1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 507 { 508 NVICState *s = (NVICState *)opaque; 509 bool banked = exc_is_banked(irq); 510 VecInfo *vec; 511 512 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 513 assert(!secure || banked); 514 515 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 516 517 trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio); 518 519 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 520 /* If a synchronous exception is pending then it may be 521 * escalated to HardFault if: 522 * * it is equal or lower priority to current execution 523 * * it is disabled 524 * (ie we need to take it immediately but we can't do so). 525 * Asynchronous exceptions (and interrupts) simply remain pending. 526 * 527 * For QEMU, we don't have any imprecise (asynchronous) faults, 528 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 529 * synchronous. 530 * Debug exceptions are awkward because only Debug exceptions 531 * resulting from the BKPT instruction should be escalated, 532 * but we don't currently implement any Debug exceptions other 533 * than those that result from BKPT, so we treat all debug exceptions 534 * as needing escalation. 535 * 536 * This all means we can identify whether to escalate based only on 537 * the exception number and don't (yet) need the caller to explicitly 538 * tell us whether this exception is synchronous or not. 539 */ 540 int running = nvic_exec_prio(s); 541 bool escalate = false; 542 543 if (exc_group_prio(s, vec->prio, secure) >= running) { 544 trace_nvic_escalate_prio(irq, vec->prio, running); 545 escalate = true; 546 } else if (!vec->enabled) { 547 trace_nvic_escalate_disabled(irq); 548 escalate = true; 549 } 550 551 if (escalate) { 552 553 /* We need to escalate this exception to a synchronous HardFault. 554 * If BFHFNMINS is set then we escalate to the banked HF for 555 * the target security state of the original exception; otherwise 556 * we take a Secure HardFault. 557 */ 558 irq = ARMV7M_EXCP_HARD; 559 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 560 (secure || 561 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 562 vec = &s->sec_vectors[irq]; 563 } else { 564 vec = &s->vectors[irq]; 565 } 566 if (running <= vec->prio) { 567 /* We want to escalate to HardFault but we can't take the 568 * synchronous HardFault at this point either. This is a 569 * Lockup condition due to a guest bug. We don't model 570 * Lockup, so report via cpu_abort() instead. 571 */ 572 cpu_abort(&s->cpu->parent_obj, 573 "Lockup: can't escalate %d to HardFault " 574 "(current priority %d)\n", irq, running); 575 } 576 577 /* HF may be banked but there is only one shared HFSR */ 578 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 579 } 580 } 581 582 if (!vec->pending) { 583 vec->pending = 1; 584 nvic_irq_update(s); 585 } 586 } 587 588 /* Make pending IRQ active. */ 589 bool armv7m_nvic_acknowledge_irq(void *opaque) 590 { 591 NVICState *s = (NVICState *)opaque; 592 CPUARMState *env = &s->cpu->env; 593 const int pending = s->vectpending; 594 const int running = nvic_exec_prio(s); 595 VecInfo *vec; 596 bool targets_secure; 597 598 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 599 600 if (s->vectpending_is_s_banked) { 601 vec = &s->sec_vectors[pending]; 602 targets_secure = true; 603 } else { 604 vec = &s->vectors[pending]; 605 targets_secure = !exc_is_banked(s->vectpending) && 606 exc_targets_secure(s, s->vectpending); 607 } 608 609 assert(vec->enabled); 610 assert(vec->pending); 611 612 assert(s->vectpending_prio < running); 613 614 trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure); 615 616 vec->active = 1; 617 vec->pending = 0; 618 619 write_v7m_exception(env, s->vectpending); 620 621 nvic_irq_update(s); 622 623 return targets_secure; 624 } 625 626 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 627 { 628 NVICState *s = (NVICState *)opaque; 629 VecInfo *vec; 630 int ret; 631 632 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 633 634 if (secure && exc_is_banked(irq)) { 635 vec = &s->sec_vectors[irq]; 636 } else { 637 vec = &s->vectors[irq]; 638 } 639 640 trace_nvic_complete_irq(irq, secure); 641 642 if (!vec->active) { 643 /* Tell the caller this was an illegal exception return */ 644 return -1; 645 } 646 647 ret = nvic_rettobase(s); 648 649 vec->active = 0; 650 if (vec->level) { 651 /* Re-pend the exception if it's still held high; only 652 * happens for extenal IRQs 653 */ 654 assert(irq >= NVIC_FIRST_IRQ); 655 vec->pending = 1; 656 } 657 658 nvic_irq_update(s); 659 660 return ret; 661 } 662 663 /* callback when external interrupt line is changed */ 664 static void set_irq_level(void *opaque, int n, int level) 665 { 666 NVICState *s = opaque; 667 VecInfo *vec; 668 669 n += NVIC_FIRST_IRQ; 670 671 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 672 673 trace_nvic_set_irq_level(n, level); 674 675 /* The pending status of an external interrupt is 676 * latched on rising edge and exception handler return. 677 * 678 * Pulsing the IRQ will always run the handler 679 * once, and the handler will re-run until the 680 * level is low when the handler completes. 681 */ 682 vec = &s->vectors[n]; 683 if (level != vec->level) { 684 vec->level = level; 685 if (level) { 686 armv7m_nvic_set_pending(s, n, false); 687 } 688 } 689 } 690 691 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 692 { 693 ARMCPU *cpu = s->cpu; 694 uint32_t val; 695 696 switch (offset) { 697 case 4: /* Interrupt Control Type. */ 698 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 699 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 700 { 701 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 702 int i; 703 704 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 705 goto bad_offset; 706 } 707 if (!attrs.secure) { 708 return 0; 709 } 710 val = 0; 711 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 712 if (s->itns[startvec + i]) { 713 val |= (1 << i); 714 } 715 } 716 return val; 717 } 718 case 0xd00: /* CPUID Base. */ 719 return cpu->midr; 720 case 0xd04: /* Interrupt Control State (ICSR) */ 721 /* VECTACTIVE */ 722 val = cpu->env.v7m.exception; 723 /* VECTPENDING */ 724 val |= (s->vectpending & 0xff) << 12; 725 /* ISRPENDING - set if any external IRQ is pending */ 726 if (nvic_isrpending(s)) { 727 val |= (1 << 22); 728 } 729 /* RETTOBASE - set if only one handler is active */ 730 if (nvic_rettobase(s)) { 731 val |= (1 << 11); 732 } 733 if (attrs.secure) { 734 /* PENDSTSET */ 735 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 736 val |= (1 << 26); 737 } 738 /* PENDSVSET */ 739 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 740 val |= (1 << 28); 741 } 742 } else { 743 /* PENDSTSET */ 744 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 745 val |= (1 << 26); 746 } 747 /* PENDSVSET */ 748 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 749 val |= (1 << 28); 750 } 751 } 752 /* NMIPENDSET */ 753 if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 754 s->vectors[ARMV7M_EXCP_NMI].pending) { 755 val |= (1 << 31); 756 } 757 /* ISRPREEMPT: RES0 when halting debug not implemented */ 758 /* STTNS: RES0 for the Main Extension */ 759 return val; 760 case 0xd08: /* Vector Table Offset. */ 761 return cpu->env.v7m.vecbase[attrs.secure]; 762 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 763 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 764 if (attrs.secure) { 765 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 766 val |= cpu->env.v7m.aircr; 767 } else { 768 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 769 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 770 * security isn't supported then BFHFNMINS is RAO (and 771 * the bit in env.v7m.aircr is always set). 772 */ 773 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 774 } 775 } 776 return val; 777 case 0xd10: /* System Control. */ 778 /* TODO: Implement SLEEPONEXIT. */ 779 return 0; 780 case 0xd14: /* Configuration Control. */ 781 /* The BFHFNMIGN bit is the only non-banked bit; we 782 * keep it in the non-secure copy of the register. 783 */ 784 val = cpu->env.v7m.ccr[attrs.secure]; 785 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 786 return val; 787 case 0xd24: /* System Handler Control and State (SHCSR) */ 788 val = 0; 789 if (attrs.secure) { 790 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 791 val |= (1 << 0); 792 } 793 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 794 val |= (1 << 2); 795 } 796 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 797 val |= (1 << 3); 798 } 799 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 800 val |= (1 << 7); 801 } 802 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 803 val |= (1 << 10); 804 } 805 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 806 val |= (1 << 11); 807 } 808 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 809 val |= (1 << 12); 810 } 811 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 812 val |= (1 << 13); 813 } 814 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 815 val |= (1 << 15); 816 } 817 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 818 val |= (1 << 16); 819 } 820 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 821 val |= (1 << 18); 822 } 823 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 824 val |= (1 << 21); 825 } 826 /* SecureFault is not banked but is always RAZ/WI to NS */ 827 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 828 val |= (1 << 4); 829 } 830 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 831 val |= (1 << 19); 832 } 833 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 834 val |= (1 << 20); 835 } 836 } else { 837 if (s->vectors[ARMV7M_EXCP_MEM].active) { 838 val |= (1 << 0); 839 } 840 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 841 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 842 if (s->vectors[ARMV7M_EXCP_HARD].active) { 843 val |= (1 << 2); 844 } 845 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 846 val |= (1 << 21); 847 } 848 } 849 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 850 val |= (1 << 3); 851 } 852 if (s->vectors[ARMV7M_EXCP_SVC].active) { 853 val |= (1 << 7); 854 } 855 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 856 val |= (1 << 10); 857 } 858 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 859 val |= (1 << 11); 860 } 861 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 862 val |= (1 << 12); 863 } 864 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 865 val |= (1 << 13); 866 } 867 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 868 val |= (1 << 15); 869 } 870 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 871 val |= (1 << 16); 872 } 873 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 874 val |= (1 << 18); 875 } 876 } 877 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 878 if (s->vectors[ARMV7M_EXCP_BUS].active) { 879 val |= (1 << 1); 880 } 881 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 882 val |= (1 << 14); 883 } 884 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 885 val |= (1 << 17); 886 } 887 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 888 s->vectors[ARMV7M_EXCP_NMI].active) { 889 /* NMIACT is not present in v7M */ 890 val |= (1 << 5); 891 } 892 } 893 894 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 895 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 896 val |= (1 << 8); 897 } 898 return val; 899 case 0xd2c: /* Hard Fault Status. */ 900 return cpu->env.v7m.hfsr; 901 case 0xd30: /* Debug Fault Status. */ 902 return cpu->env.v7m.dfsr; 903 case 0xd34: /* MMFAR MemManage Fault Address */ 904 return cpu->env.v7m.mmfar[attrs.secure]; 905 case 0xd38: /* Bus Fault Address. */ 906 return cpu->env.v7m.bfar; 907 case 0xd3c: /* Aux Fault Status. */ 908 /* TODO: Implement fault status registers. */ 909 qemu_log_mask(LOG_UNIMP, 910 "Aux Fault status registers unimplemented\n"); 911 return 0; 912 case 0xd40: /* PFR0. */ 913 return 0x00000030; 914 case 0xd44: /* PRF1. */ 915 return 0x00000200; 916 case 0xd48: /* DFR0. */ 917 return 0x00100000; 918 case 0xd4c: /* AFR0. */ 919 return 0x00000000; 920 case 0xd50: /* MMFR0. */ 921 return 0x00000030; 922 case 0xd54: /* MMFR1. */ 923 return 0x00000000; 924 case 0xd58: /* MMFR2. */ 925 return 0x00000000; 926 case 0xd5c: /* MMFR3. */ 927 return 0x00000000; 928 case 0xd60: /* ISAR0. */ 929 return 0x01141110; 930 case 0xd64: /* ISAR1. */ 931 return 0x02111000; 932 case 0xd68: /* ISAR2. */ 933 return 0x21112231; 934 case 0xd6c: /* ISAR3. */ 935 return 0x01111110; 936 case 0xd70: /* ISAR4. */ 937 return 0x01310102; 938 /* TODO: Implement debug registers. */ 939 case 0xd90: /* MPU_TYPE */ 940 /* Unified MPU; if the MPU is not present this value is zero */ 941 return cpu->pmsav7_dregion << 8; 942 break; 943 case 0xd94: /* MPU_CTRL */ 944 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 945 case 0xd98: /* MPU_RNR */ 946 return cpu->env.pmsav7.rnr[attrs.secure]; 947 case 0xd9c: /* MPU_RBAR */ 948 case 0xda4: /* MPU_RBAR_A1 */ 949 case 0xdac: /* MPU_RBAR_A2 */ 950 case 0xdb4: /* MPU_RBAR_A3 */ 951 { 952 int region = cpu->env.pmsav7.rnr[attrs.secure]; 953 954 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 955 /* PMSAv8M handling of the aliases is different from v7M: 956 * aliases A1, A2, A3 override the low two bits of the region 957 * number in MPU_RNR, and there is no 'region' field in the 958 * RBAR register. 959 */ 960 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 961 if (aliasno) { 962 region = deposit32(region, 0, 2, aliasno); 963 } 964 if (region >= cpu->pmsav7_dregion) { 965 return 0; 966 } 967 return cpu->env.pmsav8.rbar[attrs.secure][region]; 968 } 969 970 if (region >= cpu->pmsav7_dregion) { 971 return 0; 972 } 973 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 974 } 975 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 976 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 977 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 978 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 979 { 980 int region = cpu->env.pmsav7.rnr[attrs.secure]; 981 982 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 983 /* PMSAv8M handling of the aliases is different from v7M: 984 * aliases A1, A2, A3 override the low two bits of the region 985 * number in MPU_RNR. 986 */ 987 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 988 if (aliasno) { 989 region = deposit32(region, 0, 2, aliasno); 990 } 991 if (region >= cpu->pmsav7_dregion) { 992 return 0; 993 } 994 return cpu->env.pmsav8.rlar[attrs.secure][region]; 995 } 996 997 if (region >= cpu->pmsav7_dregion) { 998 return 0; 999 } 1000 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1001 (cpu->env.pmsav7.drsr[region] & 0xffff); 1002 } 1003 case 0xdc0: /* MPU_MAIR0 */ 1004 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1005 goto bad_offset; 1006 } 1007 return cpu->env.pmsav8.mair0[attrs.secure]; 1008 case 0xdc4: /* MPU_MAIR1 */ 1009 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1010 goto bad_offset; 1011 } 1012 return cpu->env.pmsav8.mair1[attrs.secure]; 1013 case 0xdd0: /* SAU_CTRL */ 1014 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1015 goto bad_offset; 1016 } 1017 if (!attrs.secure) { 1018 return 0; 1019 } 1020 return cpu->env.sau.ctrl; 1021 case 0xdd4: /* SAU_TYPE */ 1022 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1023 goto bad_offset; 1024 } 1025 if (!attrs.secure) { 1026 return 0; 1027 } 1028 return cpu->sau_sregion; 1029 case 0xdd8: /* SAU_RNR */ 1030 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1031 goto bad_offset; 1032 } 1033 if (!attrs.secure) { 1034 return 0; 1035 } 1036 return cpu->env.sau.rnr; 1037 case 0xddc: /* SAU_RBAR */ 1038 { 1039 int region = cpu->env.sau.rnr; 1040 1041 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1042 goto bad_offset; 1043 } 1044 if (!attrs.secure) { 1045 return 0; 1046 } 1047 if (region >= cpu->sau_sregion) { 1048 return 0; 1049 } 1050 return cpu->env.sau.rbar[region]; 1051 } 1052 case 0xde0: /* SAU_RLAR */ 1053 { 1054 int region = cpu->env.sau.rnr; 1055 1056 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1057 goto bad_offset; 1058 } 1059 if (!attrs.secure) { 1060 return 0; 1061 } 1062 if (region >= cpu->sau_sregion) { 1063 return 0; 1064 } 1065 return cpu->env.sau.rlar[region]; 1066 } 1067 case 0xde4: /* SFSR */ 1068 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1069 goto bad_offset; 1070 } 1071 if (!attrs.secure) { 1072 return 0; 1073 } 1074 return cpu->env.v7m.sfsr; 1075 case 0xde8: /* SFAR */ 1076 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1077 goto bad_offset; 1078 } 1079 if (!attrs.secure) { 1080 return 0; 1081 } 1082 return cpu->env.v7m.sfar; 1083 default: 1084 bad_offset: 1085 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1086 return 0; 1087 } 1088 } 1089 1090 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1091 MemTxAttrs attrs) 1092 { 1093 ARMCPU *cpu = s->cpu; 1094 1095 switch (offset) { 1096 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1097 { 1098 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1099 int i; 1100 1101 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1102 goto bad_offset; 1103 } 1104 if (!attrs.secure) { 1105 break; 1106 } 1107 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1108 s->itns[startvec + i] = (value >> i) & 1; 1109 } 1110 nvic_irq_update(s); 1111 break; 1112 } 1113 case 0xd04: /* Interrupt Control State (ICSR) */ 1114 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1115 if (value & (1 << 31)) { 1116 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1117 } else if (value & (1 << 30) && 1118 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1119 /* PENDNMICLR didn't exist in v7M */ 1120 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1121 } 1122 } 1123 if (value & (1 << 28)) { 1124 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1125 } else if (value & (1 << 27)) { 1126 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1127 } 1128 if (value & (1 << 26)) { 1129 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1130 } else if (value & (1 << 25)) { 1131 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1132 } 1133 break; 1134 case 0xd08: /* Vector Table Offset. */ 1135 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1136 break; 1137 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1138 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1139 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1140 if (attrs.secure || 1141 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1142 qemu_irq_pulse(s->sysresetreq); 1143 } 1144 } 1145 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1146 qemu_log_mask(LOG_GUEST_ERROR, 1147 "Setting VECTCLRACTIVE when not in DEBUG mode " 1148 "is UNPREDICTABLE\n"); 1149 } 1150 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1151 /* NB: this bit is RES0 in v8M */ 1152 qemu_log_mask(LOG_GUEST_ERROR, 1153 "Setting VECTRESET when not in DEBUG mode " 1154 "is UNPREDICTABLE\n"); 1155 } 1156 s->prigroup[attrs.secure] = extract32(value, 1157 R_V7M_AIRCR_PRIGROUP_SHIFT, 1158 R_V7M_AIRCR_PRIGROUP_LENGTH); 1159 if (attrs.secure) { 1160 /* These bits are only writable by secure */ 1161 cpu->env.v7m.aircr = value & 1162 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1163 R_V7M_AIRCR_BFHFNMINS_MASK | 1164 R_V7M_AIRCR_PRIS_MASK); 1165 /* BFHFNMINS changes the priority of Secure HardFault, and 1166 * allows a pending Non-secure HardFault to preempt (which 1167 * we implement by marking it enabled). 1168 */ 1169 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1170 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1171 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1172 } else { 1173 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1174 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1175 } 1176 } 1177 nvic_irq_update(s); 1178 } 1179 break; 1180 case 0xd10: /* System Control. */ 1181 /* TODO: Implement control registers. */ 1182 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 1183 break; 1184 case 0xd14: /* Configuration Control. */ 1185 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1186 value &= (R_V7M_CCR_STKALIGN_MASK | 1187 R_V7M_CCR_BFHFNMIGN_MASK | 1188 R_V7M_CCR_DIV_0_TRP_MASK | 1189 R_V7M_CCR_UNALIGN_TRP_MASK | 1190 R_V7M_CCR_USERSETMPEND_MASK | 1191 R_V7M_CCR_NONBASETHRDENA_MASK); 1192 1193 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1194 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1195 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1196 | R_V7M_CCR_STKALIGN_MASK; 1197 } 1198 if (attrs.secure) { 1199 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1200 cpu->env.v7m.ccr[M_REG_NS] = 1201 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1202 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1203 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1204 } 1205 1206 cpu->env.v7m.ccr[attrs.secure] = value; 1207 break; 1208 case 0xd24: /* System Handler Control and State (SHCSR) */ 1209 if (attrs.secure) { 1210 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1211 /* Secure HardFault active bit cannot be written */ 1212 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1213 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1214 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1215 (value & (1 << 10)) != 0; 1216 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1217 (value & (1 << 11)) != 0; 1218 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1219 (value & (1 << 12)) != 0; 1220 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1221 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1222 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1223 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1224 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1225 (value & (1 << 18)) != 0; 1226 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1227 /* SecureFault not banked, but RAZ/WI to NS */ 1228 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1229 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1230 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1231 } else { 1232 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1233 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1234 /* HARDFAULTPENDED is not present in v7M */ 1235 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1236 } 1237 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1238 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1239 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1240 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1241 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1242 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1243 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1244 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1245 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1246 } 1247 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1248 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1249 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1250 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1251 } 1252 /* NMIACT can only be written if the write is of a zero, with 1253 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1254 */ 1255 if (!attrs.secure && cpu->env.v7m.secure && 1256 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1257 (value & (1 << 5)) == 0) { 1258 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1259 } 1260 /* HARDFAULTACT can only be written if the write is of a zero 1261 * to the non-secure HardFault state by the CPU in secure state. 1262 * The only case where we can be targeting the non-secure HF state 1263 * when in secure state is if this is a write via the NS alias 1264 * and BFHFNMINS is 1. 1265 */ 1266 if (!attrs.secure && cpu->env.v7m.secure && 1267 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1268 (value & (1 << 2)) == 0) { 1269 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1270 } 1271 1272 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1273 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1274 nvic_irq_update(s); 1275 break; 1276 case 0xd2c: /* Hard Fault Status. */ 1277 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1278 break; 1279 case 0xd30: /* Debug Fault Status. */ 1280 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1281 break; 1282 case 0xd34: /* Mem Manage Address. */ 1283 cpu->env.v7m.mmfar[attrs.secure] = value; 1284 return; 1285 case 0xd38: /* Bus Fault Address. */ 1286 cpu->env.v7m.bfar = value; 1287 return; 1288 case 0xd3c: /* Aux Fault Status. */ 1289 qemu_log_mask(LOG_UNIMP, 1290 "NVIC: Aux fault status registers unimplemented\n"); 1291 break; 1292 case 0xd90: /* MPU_TYPE */ 1293 return; /* RO */ 1294 case 0xd94: /* MPU_CTRL */ 1295 if ((value & 1296 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1297 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1298 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1299 "UNPREDICTABLE\n"); 1300 } 1301 cpu->env.v7m.mpu_ctrl[attrs.secure] 1302 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1303 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1304 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1305 tlb_flush(CPU(cpu)); 1306 break; 1307 case 0xd98: /* MPU_RNR */ 1308 if (value >= cpu->pmsav7_dregion) { 1309 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1310 PRIu32 "/%" PRIu32 "\n", 1311 value, cpu->pmsav7_dregion); 1312 } else { 1313 cpu->env.pmsav7.rnr[attrs.secure] = value; 1314 } 1315 break; 1316 case 0xd9c: /* MPU_RBAR */ 1317 case 0xda4: /* MPU_RBAR_A1 */ 1318 case 0xdac: /* MPU_RBAR_A2 */ 1319 case 0xdb4: /* MPU_RBAR_A3 */ 1320 { 1321 int region; 1322 1323 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1324 /* PMSAv8M handling of the aliases is different from v7M: 1325 * aliases A1, A2, A3 override the low two bits of the region 1326 * number in MPU_RNR, and there is no 'region' field in the 1327 * RBAR register. 1328 */ 1329 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1330 1331 region = cpu->env.pmsav7.rnr[attrs.secure]; 1332 if (aliasno) { 1333 region = deposit32(region, 0, 2, aliasno); 1334 } 1335 if (region >= cpu->pmsav7_dregion) { 1336 return; 1337 } 1338 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1339 tlb_flush(CPU(cpu)); 1340 return; 1341 } 1342 1343 if (value & (1 << 4)) { 1344 /* VALID bit means use the region number specified in this 1345 * value and also update MPU_RNR.REGION with that value. 1346 */ 1347 region = extract32(value, 0, 4); 1348 if (region >= cpu->pmsav7_dregion) { 1349 qemu_log_mask(LOG_GUEST_ERROR, 1350 "MPU region out of range %u/%" PRIu32 "\n", 1351 region, cpu->pmsav7_dregion); 1352 return; 1353 } 1354 cpu->env.pmsav7.rnr[attrs.secure] = region; 1355 } else { 1356 region = cpu->env.pmsav7.rnr[attrs.secure]; 1357 } 1358 1359 if (region >= cpu->pmsav7_dregion) { 1360 return; 1361 } 1362 1363 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1364 tlb_flush(CPU(cpu)); 1365 break; 1366 } 1367 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1368 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1369 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1370 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1371 { 1372 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1373 1374 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1375 /* PMSAv8M handling of the aliases is different from v7M: 1376 * aliases A1, A2, A3 override the low two bits of the region 1377 * number in MPU_RNR. 1378 */ 1379 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1380 1381 region = cpu->env.pmsav7.rnr[attrs.secure]; 1382 if (aliasno) { 1383 region = deposit32(region, 0, 2, aliasno); 1384 } 1385 if (region >= cpu->pmsav7_dregion) { 1386 return; 1387 } 1388 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1389 tlb_flush(CPU(cpu)); 1390 return; 1391 } 1392 1393 if (region >= cpu->pmsav7_dregion) { 1394 return; 1395 } 1396 1397 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1398 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1399 tlb_flush(CPU(cpu)); 1400 break; 1401 } 1402 case 0xdc0: /* MPU_MAIR0 */ 1403 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1404 goto bad_offset; 1405 } 1406 if (cpu->pmsav7_dregion) { 1407 /* Register is RES0 if no MPU regions are implemented */ 1408 cpu->env.pmsav8.mair0[attrs.secure] = value; 1409 } 1410 /* We don't need to do anything else because memory attributes 1411 * only affect cacheability, and we don't implement caching. 1412 */ 1413 break; 1414 case 0xdc4: /* MPU_MAIR1 */ 1415 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1416 goto bad_offset; 1417 } 1418 if (cpu->pmsav7_dregion) { 1419 /* Register is RES0 if no MPU regions are implemented */ 1420 cpu->env.pmsav8.mair1[attrs.secure] = value; 1421 } 1422 /* We don't need to do anything else because memory attributes 1423 * only affect cacheability, and we don't implement caching. 1424 */ 1425 break; 1426 case 0xdd0: /* SAU_CTRL */ 1427 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1428 goto bad_offset; 1429 } 1430 if (!attrs.secure) { 1431 return; 1432 } 1433 cpu->env.sau.ctrl = value & 3; 1434 break; 1435 case 0xdd4: /* SAU_TYPE */ 1436 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1437 goto bad_offset; 1438 } 1439 break; 1440 case 0xdd8: /* SAU_RNR */ 1441 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1442 goto bad_offset; 1443 } 1444 if (!attrs.secure) { 1445 return; 1446 } 1447 if (value >= cpu->sau_sregion) { 1448 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1449 PRIu32 "/%" PRIu32 "\n", 1450 value, cpu->sau_sregion); 1451 } else { 1452 cpu->env.sau.rnr = value; 1453 } 1454 break; 1455 case 0xddc: /* SAU_RBAR */ 1456 { 1457 int region = cpu->env.sau.rnr; 1458 1459 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1460 goto bad_offset; 1461 } 1462 if (!attrs.secure) { 1463 return; 1464 } 1465 if (region >= cpu->sau_sregion) { 1466 return; 1467 } 1468 cpu->env.sau.rbar[region] = value & ~0x1f; 1469 tlb_flush(CPU(cpu)); 1470 break; 1471 } 1472 case 0xde0: /* SAU_RLAR */ 1473 { 1474 int region = cpu->env.sau.rnr; 1475 1476 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1477 goto bad_offset; 1478 } 1479 if (!attrs.secure) { 1480 return; 1481 } 1482 if (region >= cpu->sau_sregion) { 1483 return; 1484 } 1485 cpu->env.sau.rlar[region] = value & ~0x1c; 1486 tlb_flush(CPU(cpu)); 1487 break; 1488 } 1489 case 0xde4: /* SFSR */ 1490 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1491 goto bad_offset; 1492 } 1493 if (!attrs.secure) { 1494 return; 1495 } 1496 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1497 break; 1498 case 0xde8: /* SFAR */ 1499 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1500 goto bad_offset; 1501 } 1502 if (!attrs.secure) { 1503 return; 1504 } 1505 cpu->env.v7m.sfsr = value; 1506 break; 1507 case 0xf00: /* Software Triggered Interrupt Register */ 1508 { 1509 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1510 if (excnum < s->num_irq) { 1511 armv7m_nvic_set_pending(s, excnum, false); 1512 } 1513 break; 1514 } 1515 default: 1516 bad_offset: 1517 qemu_log_mask(LOG_GUEST_ERROR, 1518 "NVIC: Bad write offset 0x%x\n", offset); 1519 } 1520 } 1521 1522 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1523 { 1524 /* Return true if unprivileged access to this register is permitted. */ 1525 switch (offset) { 1526 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1527 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1528 * controls access even though the CPU is in Secure state (I_QDKX). 1529 */ 1530 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1531 default: 1532 /* All other user accesses cause a BusFault unconditionally */ 1533 return false; 1534 } 1535 } 1536 1537 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1538 { 1539 /* Behaviour for the SHPR register field for this exception: 1540 * return M_REG_NS to use the nonsecure vector (including for 1541 * non-banked exceptions), M_REG_S for the secure version of 1542 * a banked exception, and -1 if this field should RAZ/WI. 1543 */ 1544 switch (exc) { 1545 case ARMV7M_EXCP_MEM: 1546 case ARMV7M_EXCP_USAGE: 1547 case ARMV7M_EXCP_SVC: 1548 case ARMV7M_EXCP_PENDSV: 1549 case ARMV7M_EXCP_SYSTICK: 1550 /* Banked exceptions */ 1551 return attrs.secure; 1552 case ARMV7M_EXCP_BUS: 1553 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1554 if (!attrs.secure && 1555 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1556 return -1; 1557 } 1558 return M_REG_NS; 1559 case ARMV7M_EXCP_SECURE: 1560 /* Not banked, RAZ/WI from nonsecure */ 1561 if (!attrs.secure) { 1562 return -1; 1563 } 1564 return M_REG_NS; 1565 case ARMV7M_EXCP_DEBUG: 1566 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1567 return M_REG_NS; 1568 case 8 ... 10: 1569 case 13: 1570 /* RES0 */ 1571 return -1; 1572 default: 1573 /* Not reachable due to decode of SHPR register addresses */ 1574 g_assert_not_reached(); 1575 } 1576 } 1577 1578 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1579 uint64_t *data, unsigned size, 1580 MemTxAttrs attrs) 1581 { 1582 NVICState *s = (NVICState *)opaque; 1583 uint32_t offset = addr; 1584 unsigned i, startvec, end; 1585 uint32_t val; 1586 1587 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1588 /* Generate BusFault for unprivileged accesses */ 1589 return MEMTX_ERROR; 1590 } 1591 1592 switch (offset) { 1593 /* reads of set and clear both return the status */ 1594 case 0x100 ... 0x13f: /* NVIC Set enable */ 1595 offset += 0x80; 1596 /* fall through */ 1597 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1598 val = 0; 1599 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 1600 1601 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1602 if (s->vectors[startvec + i].enabled && 1603 (attrs.secure || s->itns[startvec + i])) { 1604 val |= (1 << i); 1605 } 1606 } 1607 break; 1608 case 0x200 ... 0x23f: /* NVIC Set pend */ 1609 offset += 0x80; 1610 /* fall through */ 1611 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1612 val = 0; 1613 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 1614 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1615 if (s->vectors[startvec + i].pending && 1616 (attrs.secure || s->itns[startvec + i])) { 1617 val |= (1 << i); 1618 } 1619 } 1620 break; 1621 case 0x300 ... 0x33f: /* NVIC Active */ 1622 val = 0; 1623 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 1624 1625 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1626 if (s->vectors[startvec + i].active && 1627 (attrs.secure || s->itns[startvec + i])) { 1628 val |= (1 << i); 1629 } 1630 } 1631 break; 1632 case 0x400 ... 0x5ef: /* NVIC Priority */ 1633 val = 0; 1634 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1635 1636 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1637 if (attrs.secure || s->itns[startvec + i]) { 1638 val |= s->vectors[startvec + i].prio << (8 * i); 1639 } 1640 } 1641 break; 1642 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1643 val = 0; 1644 for (i = 0; i < size; i++) { 1645 unsigned hdlidx = (offset - 0xd14) + i; 1646 int sbank = shpr_bank(s, hdlidx, attrs); 1647 1648 if (sbank < 0) { 1649 continue; 1650 } 1651 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1652 } 1653 break; 1654 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1655 /* The BFSR bits [15:8] are shared between security states 1656 * and we store them in the NS copy 1657 */ 1658 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1659 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1660 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1661 break; 1662 case 0xfe0 ... 0xfff: /* ID. */ 1663 if (offset & 3) { 1664 val = 0; 1665 } else { 1666 val = nvic_id[(offset - 0xfe0) >> 2]; 1667 } 1668 break; 1669 default: 1670 if (size == 4) { 1671 val = nvic_readl(s, offset, attrs); 1672 } else { 1673 qemu_log_mask(LOG_GUEST_ERROR, 1674 "NVIC: Bad read of size %d at offset 0x%x\n", 1675 size, offset); 1676 val = 0; 1677 } 1678 } 1679 1680 trace_nvic_sysreg_read(addr, val, size); 1681 *data = val; 1682 return MEMTX_OK; 1683 } 1684 1685 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1686 uint64_t value, unsigned size, 1687 MemTxAttrs attrs) 1688 { 1689 NVICState *s = (NVICState *)opaque; 1690 uint32_t offset = addr; 1691 unsigned i, startvec, end; 1692 unsigned setval = 0; 1693 1694 trace_nvic_sysreg_write(addr, value, size); 1695 1696 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1697 /* Generate BusFault for unprivileged accesses */ 1698 return MEMTX_ERROR; 1699 } 1700 1701 switch (offset) { 1702 case 0x100 ... 0x13f: /* NVIC Set enable */ 1703 offset += 0x80; 1704 setval = 1; 1705 /* fall through */ 1706 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1707 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1708 1709 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1710 if (value & (1 << i) && 1711 (attrs.secure || s->itns[startvec + i])) { 1712 s->vectors[startvec + i].enabled = setval; 1713 } 1714 } 1715 nvic_irq_update(s); 1716 return MEMTX_OK; 1717 case 0x200 ... 0x23f: /* NVIC Set pend */ 1718 /* the special logic in armv7m_nvic_set_pending() 1719 * is not needed since IRQs are never escalated 1720 */ 1721 offset += 0x80; 1722 setval = 1; 1723 /* fall through */ 1724 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1725 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1726 1727 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1728 if (value & (1 << i) && 1729 (attrs.secure || s->itns[startvec + i])) { 1730 s->vectors[startvec + i].pending = setval; 1731 } 1732 } 1733 nvic_irq_update(s); 1734 return MEMTX_OK; 1735 case 0x300 ... 0x33f: /* NVIC Active */ 1736 return MEMTX_OK; /* R/O */ 1737 case 0x400 ... 0x5ef: /* NVIC Priority */ 1738 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1739 1740 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1741 if (attrs.secure || s->itns[startvec + i]) { 1742 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1743 } 1744 } 1745 nvic_irq_update(s); 1746 return MEMTX_OK; 1747 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1748 for (i = 0; i < size; i++) { 1749 unsigned hdlidx = (offset - 0xd14) + i; 1750 int newprio = extract32(value, i * 8, 8); 1751 int sbank = shpr_bank(s, hdlidx, attrs); 1752 1753 if (sbank < 0) { 1754 continue; 1755 } 1756 set_prio(s, hdlidx, sbank, newprio); 1757 } 1758 nvic_irq_update(s); 1759 return MEMTX_OK; 1760 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1761 /* All bits are W1C, so construct 32 bit value with 0s in 1762 * the parts not written by the access size 1763 */ 1764 value <<= ((offset - 0xd28) * 8); 1765 1766 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1767 if (attrs.secure) { 1768 /* The BFSR bits [15:8] are shared between security states 1769 * and we store them in the NS copy. 1770 */ 1771 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1772 } 1773 return MEMTX_OK; 1774 } 1775 if (size == 4) { 1776 nvic_writel(s, offset, value, attrs); 1777 return MEMTX_OK; 1778 } 1779 qemu_log_mask(LOG_GUEST_ERROR, 1780 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1781 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1782 return MEMTX_OK; 1783 } 1784 1785 static const MemoryRegionOps nvic_sysreg_ops = { 1786 .read_with_attrs = nvic_sysreg_read, 1787 .write_with_attrs = nvic_sysreg_write, 1788 .endianness = DEVICE_NATIVE_ENDIAN, 1789 }; 1790 1791 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1792 uint64_t value, unsigned size, 1793 MemTxAttrs attrs) 1794 { 1795 MemoryRegion *mr = opaque; 1796 1797 if (attrs.secure) { 1798 /* S accesses to the alias act like NS accesses to the real region */ 1799 attrs.secure = 0; 1800 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1801 } else { 1802 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1803 if (attrs.user) { 1804 return MEMTX_ERROR; 1805 } 1806 return MEMTX_OK; 1807 } 1808 } 1809 1810 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1811 uint64_t *data, unsigned size, 1812 MemTxAttrs attrs) 1813 { 1814 MemoryRegion *mr = opaque; 1815 1816 if (attrs.secure) { 1817 /* S accesses to the alias act like NS accesses to the real region */ 1818 attrs.secure = 0; 1819 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1820 } else { 1821 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1822 if (attrs.user) { 1823 return MEMTX_ERROR; 1824 } 1825 *data = 0; 1826 return MEMTX_OK; 1827 } 1828 } 1829 1830 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1831 .read_with_attrs = nvic_sysreg_ns_read, 1832 .write_with_attrs = nvic_sysreg_ns_write, 1833 .endianness = DEVICE_NATIVE_ENDIAN, 1834 }; 1835 1836 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 1837 uint64_t value, unsigned size, 1838 MemTxAttrs attrs) 1839 { 1840 NVICState *s = opaque; 1841 MemoryRegion *mr; 1842 1843 /* Direct the access to the correct systick */ 1844 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1845 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1846 } 1847 1848 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 1849 uint64_t *data, unsigned size, 1850 MemTxAttrs attrs) 1851 { 1852 NVICState *s = opaque; 1853 MemoryRegion *mr; 1854 1855 /* Direct the access to the correct systick */ 1856 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1857 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1858 } 1859 1860 static const MemoryRegionOps nvic_systick_ops = { 1861 .read_with_attrs = nvic_systick_read, 1862 .write_with_attrs = nvic_systick_write, 1863 .endianness = DEVICE_NATIVE_ENDIAN, 1864 }; 1865 1866 static int nvic_post_load(void *opaque, int version_id) 1867 { 1868 NVICState *s = opaque; 1869 unsigned i; 1870 int resetprio; 1871 1872 /* Check for out of range priority settings */ 1873 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1874 1875 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 1876 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1877 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1878 return 1; 1879 } 1880 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1881 if (s->vectors[i].prio & ~0xff) { 1882 return 1; 1883 } 1884 } 1885 1886 nvic_recompute_state(s); 1887 1888 return 0; 1889 } 1890 1891 static const VMStateDescription vmstate_VecInfo = { 1892 .name = "armv7m_nvic_info", 1893 .version_id = 1, 1894 .minimum_version_id = 1, 1895 .fields = (VMStateField[]) { 1896 VMSTATE_INT16(prio, VecInfo), 1897 VMSTATE_UINT8(enabled, VecInfo), 1898 VMSTATE_UINT8(pending, VecInfo), 1899 VMSTATE_UINT8(active, VecInfo), 1900 VMSTATE_UINT8(level, VecInfo), 1901 VMSTATE_END_OF_LIST() 1902 } 1903 }; 1904 1905 static bool nvic_security_needed(void *opaque) 1906 { 1907 NVICState *s = opaque; 1908 1909 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 1910 } 1911 1912 static int nvic_security_post_load(void *opaque, int version_id) 1913 { 1914 NVICState *s = opaque; 1915 int i; 1916 1917 /* Check for out of range priority settings */ 1918 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 1919 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 1920 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 1921 * if the CPU state has been migrated yet; a mismatch won't 1922 * cause the emulation to blow up, though. 1923 */ 1924 return 1; 1925 } 1926 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 1927 if (s->sec_vectors[i].prio & ~0xff) { 1928 return 1; 1929 } 1930 } 1931 return 0; 1932 } 1933 1934 static const VMStateDescription vmstate_nvic_security = { 1935 .name = "nvic/m-security", 1936 .version_id = 1, 1937 .minimum_version_id = 1, 1938 .needed = nvic_security_needed, 1939 .post_load = &nvic_security_post_load, 1940 .fields = (VMStateField[]) { 1941 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 1942 vmstate_VecInfo, VecInfo), 1943 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 1944 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 1945 VMSTATE_END_OF_LIST() 1946 } 1947 }; 1948 1949 static const VMStateDescription vmstate_nvic = { 1950 .name = "armv7m_nvic", 1951 .version_id = 4, 1952 .minimum_version_id = 4, 1953 .post_load = &nvic_post_load, 1954 .fields = (VMStateField[]) { 1955 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1956 vmstate_VecInfo, VecInfo), 1957 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 1958 VMSTATE_END_OF_LIST() 1959 }, 1960 .subsections = (const VMStateDescription*[]) { 1961 &vmstate_nvic_security, 1962 NULL 1963 } 1964 }; 1965 1966 static Property props_nvic[] = { 1967 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1968 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1969 DEFINE_PROP_END_OF_LIST() 1970 }; 1971 1972 static void armv7m_nvic_reset(DeviceState *dev) 1973 { 1974 int resetprio; 1975 NVICState *s = NVIC(dev); 1976 1977 memset(s->vectors, 0, sizeof(s->vectors)); 1978 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 1979 s->prigroup[M_REG_NS] = 0; 1980 s->prigroup[M_REG_S] = 0; 1981 1982 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1983 /* MEM, BUS, and USAGE are enabled through 1984 * the System Handler Control register 1985 */ 1986 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1987 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1988 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1989 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1990 1991 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1992 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 1993 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1994 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1995 1996 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1997 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 1998 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 1999 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2000 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2001 2002 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2003 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2004 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2005 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2006 } else { 2007 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2008 } 2009 2010 /* Strictly speaking the reset handler should be enabled. 2011 * However, we don't simulate soft resets through the NVIC, 2012 * and the reset vector should never be pended. 2013 * So we leave it disabled to catch logic errors. 2014 */ 2015 2016 s->exception_prio = NVIC_NOEXC_PRIO; 2017 s->vectpending = 0; 2018 s->vectpending_is_s_banked = false; 2019 s->vectpending_prio = NVIC_NOEXC_PRIO; 2020 2021 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2022 memset(s->itns, 0, sizeof(s->itns)); 2023 } else { 2024 /* This state is constant and not guest accessible in a non-security 2025 * NVIC; we set the bits to true to avoid having to do a feature 2026 * bit check in the NVIC enable/pend/etc register accessors. 2027 */ 2028 int i; 2029 2030 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2031 s->itns[i] = true; 2032 } 2033 } 2034 } 2035 2036 static void nvic_systick_trigger(void *opaque, int n, int level) 2037 { 2038 NVICState *s = opaque; 2039 2040 if (level) { 2041 /* SysTick just asked us to pend its exception. 2042 * (This is different from an external interrupt line's 2043 * behaviour.) 2044 * n == 0 : NonSecure systick 2045 * n == 1 : Secure systick 2046 */ 2047 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2048 } 2049 } 2050 2051 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2052 { 2053 NVICState *s = NVIC(dev); 2054 Error *err = NULL; 2055 int regionlen; 2056 2057 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2058 assert(s->cpu); 2059 2060 if (s->num_irq > NVIC_MAX_IRQ) { 2061 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2062 return; 2063 } 2064 2065 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2066 2067 /* include space for internal exception vectors */ 2068 s->num_irq += NVIC_FIRST_IRQ; 2069 2070 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2071 "realized", &err); 2072 if (err != NULL) { 2073 error_propagate(errp, err); 2074 return; 2075 } 2076 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2077 qdev_get_gpio_in_named(dev, "systick-trigger", 2078 M_REG_NS)); 2079 2080 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2081 /* We couldn't init the secure systick device in instance_init 2082 * as we didn't know then if the CPU had the security extensions; 2083 * so we have to do it here. 2084 */ 2085 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2086 TYPE_SYSTICK); 2087 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2088 2089 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2090 "realized", &err); 2091 if (err != NULL) { 2092 error_propagate(errp, err); 2093 return; 2094 } 2095 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2096 qdev_get_gpio_in_named(dev, "systick-trigger", 2097 M_REG_S)); 2098 } 2099 2100 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2101 * and looks like this: 2102 * 0x004 - ICTR 2103 * 0x010 - 0xff - systick 2104 * 0x100..0x7ec - NVIC 2105 * 0x7f0..0xcff - Reserved 2106 * 0xd00..0xd3c - SCS registers 2107 * 0xd40..0xeff - Reserved or Not implemented 2108 * 0xf00 - STIR 2109 * 2110 * Some registers within this space are banked between security states. 2111 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2112 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2113 * to the main SCS range, and non-secure accesses (including when 2114 * the security extension is not implemented) are RAZ/WI. 2115 * Note that both the main SCS range and the alias range are defined 2116 * to be exempt from memory attribution (R_BLJT) and so the memory 2117 * transaction attribute always matches the current CPU security 2118 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2119 * wrappers we change attrs.secure to indicate the NS access; so 2120 * generally code determining which banked register to use should 2121 * use attrs.secure; code determining actual behaviour of the system 2122 * should use env->v7m.secure. 2123 */ 2124 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2125 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2126 /* The system register region goes at the bottom of the priority 2127 * stack as it covers the whole page. 2128 */ 2129 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2130 "nvic_sysregs", 0x1000); 2131 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2132 2133 memory_region_init_io(&s->systickmem, OBJECT(s), 2134 &nvic_systick_ops, s, 2135 "nvic_systick", 0xe0); 2136 2137 memory_region_add_subregion_overlap(&s->container, 0x10, 2138 &s->systickmem, 1); 2139 2140 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2141 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2142 &nvic_sysreg_ns_ops, &s->sysregmem, 2143 "nvic_sysregs_ns", 0x1000); 2144 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2145 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2146 &nvic_sysreg_ns_ops, &s->systickmem, 2147 "nvic_systick_ns", 0xe0); 2148 memory_region_add_subregion_overlap(&s->container, 0x20010, 2149 &s->systick_ns_mem, 1); 2150 } 2151 2152 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2153 } 2154 2155 static void armv7m_nvic_instance_init(Object *obj) 2156 { 2157 /* We have a different default value for the num-irq property 2158 * than our superclass. This function runs after qdev init 2159 * has set the defaults from the Property array and before 2160 * any user-specified property setting, so just modify the 2161 * value in the GICState struct. 2162 */ 2163 DeviceState *dev = DEVICE(obj); 2164 NVICState *nvic = NVIC(obj); 2165 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2166 2167 object_initialize(&nvic->systick[M_REG_NS], 2168 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2169 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default()); 2170 /* We can't initialize the secure systick here, as we don't know 2171 * yet if we need it. 2172 */ 2173 2174 sysbus_init_irq(sbd, &nvic->excpout); 2175 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2176 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2177 M_REG_NUM_BANKS); 2178 } 2179 2180 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2181 { 2182 DeviceClass *dc = DEVICE_CLASS(klass); 2183 2184 dc->vmsd = &vmstate_nvic; 2185 dc->props = props_nvic; 2186 dc->reset = armv7m_nvic_reset; 2187 dc->realize = armv7m_nvic_realize; 2188 } 2189 2190 static const TypeInfo armv7m_nvic_info = { 2191 .name = TYPE_NVIC, 2192 .parent = TYPE_SYS_BUS_DEVICE, 2193 .instance_init = armv7m_nvic_instance_init, 2194 .instance_size = sizeof(NVICState), 2195 .class_init = armv7m_nvic_class_init, 2196 .class_size = sizeof(SysBusDeviceClass), 2197 }; 2198 2199 static void armv7m_nvic_register_types(void) 2200 { 2201 type_register_static(&armv7m_nvic_info); 2202 } 2203 2204 type_init(armv7m_nvic_register_types) 2205