xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 8f0a3716)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
507 {
508     NVICState *s = (NVICState *)opaque;
509     bool banked = exc_is_banked(irq);
510     VecInfo *vec;
511 
512     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
513     assert(!secure || banked);
514 
515     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
516 
517     trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio);
518 
519     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
520         /* If a synchronous exception is pending then it may be
521          * escalated to HardFault if:
522          *  * it is equal or lower priority to current execution
523          *  * it is disabled
524          * (ie we need to take it immediately but we can't do so).
525          * Asynchronous exceptions (and interrupts) simply remain pending.
526          *
527          * For QEMU, we don't have any imprecise (asynchronous) faults,
528          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
529          * synchronous.
530          * Debug exceptions are awkward because only Debug exceptions
531          * resulting from the BKPT instruction should be escalated,
532          * but we don't currently implement any Debug exceptions other
533          * than those that result from BKPT, so we treat all debug exceptions
534          * as needing escalation.
535          *
536          * This all means we can identify whether to escalate based only on
537          * the exception number and don't (yet) need the caller to explicitly
538          * tell us whether this exception is synchronous or not.
539          */
540         int running = nvic_exec_prio(s);
541         bool escalate = false;
542 
543         if (exc_group_prio(s, vec->prio, secure) >= running) {
544             trace_nvic_escalate_prio(irq, vec->prio, running);
545             escalate = true;
546         } else if (!vec->enabled) {
547             trace_nvic_escalate_disabled(irq);
548             escalate = true;
549         }
550 
551         if (escalate) {
552 
553             /* We need to escalate this exception to a synchronous HardFault.
554              * If BFHFNMINS is set then we escalate to the banked HF for
555              * the target security state of the original exception; otherwise
556              * we take a Secure HardFault.
557              */
558             irq = ARMV7M_EXCP_HARD;
559             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
560                 (secure ||
561                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
562                 vec = &s->sec_vectors[irq];
563             } else {
564                 vec = &s->vectors[irq];
565             }
566             if (running <= vec->prio) {
567                 /* We want to escalate to HardFault but we can't take the
568                  * synchronous HardFault at this point either. This is a
569                  * Lockup condition due to a guest bug. We don't model
570                  * Lockup, so report via cpu_abort() instead.
571                  */
572                 cpu_abort(&s->cpu->parent_obj,
573                           "Lockup: can't escalate %d to HardFault "
574                           "(current priority %d)\n", irq, running);
575             }
576 
577             /* HF may be banked but there is only one shared HFSR */
578             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
579         }
580     }
581 
582     if (!vec->pending) {
583         vec->pending = 1;
584         nvic_irq_update(s);
585     }
586 }
587 
588 /* Make pending IRQ active.  */
589 bool armv7m_nvic_acknowledge_irq(void *opaque)
590 {
591     NVICState *s = (NVICState *)opaque;
592     CPUARMState *env = &s->cpu->env;
593     const int pending = s->vectpending;
594     const int running = nvic_exec_prio(s);
595     VecInfo *vec;
596     bool targets_secure;
597 
598     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
599 
600     if (s->vectpending_is_s_banked) {
601         vec = &s->sec_vectors[pending];
602         targets_secure = true;
603     } else {
604         vec = &s->vectors[pending];
605         targets_secure = !exc_is_banked(s->vectpending) &&
606             exc_targets_secure(s, s->vectpending);
607     }
608 
609     assert(vec->enabled);
610     assert(vec->pending);
611 
612     assert(s->vectpending_prio < running);
613 
614     trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure);
615 
616     vec->active = 1;
617     vec->pending = 0;
618 
619     write_v7m_exception(env, s->vectpending);
620 
621     nvic_irq_update(s);
622 
623     return targets_secure;
624 }
625 
626 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
627 {
628     NVICState *s = (NVICState *)opaque;
629     VecInfo *vec;
630     int ret;
631 
632     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
633 
634     if (secure && exc_is_banked(irq)) {
635         vec = &s->sec_vectors[irq];
636     } else {
637         vec = &s->vectors[irq];
638     }
639 
640     trace_nvic_complete_irq(irq, secure);
641 
642     if (!vec->active) {
643         /* Tell the caller this was an illegal exception return */
644         return -1;
645     }
646 
647     ret = nvic_rettobase(s);
648 
649     vec->active = 0;
650     if (vec->level) {
651         /* Re-pend the exception if it's still held high; only
652          * happens for extenal IRQs
653          */
654         assert(irq >= NVIC_FIRST_IRQ);
655         vec->pending = 1;
656     }
657 
658     nvic_irq_update(s);
659 
660     return ret;
661 }
662 
663 /* callback when external interrupt line is changed */
664 static void set_irq_level(void *opaque, int n, int level)
665 {
666     NVICState *s = opaque;
667     VecInfo *vec;
668 
669     n += NVIC_FIRST_IRQ;
670 
671     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
672 
673     trace_nvic_set_irq_level(n, level);
674 
675     /* The pending status of an external interrupt is
676      * latched on rising edge and exception handler return.
677      *
678      * Pulsing the IRQ will always run the handler
679      * once, and the handler will re-run until the
680      * level is low when the handler completes.
681      */
682     vec = &s->vectors[n];
683     if (level != vec->level) {
684         vec->level = level;
685         if (level) {
686             armv7m_nvic_set_pending(s, n, false);
687         }
688     }
689 }
690 
691 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
692 {
693     ARMCPU *cpu = s->cpu;
694     uint32_t val;
695 
696     switch (offset) {
697     case 4: /* Interrupt Control Type.  */
698         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
699     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
700     {
701         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
702         int i;
703 
704         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
705             goto bad_offset;
706         }
707         if (!attrs.secure) {
708             return 0;
709         }
710         val = 0;
711         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
712             if (s->itns[startvec + i]) {
713                 val |= (1 << i);
714             }
715         }
716         return val;
717     }
718     case 0xd00: /* CPUID Base.  */
719         return cpu->midr;
720     case 0xd04: /* Interrupt Control State (ICSR) */
721         /* VECTACTIVE */
722         val = cpu->env.v7m.exception;
723         /* VECTPENDING */
724         val |= (s->vectpending & 0xff) << 12;
725         /* ISRPENDING - set if any external IRQ is pending */
726         if (nvic_isrpending(s)) {
727             val |= (1 << 22);
728         }
729         /* RETTOBASE - set if only one handler is active */
730         if (nvic_rettobase(s)) {
731             val |= (1 << 11);
732         }
733         if (attrs.secure) {
734             /* PENDSTSET */
735             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
736                 val |= (1 << 26);
737             }
738             /* PENDSVSET */
739             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
740                 val |= (1 << 28);
741             }
742         } else {
743             /* PENDSTSET */
744             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
745                 val |= (1 << 26);
746             }
747             /* PENDSVSET */
748             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
749                 val |= (1 << 28);
750             }
751         }
752         /* NMIPENDSET */
753         if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
754             s->vectors[ARMV7M_EXCP_NMI].pending) {
755             val |= (1 << 31);
756         }
757         /* ISRPREEMPT: RES0 when halting debug not implemented */
758         /* STTNS: RES0 for the Main Extension */
759         return val;
760     case 0xd08: /* Vector Table Offset.  */
761         return cpu->env.v7m.vecbase[attrs.secure];
762     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
763         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
764         if (attrs.secure) {
765             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
766             val |= cpu->env.v7m.aircr;
767         } else {
768             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
769                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
770                  * security isn't supported then BFHFNMINS is RAO (and
771                  * the bit in env.v7m.aircr is always set).
772                  */
773                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
774             }
775         }
776         return val;
777     case 0xd10: /* System Control.  */
778         /* TODO: Implement SLEEPONEXIT.  */
779         return 0;
780     case 0xd14: /* Configuration Control.  */
781         /* The BFHFNMIGN bit is the only non-banked bit; we
782          * keep it in the non-secure copy of the register.
783          */
784         val = cpu->env.v7m.ccr[attrs.secure];
785         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
786         return val;
787     case 0xd24: /* System Handler Control and State (SHCSR) */
788         val = 0;
789         if (attrs.secure) {
790             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
791                 val |= (1 << 0);
792             }
793             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
794                 val |= (1 << 2);
795             }
796             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
797                 val |= (1 << 3);
798             }
799             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
800                 val |= (1 << 7);
801             }
802             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
803                 val |= (1 << 10);
804             }
805             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
806                 val |= (1 << 11);
807             }
808             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
809                 val |= (1 << 12);
810             }
811             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
812                 val |= (1 << 13);
813             }
814             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
815                 val |= (1 << 15);
816             }
817             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
818                 val |= (1 << 16);
819             }
820             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
821                 val |= (1 << 18);
822             }
823             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
824                 val |= (1 << 21);
825             }
826             /* SecureFault is not banked but is always RAZ/WI to NS */
827             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
828                 val |= (1 << 4);
829             }
830             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
831                 val |= (1 << 19);
832             }
833             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
834                 val |= (1 << 20);
835             }
836         } else {
837             if (s->vectors[ARMV7M_EXCP_MEM].active) {
838                 val |= (1 << 0);
839             }
840             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
841                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
842                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
843                     val |= (1 << 2);
844                 }
845                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
846                     val |= (1 << 21);
847                 }
848             }
849             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
850                 val |= (1 << 3);
851             }
852             if (s->vectors[ARMV7M_EXCP_SVC].active) {
853                 val |= (1 << 7);
854             }
855             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
856                 val |= (1 << 10);
857             }
858             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
859                 val |= (1 << 11);
860             }
861             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
862                 val |= (1 << 12);
863             }
864             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
865                 val |= (1 << 13);
866             }
867             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
868                 val |= (1 << 15);
869             }
870             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
871                 val |= (1 << 16);
872             }
873             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
874                 val |= (1 << 18);
875             }
876         }
877         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
878             if (s->vectors[ARMV7M_EXCP_BUS].active) {
879                 val |= (1 << 1);
880             }
881             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
882                 val |= (1 << 14);
883             }
884             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
885                 val |= (1 << 17);
886             }
887             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
888                 s->vectors[ARMV7M_EXCP_NMI].active) {
889                 /* NMIACT is not present in v7M */
890                 val |= (1 << 5);
891             }
892         }
893 
894         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
895         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
896             val |= (1 << 8);
897         }
898         return val;
899     case 0xd2c: /* Hard Fault Status.  */
900         return cpu->env.v7m.hfsr;
901     case 0xd30: /* Debug Fault Status.  */
902         return cpu->env.v7m.dfsr;
903     case 0xd34: /* MMFAR MemManage Fault Address */
904         return cpu->env.v7m.mmfar[attrs.secure];
905     case 0xd38: /* Bus Fault Address.  */
906         return cpu->env.v7m.bfar;
907     case 0xd3c: /* Aux Fault Status.  */
908         /* TODO: Implement fault status registers.  */
909         qemu_log_mask(LOG_UNIMP,
910                       "Aux Fault status registers unimplemented\n");
911         return 0;
912     case 0xd40: /* PFR0.  */
913         return 0x00000030;
914     case 0xd44: /* PRF1.  */
915         return 0x00000200;
916     case 0xd48: /* DFR0.  */
917         return 0x00100000;
918     case 0xd4c: /* AFR0.  */
919         return 0x00000000;
920     case 0xd50: /* MMFR0.  */
921         return 0x00000030;
922     case 0xd54: /* MMFR1.  */
923         return 0x00000000;
924     case 0xd58: /* MMFR2.  */
925         return 0x00000000;
926     case 0xd5c: /* MMFR3.  */
927         return 0x00000000;
928     case 0xd60: /* ISAR0.  */
929         return 0x01141110;
930     case 0xd64: /* ISAR1.  */
931         return 0x02111000;
932     case 0xd68: /* ISAR2.  */
933         return 0x21112231;
934     case 0xd6c: /* ISAR3.  */
935         return 0x01111110;
936     case 0xd70: /* ISAR4.  */
937         return 0x01310102;
938     /* TODO: Implement debug registers.  */
939     case 0xd90: /* MPU_TYPE */
940         /* Unified MPU; if the MPU is not present this value is zero */
941         return cpu->pmsav7_dregion << 8;
942         break;
943     case 0xd94: /* MPU_CTRL */
944         return cpu->env.v7m.mpu_ctrl[attrs.secure];
945     case 0xd98: /* MPU_RNR */
946         return cpu->env.pmsav7.rnr[attrs.secure];
947     case 0xd9c: /* MPU_RBAR */
948     case 0xda4: /* MPU_RBAR_A1 */
949     case 0xdac: /* MPU_RBAR_A2 */
950     case 0xdb4: /* MPU_RBAR_A3 */
951     {
952         int region = cpu->env.pmsav7.rnr[attrs.secure];
953 
954         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
955             /* PMSAv8M handling of the aliases is different from v7M:
956              * aliases A1, A2, A3 override the low two bits of the region
957              * number in MPU_RNR, and there is no 'region' field in the
958              * RBAR register.
959              */
960             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
961             if (aliasno) {
962                 region = deposit32(region, 0, 2, aliasno);
963             }
964             if (region >= cpu->pmsav7_dregion) {
965                 return 0;
966             }
967             return cpu->env.pmsav8.rbar[attrs.secure][region];
968         }
969 
970         if (region >= cpu->pmsav7_dregion) {
971             return 0;
972         }
973         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
974     }
975     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
976     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
977     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
978     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
979     {
980         int region = cpu->env.pmsav7.rnr[attrs.secure];
981 
982         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
983             /* PMSAv8M handling of the aliases is different from v7M:
984              * aliases A1, A2, A3 override the low two bits of the region
985              * number in MPU_RNR.
986              */
987             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
988             if (aliasno) {
989                 region = deposit32(region, 0, 2, aliasno);
990             }
991             if (region >= cpu->pmsav7_dregion) {
992                 return 0;
993             }
994             return cpu->env.pmsav8.rlar[attrs.secure][region];
995         }
996 
997         if (region >= cpu->pmsav7_dregion) {
998             return 0;
999         }
1000         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1001             (cpu->env.pmsav7.drsr[region] & 0xffff);
1002     }
1003     case 0xdc0: /* MPU_MAIR0 */
1004         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1005             goto bad_offset;
1006         }
1007         return cpu->env.pmsav8.mair0[attrs.secure];
1008     case 0xdc4: /* MPU_MAIR1 */
1009         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1010             goto bad_offset;
1011         }
1012         return cpu->env.pmsav8.mair1[attrs.secure];
1013     case 0xdd0: /* SAU_CTRL */
1014         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015             goto bad_offset;
1016         }
1017         if (!attrs.secure) {
1018             return 0;
1019         }
1020         return cpu->env.sau.ctrl;
1021     case 0xdd4: /* SAU_TYPE */
1022         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1023             goto bad_offset;
1024         }
1025         if (!attrs.secure) {
1026             return 0;
1027         }
1028         return cpu->sau_sregion;
1029     case 0xdd8: /* SAU_RNR */
1030         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1031             goto bad_offset;
1032         }
1033         if (!attrs.secure) {
1034             return 0;
1035         }
1036         return cpu->env.sau.rnr;
1037     case 0xddc: /* SAU_RBAR */
1038     {
1039         int region = cpu->env.sau.rnr;
1040 
1041         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1042             goto bad_offset;
1043         }
1044         if (!attrs.secure) {
1045             return 0;
1046         }
1047         if (region >= cpu->sau_sregion) {
1048             return 0;
1049         }
1050         return cpu->env.sau.rbar[region];
1051     }
1052     case 0xde0: /* SAU_RLAR */
1053     {
1054         int region = cpu->env.sau.rnr;
1055 
1056         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1057             goto bad_offset;
1058         }
1059         if (!attrs.secure) {
1060             return 0;
1061         }
1062         if (region >= cpu->sau_sregion) {
1063             return 0;
1064         }
1065         return cpu->env.sau.rlar[region];
1066     }
1067     case 0xde4: /* SFSR */
1068         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1069             goto bad_offset;
1070         }
1071         if (!attrs.secure) {
1072             return 0;
1073         }
1074         return cpu->env.v7m.sfsr;
1075     case 0xde8: /* SFAR */
1076         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1077             goto bad_offset;
1078         }
1079         if (!attrs.secure) {
1080             return 0;
1081         }
1082         return cpu->env.v7m.sfar;
1083     default:
1084     bad_offset:
1085         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1086         return 0;
1087     }
1088 }
1089 
1090 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1091                         MemTxAttrs attrs)
1092 {
1093     ARMCPU *cpu = s->cpu;
1094 
1095     switch (offset) {
1096     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1097     {
1098         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1099         int i;
1100 
1101         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1102             goto bad_offset;
1103         }
1104         if (!attrs.secure) {
1105             break;
1106         }
1107         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1108             s->itns[startvec + i] = (value >> i) & 1;
1109         }
1110         nvic_irq_update(s);
1111         break;
1112     }
1113     case 0xd04: /* Interrupt Control State (ICSR) */
1114         if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1115             if (value & (1 << 31)) {
1116                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1117             } else if (value & (1 << 30) &&
1118                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1119                 /* PENDNMICLR didn't exist in v7M */
1120                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1121             }
1122         }
1123         if (value & (1 << 28)) {
1124             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1125         } else if (value & (1 << 27)) {
1126             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1127         }
1128         if (value & (1 << 26)) {
1129             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1130         } else if (value & (1 << 25)) {
1131             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1132         }
1133         break;
1134     case 0xd08: /* Vector Table Offset.  */
1135         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1136         break;
1137     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1138         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1139             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1140                 if (attrs.secure ||
1141                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1142                     qemu_irq_pulse(s->sysresetreq);
1143                 }
1144             }
1145             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1146                 qemu_log_mask(LOG_GUEST_ERROR,
1147                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1148                               "is UNPREDICTABLE\n");
1149             }
1150             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1151                 /* NB: this bit is RES0 in v8M */
1152                 qemu_log_mask(LOG_GUEST_ERROR,
1153                               "Setting VECTRESET when not in DEBUG mode "
1154                               "is UNPREDICTABLE\n");
1155             }
1156             s->prigroup[attrs.secure] = extract32(value,
1157                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1158                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1159             if (attrs.secure) {
1160                 /* These bits are only writable by secure */
1161                 cpu->env.v7m.aircr = value &
1162                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1163                      R_V7M_AIRCR_BFHFNMINS_MASK |
1164                      R_V7M_AIRCR_PRIS_MASK);
1165                 /* BFHFNMINS changes the priority of Secure HardFault, and
1166                  * allows a pending Non-secure HardFault to preempt (which
1167                  * we implement by marking it enabled).
1168                  */
1169                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1170                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1171                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1172                 } else {
1173                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1174                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1175                 }
1176             }
1177             nvic_irq_update(s);
1178         }
1179         break;
1180     case 0xd10: /* System Control.  */
1181         /* TODO: Implement control registers.  */
1182         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1183         break;
1184     case 0xd14: /* Configuration Control.  */
1185         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1186         value &= (R_V7M_CCR_STKALIGN_MASK |
1187                   R_V7M_CCR_BFHFNMIGN_MASK |
1188                   R_V7M_CCR_DIV_0_TRP_MASK |
1189                   R_V7M_CCR_UNALIGN_TRP_MASK |
1190                   R_V7M_CCR_USERSETMPEND_MASK |
1191                   R_V7M_CCR_NONBASETHRDENA_MASK);
1192 
1193         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1194             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1195             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1196                 | R_V7M_CCR_STKALIGN_MASK;
1197         }
1198         if (attrs.secure) {
1199             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1200             cpu->env.v7m.ccr[M_REG_NS] =
1201                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1202                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1203             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1204         }
1205 
1206         cpu->env.v7m.ccr[attrs.secure] = value;
1207         break;
1208     case 0xd24: /* System Handler Control and State (SHCSR) */
1209         if (attrs.secure) {
1210             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1211             /* Secure HardFault active bit cannot be written */
1212             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1213             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1214             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1215                 (value & (1 << 10)) != 0;
1216             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1217                 (value & (1 << 11)) != 0;
1218             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1219                 (value & (1 << 12)) != 0;
1220             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1221             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1222             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1223             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1224             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1225                 (value & (1 << 18)) != 0;
1226             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1227             /* SecureFault not banked, but RAZ/WI to NS */
1228             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1229             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1230             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1231         } else {
1232             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1233             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1234                 /* HARDFAULTPENDED is not present in v7M */
1235                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1236             }
1237             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1238             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1239             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1240             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1241             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1242             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1243             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1244             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1245             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1246         }
1247         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1248             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1249             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1250             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1251         }
1252         /* NMIACT can only be written if the write is of a zero, with
1253          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1254          */
1255         if (!attrs.secure && cpu->env.v7m.secure &&
1256             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1257             (value & (1 << 5)) == 0) {
1258             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1259         }
1260         /* HARDFAULTACT can only be written if the write is of a zero
1261          * to the non-secure HardFault state by the CPU in secure state.
1262          * The only case where we can be targeting the non-secure HF state
1263          * when in secure state is if this is a write via the NS alias
1264          * and BFHFNMINS is 1.
1265          */
1266         if (!attrs.secure && cpu->env.v7m.secure &&
1267             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1268             (value & (1 << 2)) == 0) {
1269             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1270         }
1271 
1272         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1273         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1274         nvic_irq_update(s);
1275         break;
1276     case 0xd2c: /* Hard Fault Status.  */
1277         cpu->env.v7m.hfsr &= ~value; /* W1C */
1278         break;
1279     case 0xd30: /* Debug Fault Status.  */
1280         cpu->env.v7m.dfsr &= ~value; /* W1C */
1281         break;
1282     case 0xd34: /* Mem Manage Address.  */
1283         cpu->env.v7m.mmfar[attrs.secure] = value;
1284         return;
1285     case 0xd38: /* Bus Fault Address.  */
1286         cpu->env.v7m.bfar = value;
1287         return;
1288     case 0xd3c: /* Aux Fault Status.  */
1289         qemu_log_mask(LOG_UNIMP,
1290                       "NVIC: Aux fault status registers unimplemented\n");
1291         break;
1292     case 0xd90: /* MPU_TYPE */
1293         return; /* RO */
1294     case 0xd94: /* MPU_CTRL */
1295         if ((value &
1296              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1297             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1298             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1299                           "UNPREDICTABLE\n");
1300         }
1301         cpu->env.v7m.mpu_ctrl[attrs.secure]
1302             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1303                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1304                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1305         tlb_flush(CPU(cpu));
1306         break;
1307     case 0xd98: /* MPU_RNR */
1308         if (value >= cpu->pmsav7_dregion) {
1309             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1310                           PRIu32 "/%" PRIu32 "\n",
1311                           value, cpu->pmsav7_dregion);
1312         } else {
1313             cpu->env.pmsav7.rnr[attrs.secure] = value;
1314         }
1315         break;
1316     case 0xd9c: /* MPU_RBAR */
1317     case 0xda4: /* MPU_RBAR_A1 */
1318     case 0xdac: /* MPU_RBAR_A2 */
1319     case 0xdb4: /* MPU_RBAR_A3 */
1320     {
1321         int region;
1322 
1323         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1324             /* PMSAv8M handling of the aliases is different from v7M:
1325              * aliases A1, A2, A3 override the low two bits of the region
1326              * number in MPU_RNR, and there is no 'region' field in the
1327              * RBAR register.
1328              */
1329             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1330 
1331             region = cpu->env.pmsav7.rnr[attrs.secure];
1332             if (aliasno) {
1333                 region = deposit32(region, 0, 2, aliasno);
1334             }
1335             if (region >= cpu->pmsav7_dregion) {
1336                 return;
1337             }
1338             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1339             tlb_flush(CPU(cpu));
1340             return;
1341         }
1342 
1343         if (value & (1 << 4)) {
1344             /* VALID bit means use the region number specified in this
1345              * value and also update MPU_RNR.REGION with that value.
1346              */
1347             region = extract32(value, 0, 4);
1348             if (region >= cpu->pmsav7_dregion) {
1349                 qemu_log_mask(LOG_GUEST_ERROR,
1350                               "MPU region out of range %u/%" PRIu32 "\n",
1351                               region, cpu->pmsav7_dregion);
1352                 return;
1353             }
1354             cpu->env.pmsav7.rnr[attrs.secure] = region;
1355         } else {
1356             region = cpu->env.pmsav7.rnr[attrs.secure];
1357         }
1358 
1359         if (region >= cpu->pmsav7_dregion) {
1360             return;
1361         }
1362 
1363         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1364         tlb_flush(CPU(cpu));
1365         break;
1366     }
1367     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1368     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1369     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1370     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1371     {
1372         int region = cpu->env.pmsav7.rnr[attrs.secure];
1373 
1374         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1375             /* PMSAv8M handling of the aliases is different from v7M:
1376              * aliases A1, A2, A3 override the low two bits of the region
1377              * number in MPU_RNR.
1378              */
1379             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1380 
1381             region = cpu->env.pmsav7.rnr[attrs.secure];
1382             if (aliasno) {
1383                 region = deposit32(region, 0, 2, aliasno);
1384             }
1385             if (region >= cpu->pmsav7_dregion) {
1386                 return;
1387             }
1388             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1389             tlb_flush(CPU(cpu));
1390             return;
1391         }
1392 
1393         if (region >= cpu->pmsav7_dregion) {
1394             return;
1395         }
1396 
1397         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1398         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1399         tlb_flush(CPU(cpu));
1400         break;
1401     }
1402     case 0xdc0: /* MPU_MAIR0 */
1403         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1404             goto bad_offset;
1405         }
1406         if (cpu->pmsav7_dregion) {
1407             /* Register is RES0 if no MPU regions are implemented */
1408             cpu->env.pmsav8.mair0[attrs.secure] = value;
1409         }
1410         /* We don't need to do anything else because memory attributes
1411          * only affect cacheability, and we don't implement caching.
1412          */
1413         break;
1414     case 0xdc4: /* MPU_MAIR1 */
1415         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1416             goto bad_offset;
1417         }
1418         if (cpu->pmsav7_dregion) {
1419             /* Register is RES0 if no MPU regions are implemented */
1420             cpu->env.pmsav8.mair1[attrs.secure] = value;
1421         }
1422         /* We don't need to do anything else because memory attributes
1423          * only affect cacheability, and we don't implement caching.
1424          */
1425         break;
1426     case 0xdd0: /* SAU_CTRL */
1427         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1428             goto bad_offset;
1429         }
1430         if (!attrs.secure) {
1431             return;
1432         }
1433         cpu->env.sau.ctrl = value & 3;
1434         break;
1435     case 0xdd4: /* SAU_TYPE */
1436         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1437             goto bad_offset;
1438         }
1439         break;
1440     case 0xdd8: /* SAU_RNR */
1441         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1442             goto bad_offset;
1443         }
1444         if (!attrs.secure) {
1445             return;
1446         }
1447         if (value >= cpu->sau_sregion) {
1448             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1449                           PRIu32 "/%" PRIu32 "\n",
1450                           value, cpu->sau_sregion);
1451         } else {
1452             cpu->env.sau.rnr = value;
1453         }
1454         break;
1455     case 0xddc: /* SAU_RBAR */
1456     {
1457         int region = cpu->env.sau.rnr;
1458 
1459         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1460             goto bad_offset;
1461         }
1462         if (!attrs.secure) {
1463             return;
1464         }
1465         if (region >= cpu->sau_sregion) {
1466             return;
1467         }
1468         cpu->env.sau.rbar[region] = value & ~0x1f;
1469         tlb_flush(CPU(cpu));
1470         break;
1471     }
1472     case 0xde0: /* SAU_RLAR */
1473     {
1474         int region = cpu->env.sau.rnr;
1475 
1476         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1477             goto bad_offset;
1478         }
1479         if (!attrs.secure) {
1480             return;
1481         }
1482         if (region >= cpu->sau_sregion) {
1483             return;
1484         }
1485         cpu->env.sau.rlar[region] = value & ~0x1c;
1486         tlb_flush(CPU(cpu));
1487         break;
1488     }
1489     case 0xde4: /* SFSR */
1490         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491             goto bad_offset;
1492         }
1493         if (!attrs.secure) {
1494             return;
1495         }
1496         cpu->env.v7m.sfsr &= ~value; /* W1C */
1497         break;
1498     case 0xde8: /* SFAR */
1499         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1500             goto bad_offset;
1501         }
1502         if (!attrs.secure) {
1503             return;
1504         }
1505         cpu->env.v7m.sfsr = value;
1506         break;
1507     case 0xf00: /* Software Triggered Interrupt Register */
1508     {
1509         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1510         if (excnum < s->num_irq) {
1511             armv7m_nvic_set_pending(s, excnum, false);
1512         }
1513         break;
1514     }
1515     default:
1516     bad_offset:
1517         qemu_log_mask(LOG_GUEST_ERROR,
1518                       "NVIC: Bad write offset 0x%x\n", offset);
1519     }
1520 }
1521 
1522 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1523 {
1524     /* Return true if unprivileged access to this register is permitted. */
1525     switch (offset) {
1526     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1527         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1528          * controls access even though the CPU is in Secure state (I_QDKX).
1529          */
1530         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1531     default:
1532         /* All other user accesses cause a BusFault unconditionally */
1533         return false;
1534     }
1535 }
1536 
1537 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1538 {
1539     /* Behaviour for the SHPR register field for this exception:
1540      * return M_REG_NS to use the nonsecure vector (including for
1541      * non-banked exceptions), M_REG_S for the secure version of
1542      * a banked exception, and -1 if this field should RAZ/WI.
1543      */
1544     switch (exc) {
1545     case ARMV7M_EXCP_MEM:
1546     case ARMV7M_EXCP_USAGE:
1547     case ARMV7M_EXCP_SVC:
1548     case ARMV7M_EXCP_PENDSV:
1549     case ARMV7M_EXCP_SYSTICK:
1550         /* Banked exceptions */
1551         return attrs.secure;
1552     case ARMV7M_EXCP_BUS:
1553         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1554         if (!attrs.secure &&
1555             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1556             return -1;
1557         }
1558         return M_REG_NS;
1559     case ARMV7M_EXCP_SECURE:
1560         /* Not banked, RAZ/WI from nonsecure */
1561         if (!attrs.secure) {
1562             return -1;
1563         }
1564         return M_REG_NS;
1565     case ARMV7M_EXCP_DEBUG:
1566         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1567         return M_REG_NS;
1568     case 8 ... 10:
1569     case 13:
1570         /* RES0 */
1571         return -1;
1572     default:
1573         /* Not reachable due to decode of SHPR register addresses */
1574         g_assert_not_reached();
1575     }
1576 }
1577 
1578 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1579                                     uint64_t *data, unsigned size,
1580                                     MemTxAttrs attrs)
1581 {
1582     NVICState *s = (NVICState *)opaque;
1583     uint32_t offset = addr;
1584     unsigned i, startvec, end;
1585     uint32_t val;
1586 
1587     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1588         /* Generate BusFault for unprivileged accesses */
1589         return MEMTX_ERROR;
1590     }
1591 
1592     switch (offset) {
1593     /* reads of set and clear both return the status */
1594     case 0x100 ... 0x13f: /* NVIC Set enable */
1595         offset += 0x80;
1596         /* fall through */
1597     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1598         val = 0;
1599         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1600 
1601         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1602             if (s->vectors[startvec + i].enabled &&
1603                 (attrs.secure || s->itns[startvec + i])) {
1604                 val |= (1 << i);
1605             }
1606         }
1607         break;
1608     case 0x200 ... 0x23f: /* NVIC Set pend */
1609         offset += 0x80;
1610         /* fall through */
1611     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1612         val = 0;
1613         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1614         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1615             if (s->vectors[startvec + i].pending &&
1616                 (attrs.secure || s->itns[startvec + i])) {
1617                 val |= (1 << i);
1618             }
1619         }
1620         break;
1621     case 0x300 ... 0x33f: /* NVIC Active */
1622         val = 0;
1623         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1624 
1625         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1626             if (s->vectors[startvec + i].active &&
1627                 (attrs.secure || s->itns[startvec + i])) {
1628                 val |= (1 << i);
1629             }
1630         }
1631         break;
1632     case 0x400 ... 0x5ef: /* NVIC Priority */
1633         val = 0;
1634         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1635 
1636         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1637             if (attrs.secure || s->itns[startvec + i]) {
1638                 val |= s->vectors[startvec + i].prio << (8 * i);
1639             }
1640         }
1641         break;
1642     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1643         val = 0;
1644         for (i = 0; i < size; i++) {
1645             unsigned hdlidx = (offset - 0xd14) + i;
1646             int sbank = shpr_bank(s, hdlidx, attrs);
1647 
1648             if (sbank < 0) {
1649                 continue;
1650             }
1651             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1652         }
1653         break;
1654     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1655         /* The BFSR bits [15:8] are shared between security states
1656          * and we store them in the NS copy
1657          */
1658         val = s->cpu->env.v7m.cfsr[attrs.secure];
1659         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1660         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1661         break;
1662     case 0xfe0 ... 0xfff: /* ID.  */
1663         if (offset & 3) {
1664             val = 0;
1665         } else {
1666             val = nvic_id[(offset - 0xfe0) >> 2];
1667         }
1668         break;
1669     default:
1670         if (size == 4) {
1671             val = nvic_readl(s, offset, attrs);
1672         } else {
1673             qemu_log_mask(LOG_GUEST_ERROR,
1674                           "NVIC: Bad read of size %d at offset 0x%x\n",
1675                           size, offset);
1676             val = 0;
1677         }
1678     }
1679 
1680     trace_nvic_sysreg_read(addr, val, size);
1681     *data = val;
1682     return MEMTX_OK;
1683 }
1684 
1685 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1686                                      uint64_t value, unsigned size,
1687                                      MemTxAttrs attrs)
1688 {
1689     NVICState *s = (NVICState *)opaque;
1690     uint32_t offset = addr;
1691     unsigned i, startvec, end;
1692     unsigned setval = 0;
1693 
1694     trace_nvic_sysreg_write(addr, value, size);
1695 
1696     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1697         /* Generate BusFault for unprivileged accesses */
1698         return MEMTX_ERROR;
1699     }
1700 
1701     switch (offset) {
1702     case 0x100 ... 0x13f: /* NVIC Set enable */
1703         offset += 0x80;
1704         setval = 1;
1705         /* fall through */
1706     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1707         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1708 
1709         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1710             if (value & (1 << i) &&
1711                 (attrs.secure || s->itns[startvec + i])) {
1712                 s->vectors[startvec + i].enabled = setval;
1713             }
1714         }
1715         nvic_irq_update(s);
1716         return MEMTX_OK;
1717     case 0x200 ... 0x23f: /* NVIC Set pend */
1718         /* the special logic in armv7m_nvic_set_pending()
1719          * is not needed since IRQs are never escalated
1720          */
1721         offset += 0x80;
1722         setval = 1;
1723         /* fall through */
1724     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1725         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1726 
1727         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1728             if (value & (1 << i) &&
1729                 (attrs.secure || s->itns[startvec + i])) {
1730                 s->vectors[startvec + i].pending = setval;
1731             }
1732         }
1733         nvic_irq_update(s);
1734         return MEMTX_OK;
1735     case 0x300 ... 0x33f: /* NVIC Active */
1736         return MEMTX_OK; /* R/O */
1737     case 0x400 ... 0x5ef: /* NVIC Priority */
1738         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1739 
1740         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1741             if (attrs.secure || s->itns[startvec + i]) {
1742                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1743             }
1744         }
1745         nvic_irq_update(s);
1746         return MEMTX_OK;
1747     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1748         for (i = 0; i < size; i++) {
1749             unsigned hdlidx = (offset - 0xd14) + i;
1750             int newprio = extract32(value, i * 8, 8);
1751             int sbank = shpr_bank(s, hdlidx, attrs);
1752 
1753             if (sbank < 0) {
1754                 continue;
1755             }
1756             set_prio(s, hdlidx, sbank, newprio);
1757         }
1758         nvic_irq_update(s);
1759         return MEMTX_OK;
1760     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1761         /* All bits are W1C, so construct 32 bit value with 0s in
1762          * the parts not written by the access size
1763          */
1764         value <<= ((offset - 0xd28) * 8);
1765 
1766         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1767         if (attrs.secure) {
1768             /* The BFSR bits [15:8] are shared between security states
1769              * and we store them in the NS copy.
1770              */
1771             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1772         }
1773         return MEMTX_OK;
1774     }
1775     if (size == 4) {
1776         nvic_writel(s, offset, value, attrs);
1777         return MEMTX_OK;
1778     }
1779     qemu_log_mask(LOG_GUEST_ERROR,
1780                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1781     /* This is UNPREDICTABLE; treat as RAZ/WI */
1782     return MEMTX_OK;
1783 }
1784 
1785 static const MemoryRegionOps nvic_sysreg_ops = {
1786     .read_with_attrs = nvic_sysreg_read,
1787     .write_with_attrs = nvic_sysreg_write,
1788     .endianness = DEVICE_NATIVE_ENDIAN,
1789 };
1790 
1791 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1792                                         uint64_t value, unsigned size,
1793                                         MemTxAttrs attrs)
1794 {
1795     MemoryRegion *mr = opaque;
1796 
1797     if (attrs.secure) {
1798         /* S accesses to the alias act like NS accesses to the real region */
1799         attrs.secure = 0;
1800         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1801     } else {
1802         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1803         if (attrs.user) {
1804             return MEMTX_ERROR;
1805         }
1806         return MEMTX_OK;
1807     }
1808 }
1809 
1810 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1811                                        uint64_t *data, unsigned size,
1812                                        MemTxAttrs attrs)
1813 {
1814     MemoryRegion *mr = opaque;
1815 
1816     if (attrs.secure) {
1817         /* S accesses to the alias act like NS accesses to the real region */
1818         attrs.secure = 0;
1819         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1820     } else {
1821         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1822         if (attrs.user) {
1823             return MEMTX_ERROR;
1824         }
1825         *data = 0;
1826         return MEMTX_OK;
1827     }
1828 }
1829 
1830 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1831     .read_with_attrs = nvic_sysreg_ns_read,
1832     .write_with_attrs = nvic_sysreg_ns_write,
1833     .endianness = DEVICE_NATIVE_ENDIAN,
1834 };
1835 
1836 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1837                                       uint64_t value, unsigned size,
1838                                       MemTxAttrs attrs)
1839 {
1840     NVICState *s = opaque;
1841     MemoryRegion *mr;
1842 
1843     /* Direct the access to the correct systick */
1844     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1845     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1846 }
1847 
1848 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1849                                      uint64_t *data, unsigned size,
1850                                      MemTxAttrs attrs)
1851 {
1852     NVICState *s = opaque;
1853     MemoryRegion *mr;
1854 
1855     /* Direct the access to the correct systick */
1856     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1857     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1858 }
1859 
1860 static const MemoryRegionOps nvic_systick_ops = {
1861     .read_with_attrs = nvic_systick_read,
1862     .write_with_attrs = nvic_systick_write,
1863     .endianness = DEVICE_NATIVE_ENDIAN,
1864 };
1865 
1866 static int nvic_post_load(void *opaque, int version_id)
1867 {
1868     NVICState *s = opaque;
1869     unsigned i;
1870     int resetprio;
1871 
1872     /* Check for out of range priority settings */
1873     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1874 
1875     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1876         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1877         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1878         return 1;
1879     }
1880     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1881         if (s->vectors[i].prio & ~0xff) {
1882             return 1;
1883         }
1884     }
1885 
1886     nvic_recompute_state(s);
1887 
1888     return 0;
1889 }
1890 
1891 static const VMStateDescription vmstate_VecInfo = {
1892     .name = "armv7m_nvic_info",
1893     .version_id = 1,
1894     .minimum_version_id = 1,
1895     .fields = (VMStateField[]) {
1896         VMSTATE_INT16(prio, VecInfo),
1897         VMSTATE_UINT8(enabled, VecInfo),
1898         VMSTATE_UINT8(pending, VecInfo),
1899         VMSTATE_UINT8(active, VecInfo),
1900         VMSTATE_UINT8(level, VecInfo),
1901         VMSTATE_END_OF_LIST()
1902     }
1903 };
1904 
1905 static bool nvic_security_needed(void *opaque)
1906 {
1907     NVICState *s = opaque;
1908 
1909     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1910 }
1911 
1912 static int nvic_security_post_load(void *opaque, int version_id)
1913 {
1914     NVICState *s = opaque;
1915     int i;
1916 
1917     /* Check for out of range priority settings */
1918     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
1919         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
1920         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
1921          * if the CPU state has been migrated yet; a mismatch won't
1922          * cause the emulation to blow up, though.
1923          */
1924         return 1;
1925     }
1926     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
1927         if (s->sec_vectors[i].prio & ~0xff) {
1928             return 1;
1929         }
1930     }
1931     return 0;
1932 }
1933 
1934 static const VMStateDescription vmstate_nvic_security = {
1935     .name = "nvic/m-security",
1936     .version_id = 1,
1937     .minimum_version_id = 1,
1938     .needed = nvic_security_needed,
1939     .post_load = &nvic_security_post_load,
1940     .fields = (VMStateField[]) {
1941         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
1942                              vmstate_VecInfo, VecInfo),
1943         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
1944         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
1945         VMSTATE_END_OF_LIST()
1946     }
1947 };
1948 
1949 static const VMStateDescription vmstate_nvic = {
1950     .name = "armv7m_nvic",
1951     .version_id = 4,
1952     .minimum_version_id = 4,
1953     .post_load = &nvic_post_load,
1954     .fields = (VMStateField[]) {
1955         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1956                              vmstate_VecInfo, VecInfo),
1957         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
1958         VMSTATE_END_OF_LIST()
1959     },
1960     .subsections = (const VMStateDescription*[]) {
1961         &vmstate_nvic_security,
1962         NULL
1963     }
1964 };
1965 
1966 static Property props_nvic[] = {
1967     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1968     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1969     DEFINE_PROP_END_OF_LIST()
1970 };
1971 
1972 static void armv7m_nvic_reset(DeviceState *dev)
1973 {
1974     int resetprio;
1975     NVICState *s = NVIC(dev);
1976 
1977     memset(s->vectors, 0, sizeof(s->vectors));
1978     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
1979     s->prigroup[M_REG_NS] = 0;
1980     s->prigroup[M_REG_S] = 0;
1981 
1982     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1983     /* MEM, BUS, and USAGE are enabled through
1984      * the System Handler Control register
1985      */
1986     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1987     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1988     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1989     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1990 
1991     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1992     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
1993     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1994     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1995 
1996     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1997         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
1998         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
1999         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2000         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2001 
2002         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2003         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2004         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2005         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2006     } else {
2007         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2008     }
2009 
2010     /* Strictly speaking the reset handler should be enabled.
2011      * However, we don't simulate soft resets through the NVIC,
2012      * and the reset vector should never be pended.
2013      * So we leave it disabled to catch logic errors.
2014      */
2015 
2016     s->exception_prio = NVIC_NOEXC_PRIO;
2017     s->vectpending = 0;
2018     s->vectpending_is_s_banked = false;
2019     s->vectpending_prio = NVIC_NOEXC_PRIO;
2020 
2021     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2022         memset(s->itns, 0, sizeof(s->itns));
2023     } else {
2024         /* This state is constant and not guest accessible in a non-security
2025          * NVIC; we set the bits to true to avoid having to do a feature
2026          * bit check in the NVIC enable/pend/etc register accessors.
2027          */
2028         int i;
2029 
2030         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2031             s->itns[i] = true;
2032         }
2033     }
2034 }
2035 
2036 static void nvic_systick_trigger(void *opaque, int n, int level)
2037 {
2038     NVICState *s = opaque;
2039 
2040     if (level) {
2041         /* SysTick just asked us to pend its exception.
2042          * (This is different from an external interrupt line's
2043          * behaviour.)
2044          * n == 0 : NonSecure systick
2045          * n == 1 : Secure systick
2046          */
2047         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2048     }
2049 }
2050 
2051 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2052 {
2053     NVICState *s = NVIC(dev);
2054     Error *err = NULL;
2055     int regionlen;
2056 
2057     s->cpu = ARM_CPU(qemu_get_cpu(0));
2058     assert(s->cpu);
2059 
2060     if (s->num_irq > NVIC_MAX_IRQ) {
2061         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2062         return;
2063     }
2064 
2065     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2066 
2067     /* include space for internal exception vectors */
2068     s->num_irq += NVIC_FIRST_IRQ;
2069 
2070     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2071                              "realized", &err);
2072     if (err != NULL) {
2073         error_propagate(errp, err);
2074         return;
2075     }
2076     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2077                        qdev_get_gpio_in_named(dev, "systick-trigger",
2078                                               M_REG_NS));
2079 
2080     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2081         /* We couldn't init the secure systick device in instance_init
2082          * as we didn't know then if the CPU had the security extensions;
2083          * so we have to do it here.
2084          */
2085         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2086                           TYPE_SYSTICK);
2087         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2088 
2089         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2090                                  "realized", &err);
2091         if (err != NULL) {
2092             error_propagate(errp, err);
2093             return;
2094         }
2095         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2096                            qdev_get_gpio_in_named(dev, "systick-trigger",
2097                                                   M_REG_S));
2098     }
2099 
2100     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2101      * and looks like this:
2102      *  0x004 - ICTR
2103      *  0x010 - 0xff - systick
2104      *  0x100..0x7ec - NVIC
2105      *  0x7f0..0xcff - Reserved
2106      *  0xd00..0xd3c - SCS registers
2107      *  0xd40..0xeff - Reserved or Not implemented
2108      *  0xf00 - STIR
2109      *
2110      * Some registers within this space are banked between security states.
2111      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2112      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2113      * to the main SCS range, and non-secure accesses (including when
2114      * the security extension is not implemented) are RAZ/WI.
2115      * Note that both the main SCS range and the alias range are defined
2116      * to be exempt from memory attribution (R_BLJT) and so the memory
2117      * transaction attribute always matches the current CPU security
2118      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2119      * wrappers we change attrs.secure to indicate the NS access; so
2120      * generally code determining which banked register to use should
2121      * use attrs.secure; code determining actual behaviour of the system
2122      * should use env->v7m.secure.
2123      */
2124     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2125     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2126     /* The system register region goes at the bottom of the priority
2127      * stack as it covers the whole page.
2128      */
2129     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2130                           "nvic_sysregs", 0x1000);
2131     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2132 
2133     memory_region_init_io(&s->systickmem, OBJECT(s),
2134                           &nvic_systick_ops, s,
2135                           "nvic_systick", 0xe0);
2136 
2137     memory_region_add_subregion_overlap(&s->container, 0x10,
2138                                         &s->systickmem, 1);
2139 
2140     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2141         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2142                               &nvic_sysreg_ns_ops, &s->sysregmem,
2143                               "nvic_sysregs_ns", 0x1000);
2144         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2145         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2146                               &nvic_sysreg_ns_ops, &s->systickmem,
2147                               "nvic_systick_ns", 0xe0);
2148         memory_region_add_subregion_overlap(&s->container, 0x20010,
2149                                             &s->systick_ns_mem, 1);
2150     }
2151 
2152     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2153 }
2154 
2155 static void armv7m_nvic_instance_init(Object *obj)
2156 {
2157     /* We have a different default value for the num-irq property
2158      * than our superclass. This function runs after qdev init
2159      * has set the defaults from the Property array and before
2160      * any user-specified property setting, so just modify the
2161      * value in the GICState struct.
2162      */
2163     DeviceState *dev = DEVICE(obj);
2164     NVICState *nvic = NVIC(obj);
2165     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2166 
2167     object_initialize(&nvic->systick[M_REG_NS],
2168                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2169     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2170     /* We can't initialize the secure systick here, as we don't know
2171      * yet if we need it.
2172      */
2173 
2174     sysbus_init_irq(sbd, &nvic->excpout);
2175     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2176     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2177                             M_REG_NUM_BANKS);
2178 }
2179 
2180 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2181 {
2182     DeviceClass *dc = DEVICE_CLASS(klass);
2183 
2184     dc->vmsd  = &vmstate_nvic;
2185     dc->props = props_nvic;
2186     dc->reset = armv7m_nvic_reset;
2187     dc->realize = armv7m_nvic_realize;
2188 }
2189 
2190 static const TypeInfo armv7m_nvic_info = {
2191     .name          = TYPE_NVIC,
2192     .parent        = TYPE_SYS_BUS_DEVICE,
2193     .instance_init = armv7m_nvic_instance_init,
2194     .instance_size = sizeof(NVICState),
2195     .class_init    = armv7m_nvic_class_init,
2196     .class_size    = sizeof(SysBusDeviceClass),
2197 };
2198 
2199 static void armv7m_nvic_register_types(void)
2200 {
2201     type_register_static(&armv7m_nvic_info);
2202 }
2203 
2204 type_init(armv7m_nvic_register_types)
2205