7m.bfar = value;
1302         return;
1303     case 0xd3c: /* Aux Fault Status.  */
1304         qemu_log_mask(LOG_UNIMP,
1305                       "NVIC: Aux fault status registers unimplemented\n");
1306         break;
1307     case 0xd90: /* MPU_TYPE */
1308         return; /* RO */
1309     case 0xd94: /* MPU_CTRL */
1310         if ((value &
1311              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1312             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1313             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1314                           "UNPREDICTABLE\n");
1315         }
1316         cpu->env.v7m.mpu_ctrl[attrs.secure]
1317             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1318                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1319                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1320         tlb_flush(CPU(cpu));
1321         break;
1322     case 0xd98: /* MPU_RNR */
1323         if (value >= cpu->pmsav7_dregion) {
1324             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1325                           PRIu32 "/%" PRIu32 "\n",
1326                           value, cpu->pmsav7_dregion);
1327         } else {
1328             cpu->env.pmsav7.rnr[attrs.secure] = value;
1329         }
1330         break;
1331     case 0xd9c: /* MPU_RBAR */
1332     case 0xda4: /* MPU_RBAR_A1 */
1333     case 0xdac: /* MPU_RBAR_A2 */
1334     case 0xdb4: /* MPU_RBAR_A3 */
1335     {
1336         int region;
1337 
1338         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1339             /* PMSAv8M handling of the aliases is different from v7M:
1340              * aliases A1, A2, A3 override the low two bits of the region
1341              * number in MPU_RNR, and there is no 'region' field in the
1342              * RBAR register.
1343              */
1344             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1345 
1346             region = cpu->env.pmsav7.rnr[attrs.secure];
1347             if (aliasno) {
1348                 region = deposit32(region, 0, 2, aliasno);
1349             }
1350             if (region >= cpu->pmsav7_dregion) {
1351                 return;
1352             }
1353             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1354             tlb_flush(CPU(cpu));
1355             return;
1356         }
1357 
1358         if (value & (1 << 4)) {
1359             /* VALID bit means use the region number specified in this
1360              * value and also update MPU_RNR.REGION with that value.
1361              */
1362             region = extract32(value, 0, 4);
1363             if (region >= cpu->pmsav7_dregion) {
1364                 qemu_log_mask(LOG_GUEST_ERROR,
1365                               "MPU region out of range %u/%" PRIu32 "\n",
1366                               region, cpu->pmsav7_dregion);
1367                 return;
1368             }
1369             cpu->env.pmsav7.rnr[attrs.secure] = region;
1370         } else {
1371             region = cpu->env.pmsav7.rnr[attrs.secure];
1372         }
1373 
1374         if (region >= cpu->pmsav7_dregion) {
1375             return;
1376         }
1377 
1378         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1379         tlb_flush(CPU(cpu));
1380         break;
1381     }
1382     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1383     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1384     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1385     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1386     {
1387         int region = cpu->env.pmsav7.rnr[attrs.secure];
1388 
1389         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1390             /* PMSAv8M handling of the aliases is different from v7M:
1391              * aliases A1, A2, A3 override the low two bits of the region
1392              * number in MPU_RNR.
1393              */
1394             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1395 
1396             region = cpu->env.pmsav7.rnr[attrs.secure];
1397             if (aliasno) {
1398                 region = deposit32(region, 0, 2, aliasno);
1399             }
1400             if (region >= cpu->pmsav7_dregion) {
1401                 return;
1402             }
1403             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1404             tlb_flush(CPU(cpu));
1405             return;
1406         }
1407 
1408         if (region >= cpu->pmsav7_dregion) {
1409             return;
1410         }
1411 
1412         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1413         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1414         tlb_flush(CPU(cpu));
1415         break;
1416     }
1417     case 0xdc0: /* MPU_MAIR0 */
1418         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1419             goto bad_offset;
1420         }
1421         if (cpu->pmsav7_dregion) {
1422             /* Register is RES0 if no MPU regions are implemented */
1423             cpu->env.pmsav8.mair0[attrs.secure] = value;
1424         }
1425         /* We don't need to do anything else because memory attributes
1426          * only affect cacheability, and we don't implement caching.
1427          */
1428         break;
1429     case 0xdc4: /* MPU_MAIR1 */
1430         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1431             goto bad_offset;
1432         }
1433         if (cpu->pmsav7_dregion) {
1434             /* Register is RES0 if no MPU regions are implemented */
1435             cpu->env.pmsav8.mair1[attrs.secure] = value;
1436         }
1437         /* We don't need to do anything else because memory attributes
1438          * only affect cacheability, and we don't implement caching.
1439          */
1440         break;
1441     case 0xdd0: /* SAU_CTRL */
1442         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1443             goto bad_offset;
1444         }
1445         if (!attrs.secure) {
1446             return;
1447         }
1448         cpu->env.sau.ctrl = value & 3;
1449     case 0xdd4: /* SAU_TYPE */
1450         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1451             goto bad_offset;
1452         }
1453         break;
1454     case 0xdd8: /* SAU_RNR */
1455         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1456             goto bad_offset;
1457         }
1458         if (!attrs.secure) {
1459             return;
1460         }
1461         if (value >= cpu->sau_sregion) {
1462             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1463                           PRIu32 "/%" PRIu32 "\n",
1464                           value, cpu->sau_sregion);
1465         } else {
1466             cpu->env.sau.rnr = value;
1467         }
1468         break;
1469     case 0xddc: /* SAU_RBAR */
1470     {
1471         int region = cpu->env.sau.rnr;
1472 
1473         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1474             goto bad_offset;
1475         }
1476         if (!attrs.secure) {
1477             return;
1478         }
1479         if (region >= cpu->sau_sregion) {
1480             return;
1481         }
1482         cpu->env.sau.rbar[region] = value & ~0x1f;
1483         tlb_flush(CPU(cpu));
1484         break;
1485     }
1486     case 0xde0: /* SAU_RLAR */
1487     {
1488         int region = cpu->env.sau.rnr;
1489 
1490         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491             goto bad_offset;
1492         }
1493         if (!attrs.secure) {
1494             return;
1495         }
1496         if (region >= cpu->sau_sregion) {
1497             return;
1498         }
1499         cpu->env.sau.rlar[region] = value & ~0x1c;
1500         tlb_flush(CPU(cpu));
1501         break;
1502     }
1503     case 0xde4: /* SFSR */
1504         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1505             goto bad_offset;
1506         }
1507         if (!attrs.secure) {
1508             return;
1509         }
1510         cpu->env.v7m.sfsr &= ~value; /* W1C */
1511         break;
1512     case 0xde8: /* SFAR */
1513         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1514             goto bad_offset;
1515         }
1516         if (!attrs.secure) {
1517             return;
1518         }
1519         cpu->env.v7m.sfsr = value;
1520         break;
1521     case 0xf00: /* Software Triggered Interrupt Register */
1522     {
1523         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1524         if (excnum < s->num_irq) {
1525             armv7m_nvic_set_pending(s, excnum, false);
1526         }
1527         break;
1528     }
1529     default:
1530     bad_offset:
1531         qemu_log_mask(LOG_GUEST_ERROR,
1532                       "NVIC: Bad write offset 0x%x\n", offset);
1533     }
1534 }
1535 
1536 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1537 {
1538     /* Return true if unprivileged access to this register is permitted. */
1539     switch (offset) {
1540     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1541         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1542          * controls access even though the CPU is in Secure state (I_QDKX).
1543          */
1544         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1545     default:
1546         /* All other user accesses cause a BusFault unconditionally */
1547         return false;
1548     }
1549 }
1550 
1551 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1552 {
1553     /* Behaviour for the SHPR register field for this exception:
1554      * return M_REG_NS to use the nonsecure vector (including for
1555      * non-banked exceptions), M_REG_S for the secure version of
1556      * a banked exception, and -1 if this field should RAZ/WI.
1557      */
1558     switch (exc) {
1559     case ARMV7M_EXCP_MEM:
1560     case ARMV7M_EXCP_USAGE:
1561     case ARMV7M_EXCP_SVC:
1562     case ARMV7M_EXCP_PENDSV:
1563     case ARMV7M_EXCP_SYSTICK:
1564         /* Banked exceptions */
1565         return attrs.secure;
1566     case ARMV7M_EXCP_BUS:
1567         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1568         if (!attrs.secure &&
1569             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1570             return -1;
1571         }
1572         return M_REG_NS;
1573     case ARMV7M_EXCP_SECURE:
1574         /* Not banked, RAZ/WI from nonsecure */
1575         if (!attrs.secure) {
1576             return -1;
1577         }
1578         return M_REG_NS;
1579     case ARMV7M_EXCP_DEBUG:
1580         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1581         return M_REG_NS;
1582     case 8 ... 10:
1583     case 13:
1584         /* RES0 */
1585         return -1;
1586     default:
1587         /* Not reachable due to decode of SHPR register addresses */
1588         g_assert_not_reached();
1589     }
1590 }
1591 
1592 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1593                                     uint64_t *data, unsigned size,
1594                                     MemTxAttrs attrs)
1595 {
1596     NVICState *s = (NVICState *)opaque;
1597     uint32_t offset = addr;
1598     unsigned i, startvec, end;
1599     uint32_t val;
1600 
1601     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1602         /* Generate BusFault for unprivileged accesses */
1603         return MEMTX_ERROR;
1604     }
1605 
1606     switch (offset) {
1607     /* reads of set and clear both return the status */
1608     case 0x100 ... 0x13f: /* NVIC Set enable */
1609         offset += 0x80;
1610         /* fall through */
1611     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1612         val = 0;
1613         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1614 
1615         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1616             if (s->vectors[startvec + i].enabled &&
1617                 (attrs.secure || s->itns[startvec + i])) {
1618                 val |= (1 << i);
1619             }
1620         }
1621         break;
1622     case 0x200 ... 0x23f: /* NVIC Set pend */
1623         offset += 0x80;
1624         /* fall through */
1625     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1626         val = 0;
1627         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1628         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1629             if (s->vectors[startvec + i].pending &&
1630                 (attrs.secure || s->itns[startvec + i])) {
1631                 val |= (1 << i);
1632             }
1633         }
1634         break;
1635     case 0x300 ... 0x33f: /* NVIC Active */
1636         val = 0;
1637         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1638 
1639         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1640             if (s->vectors[startvec + i].active &&
1641                 (attrs.secure || s->itns[startvec + i])) {
1642                 val |= (1 << i);
1643             }
1644         }
1645         break;
1646     case 0x400 ... 0x5ef: /* NVIC Priority */
1647         val = 0;
1648         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1649 
1650         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1651             if (attrs.secure || s->itns[startvec + i]) {
1652                 val |= s->vectors[startvec + i].prio << (8 * i);
1653             }
1654         }
1655         break;
1656     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1657         val = 0;
1658         for (i = 0; i < size; i++) {
1659             unsigned hdlidx = (offset - 0xd14) + i;
1660             int sbank = shpr_bank(s, hdlidx, attrs);
1661 
1662             if (sbank < 0) {
1663                 continue;
1664             }
1665             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1666         }
1667         break;
1668     case 0xfe0 ... 0xfff: /* ID.  */
1669         if (offset & 3) {
1670             val = 0;
1671         } else {
1672             val = nvic_id[(offset - 0xfe0) >> 2];
1673         }
1674         break;
1675     default:
1676         if (size == 4) {
1677             val = nvic_readl(s, offset, attrs);
1678         } else {
1679             qemu_log_mask(LOG_GUEST_ERROR,
1680                           "NVIC: Bad read of size %d at offset 0x%x\n",
1681                           size, offset);
1682             val = 0;
1683         }
1684     }
1685 
1686     trace_nvic_sysreg_read(addr, val, size);
1687     *data = val;
1688     return MEMTX_OK;
1689 }
1690 
1691 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1692                                      uint64_t value, unsigned size,
1693                                      MemTxAttrs attrs)
1694 {
1695     NVICState *s = (NVICState *)opaque;
1696     uint32_t offset = addr;
1697     unsigned i, startvec, end;
1698     unsigned setval = 0;
1699 
1700     trace_nvic_sysreg_write(addr, value, size);
1701 
1702     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1703         /* Generate BusFault for unprivileged accesses */
1704         return MEMTX_ERROR;
1705     }
1706 
1707     switch (offset) {
1708     case 0x100 ... 0x13f: /* NVIC Set enable */
1709         offset += 0x80;
1710         setval = 1;
1711         /* fall through */
1712     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1713         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1714 
1715         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1716             if (value & (1 << i) &&
1717                 (attrs.secure || s->itns[startvec + i])) {
1718                 s->vectors[startvec + i].enabled = setval;
1719             }
1720         }
1721         nvic_irq_update(s);
1722         return MEMTX_OK;
1723     case 0x200 ... 0x23f: /* NVIC Set pend */
1724         /* the special logic in armv7m_nvic_set_pending()
1725          * is not needed since IRQs are never escalated
1726          */
1727         offset += 0x80;
1728         setval = 1;
1729         /* fall through */
1730     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1731         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1732 
1733         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1734             if (value & (1 << i) &&
1735                 (attrs.secure || s->itns[startvec + i])) {
1736                 s->vectors[startvec + i].pending = setval;
1737             }
1738         }
1739         nvic_irq_update(s);
1740         return MEMTX_OK;
1741     case 0x300 ... 0x33f: /* NVIC Active */
1742         return MEMTX_OK; /* R/O */
1743     case 0x400 ... 0x5ef: /* NVIC Priority */
1744         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1745 
1746         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1747             if (attrs.secure || s->itns[startvec + i]) {
1748                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1749             }
1750         }
1751         nvic_irq_update(s);
1752         return MEMTX_OK;
1753     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1754         for (i = 0; i < size; i++) {
1755             unsigned hdlidx = (offset - 0xd14) + i;
1756             int newprio = extract32(value, i * 8, 8);
1757             int sbank = shpr_bank(s, hdlidx, attrs);
1758 
1759             if (sbank < 0) {
1760                 continue;
1761             }
1762             set_prio(s, hdlidx, sbank, newprio);
1763         }
1764         nvic_irq_update(s);
1765         return MEMTX_OK;
1766     }
1767     if (size == 4) {
1768         nvic_writel(s, offset, value, attrs);
1769         return MEMTX_OK;
1770     }
1771     qemu_log_mask(LOG_GUEST_ERROR,
1772                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1773     /* This is UNPREDICTABLE; treat as RAZ/WI */
1774     return MEMTX_OK;
1775 }
1776 
1777 static const MemoryRegionOps nvic_sysreg_ops = {
1778     .read_with_attrs = nvic_sysreg_read,
1779     .write_with_attrs = nvic_sysreg_write,
1780     .endianness = DEVICE_NATIVE_ENDIAN,
1781 };
1782 
1783 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1784                                         uint64_t value, unsigned size,
1785                                         MemTxAttrs attrs)
1786 {
1787     if (attrs.secure) {
1788         /* S accesses to the alias act like NS accesses to the real region */
1789         attrs.secure = 0;
1790         return nvic_sysreg_write(opaque, addr, value, size, attrs);
1791     } else {
1792         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1793         if (attrs.user) {
1794             return MEMTX_ERROR;
1795         }
1796         return MEMTX_OK;
1797     }
1798 }
1799 
1800 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1801                                        uint64_t *data, unsigned size,
1802                                        MemTxAttrs attrs)
1803 {
1804     if (attrs.secure) {
1805         /* S accesses to the alias act like NS accesses to the real region */
1806         attrs.secure = 0;
1807         return nvic_sysreg_read(opaque, addr, data, size, attrs);
1808     } else {
1809         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1810         if (attrs.user) {
1811             return MEMTX_ERROR;
1812         }
1813         *data = 0;
1814         return MEMTX_OK;
1815     }
1816 }
1817 
1818 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1819     .read_with_attrs = nvic_sysreg_ns_read,
1820     .write_with_attrs = nvic_sysreg_ns_write,
1821     .endianness = DEVICE_NATIVE_ENDIAN,
1822 };
1823 
1824 static int nvic_post_load(void *opaque, int version_id)
1825 {
1826     NVICState *s = opaque;
1827     unsigned i;
1828     int resetprio;
1829 
1830     /* Check for out of range priority settings */
1831     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1832 
1833     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1834         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1835         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1836         return 1;
1837     }
1838     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1839         if (s->vectors[i].prio & ~0xff) {
1840             return 1;
1841         }
1842     }
1843 
1844     nvic_recompute_state(s);
1845 
1846     return 0;
1847 }
1848 
1849 static const VMStateDescription vmstate_VecInfo = {
1850     .name = "armv7m_nvic_info",
1851     .version_id = 1,
1852     .minimum_version_id = 1,
1853     .fields = (VMStateField[]) {
1854         VMSTATE_INT16(prio, VecInfo),
1855         VMSTATE_UINT8(enabled, VecInfo),
1856         VMSTATE_UINT8(pending, VecInfo),
1857         VMSTATE_UINT8(active, VecInfo),
1858         VMSTATE_UINT8(level, VecInfo),
1859         VMSTATE_END_OF_LIST()
1860     }
1861 };
1862 
1863 static bool nvic_security_needed(void *opaque)
1864 {
1865     NVICState *s = opaque;
1866 
1867     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1868 }
1869 
1870 static int nvic_security_post_load(void *opaque, int version_id)
1871 {
1872     NVICState *s = opaque;
1873     int i;
1874 
1875     /* Check for out of range priority settings */
1876     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
1877         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
1878         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
1879          * if the CPU state has been migrated yet; a mismatch won't
1880          * cause the emulation to blow up, though.
1881          */
1882         return 1;
1883     }
1884     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
1885         if (s->sec_vectors[i].prio & ~0xff) {
1886             return 1;
1887         }
1888     }
1889     return 0;
1890 }
1891 
1892 static const VMStateDescription vmstate_nvic_security = {
1893     .name = "nvic/m-security",
1894     .version_id = 1,
1895     .minimum_version_id = 1,
1896     .needed = nvic_security_needed,
1897     .post_load = &nvic_security_post_load,
1898     .fields = (VMStateField[]) {
1899         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
1900                              vmstate_VecInfo, VecInfo),
1901         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
1902         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
1903         VMSTATE_END_OF_LIST()
1904     }
1905 };
1906 
1907 static const VMStateDescription vmstate_nvic = {
1908     .name = "armv7m_nvic",
1909     .version_id = 4,
1910     .minimum_version_id = 4,
1911     .post_load = &nvic_post_load,
1912     .fields = (VMStateField[]) {
1913         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1914                              vmstate_VecInfo, VecInfo),
1915         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
1916         VMSTATE_END_OF_LIST()
1917     },
1918     .subsections = (const VMStateDescription*[]) {
1919         &vmstate_nvic_security,
1920         NULL
1921     }
1922 };
1923 
1924 static Property props_nvic[] = {
1925     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1926     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1927     DEFINE_PROP_END_OF_LIST()
1928 };
1929 
1930 static void armv7m_nvic_reset(DeviceState *dev)
1931 {
1932     int resetprio;
1933     NVICState *s = NVIC(dev);
1934 
1935     memset(s->vectors, 0, sizeof(s->vectors));
1936     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
1937     s->prigroup[M_REG_NS] = 0;
1938     s->prigroup[M_REG_S] = 0;
1939 
1940     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1941     /* MEM, BUS, and USAGE are enabled through
1942      * the System Handler Control register
1943      */
1944     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1945     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1946     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1947     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1948 
1949     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1950     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
1951     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1952     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1953 
1954     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1955         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
1956         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
1957         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1958         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1959 
1960         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
1961         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1962         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
1963         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1964     } else {
1965         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1966     }
1967 
1968     /* Strictly speaking the reset handler should be enabled.
1969      * However, we don't simulate soft resets through the NVIC,
1970      * and the reset vector should never be pended.
1971      * So we leave it disabled to catch logic errors.
1972      */
1973 
1974     s->exception_prio = NVIC_NOEXC_PRIO;
1975     s->vectpending = 0;
1976     s->vectpending_is_s_banked = false;
1977     s->vectpending_prio = NVIC_NOEXC_PRIO;
1978 
1979     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1980         memset(s->itns, 0, sizeof(s->itns));
1981     } else {
1982         /* This state is constant and not guest accessible in a non-security
1983          * NVIC; we set the bits to true to avoid having to do a feature
1984          * bit check in the NVIC enable/pend/etc register accessors.
1985          */
1986         int i;
1987 
1988         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
1989             s->itns[i] = true;
1990         }
1991     }
1992 }
1993 
1994 static void nvic_systick_trigger(void *opaque, int n, int level)
1995 {
1996     NVICState *s = opaque;
1997 
1998     if (level) {
1999         /* SysTick just asked us to pend its exception.
2000          * (This is different from an external interrupt line's
2001          * behaviour.)
2002          * TODO: when we implement the banked systicks we must make
2003          * this pend the correct banked exception.
2004          */
2005         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, false);
2006     }
2007 }
2008 
2009 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2010 {
2011     NVICState *s = NVIC(dev);
2012     SysBusDevice *systick_sbd;
2013     Error *err = NULL;
2014     int regionlen;
2015 
2016     s->cpu = ARM_CPU(qemu_get_cpu(0));
2017     assert(s->cpu);
2018 
2019     if (s->num_irq > NVIC_MAX_IRQ) {
2020         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2021         return;
2022     }
2023 
2024     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2025 
2026     /* include space for internal exception vectors */
2027     s->num_irq += NVIC_FIRST_IRQ;
2028 
2029     object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
2030     if (err != NULL) {
2031         error_propagate(errp, err);
2032         return;
2033     }
2034     systick_sbd = SYS_BUS_DEVICE(&s->systick);
2035     sysbus_connect_irq(systick_sbd, 0,
2036                        qdev_get_gpio_in_named(dev, "systick-trigger", 0));
2037 
2038     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2039      * and looks like this:
2040      *  0x004 - ICTR
2041      *  0x010 - 0xff - systick
2042      *  0x100..0x7ec - NVIC
2043      *  0x7f0..0xcff - Reserved
2044      *  0xd00..0xd3c - SCS registers
2045      *  0xd40..0xeff - Reserved or Not implemented
2046      *  0xf00 - STIR
2047      *
2048      * Some registers within this space are banked between security states.
2049      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2050      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2051      * to the main SCS range, and non-secure accesses (including when
2052      * the security extension is not implemented) are RAZ/WI.
2053      * Note that both the main SCS range and the alias range are defined
2054      * to be exempt from memory attribution (R_BLJT) and so the memory
2055      * transaction attribute always matches the current CPU security
2056      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2057      * wrappers we change attrs.secure to indicate the NS access; so
2058      * generally code determining which banked register to use should
2059      * use attrs.secure; code determining actual behaviour of the system
2060      * should use env->v7m.secure.
2061      */
2062     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2063     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2064     /* The system register region goes at the bottom of the priority
2065      * stack as it covers the whole page.
2066      */
2067     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2068                           "nvic_sysregs", 0x1000);
2069     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2070     memory_region_add_subregion_overlap(&s->container, 0x10,
2071                                         sysbus_mmio_get_region(systick_sbd, 0),
2072                                         1);
2073 
2074     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2075         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2076                               &nvic_sysreg_ns_ops, s,
2077                               "nvic_sysregs_ns", 0x1000);
2078         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2079     }
2080 
2081     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2082 }
2083 
2084 static void armv7m_nvic_instance_init(Object *obj)
2085 {
2086     /* We have a different default value for the num-irq property
2087      * than our superclass. This function runs after qdev init
2088      * has set the defaults from the Property array and before
2089      * any user-specified property setting, so just modify the
2090      * value in the GICState struct.
2091      */
2092     DeviceState *dev = DEVICE(obj);
2093     NVICState *nvic = NVIC(obj);
2094     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2095 
2096     object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
2097     qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
2098 
2099     sysbus_init_irq(sbd, &nvic->excpout);
2100     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2101     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
2102 }
2103 
2104 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2105 {
2106     DeviceClass *dc = DEVICE_CLASS(klass);
2107 
2108     dc->vmsd  = &vmstate_nvic;
2109     dc->props = props_nvic;
2110     dc->reset = armv7m_nvic_reset;
2111     dc->realize = armv7m_nvic_realize;
2112 }
2113 
2114 static const TypeInfo armv7m_nvic_info = {
2115     .name          = TYPE_NVIC,
2116     .parent        = TYPE_SYS_BUS_DEVICE,
2117     .instance_init = armv7m_nvic_instance_init,
2118     .instance_size = sizeof(NVICState),
2119     .class_init    = armv7m_nvic_class_init,
2120     .class_size    = sizeof(SysBusDeviceClass),
2121 };
2122 
2123 static void armv7m_nvic_register_types(void)
2124 {
2125     type_register_static(&armv7m_nvic_info);
2126 }
2127 
2128 type_init(armv7m_nvic_register_types)
2129