1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "target/arm/cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memop.h" 25 #include "qemu/log.h" 26 #include "qemu/module.h" 27 #include "trace.h" 28 29 /* IRQ number counting: 30 * 31 * the num-irq property counts the number of external IRQ lines 32 * 33 * NVICState::num_irq counts the total number of exceptions 34 * (external IRQs, the 15 internal exceptions including reset, 35 * and one for the unused exception number 0). 36 * 37 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 38 * 39 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 40 * 41 * Iterating through all exceptions should typically be done with 42 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 43 * 44 * The external qemu_irq lines are the NVIC's external IRQ lines, 45 * so line 0 is exception 16. 46 * 47 * In the terminology of the architecture manual, "interrupts" are 48 * a subcategory of exception referring to the external interrupts 49 * (which are exception numbers NVIC_FIRST_IRQ and upward). 50 * For historical reasons QEMU tends to use "interrupt" and 51 * "exception" more or less interchangeably. 52 */ 53 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 54 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 55 56 /* Effective running priority of the CPU when no exception is active 57 * (higher than the highest possible priority value) 58 */ 59 #define NVIC_NOEXC_PRIO 0x100 60 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 61 #define NVIC_NS_PRIO_LIMIT 0x80 62 63 static const uint8_t nvic_id[] = { 64 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 65 }; 66 67 static int nvic_pending_prio(NVICState *s) 68 { 69 /* return the group priority of the current pending interrupt, 70 * or NVIC_NOEXC_PRIO if no interrupt is pending 71 */ 72 return s->vectpending_prio; 73 } 74 75 /* Return the value of the ISCR RETTOBASE bit: 76 * 1 if there is exactly one active exception 77 * 0 if there is more than one active exception 78 * UNKNOWN if there are no active exceptions (we choose 1, 79 * which matches the choice Cortex-M3 is documented as making). 80 * 81 * NB: some versions of the documentation talk about this 82 * counting "active exceptions other than the one shown by IPSR"; 83 * this is only different in the obscure corner case where guest 84 * code has manually deactivated an exception and is about 85 * to fail an exception-return integrity check. The definition 86 * above is the one from the v8M ARM ARM and is also in line 87 * with the behaviour documented for the Cortex-M3. 88 */ 89 static bool nvic_rettobase(NVICState *s) 90 { 91 int irq, nhand = 0; 92 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 93 94 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 95 if (s->vectors[irq].active || 96 (check_sec && irq < NVIC_INTERNAL_VECTORS && 97 s->sec_vectors[irq].active)) { 98 nhand++; 99 if (nhand == 2) { 100 return 0; 101 } 102 } 103 } 104 105 return 1; 106 } 107 108 /* Return the value of the ISCR ISRPENDING bit: 109 * 1 if an external interrupt is pending 110 * 0 if no external interrupt is pending 111 */ 112 static bool nvic_isrpending(NVICState *s) 113 { 114 int irq; 115 116 /* We can shortcut if the highest priority pending interrupt 117 * happens to be external or if there is nothing pending. 118 */ 119 if (s->vectpending > NVIC_FIRST_IRQ) { 120 return true; 121 } 122 if (s->vectpending == 0) { 123 return false; 124 } 125 126 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 127 if (s->vectors[irq].pending) { 128 return true; 129 } 130 } 131 return false; 132 } 133 134 static bool exc_is_banked(int exc) 135 { 136 /* Return true if this is one of the limited set of exceptions which 137 * are banked (and thus have state in sec_vectors[]) 138 */ 139 return exc == ARMV7M_EXCP_HARD || 140 exc == ARMV7M_EXCP_MEM || 141 exc == ARMV7M_EXCP_USAGE || 142 exc == ARMV7M_EXCP_SVC || 143 exc == ARMV7M_EXCP_PENDSV || 144 exc == ARMV7M_EXCP_SYSTICK; 145 } 146 147 /* Return a mask word which clears the subpriority bits from 148 * a priority value for an M-profile exception, leaving only 149 * the group priority. 150 */ 151 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 152 { 153 return ~0U << (s->prigroup[secure] + 1); 154 } 155 156 static bool exc_targets_secure(NVICState *s, int exc) 157 { 158 /* Return true if this non-banked exception targets Secure state. */ 159 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 160 return false; 161 } 162 163 if (exc >= NVIC_FIRST_IRQ) { 164 return !s->itns[exc]; 165 } 166 167 /* Function shouldn't be called for banked exceptions. */ 168 assert(!exc_is_banked(exc)); 169 170 switch (exc) { 171 case ARMV7M_EXCP_NMI: 172 case ARMV7M_EXCP_BUS: 173 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 174 case ARMV7M_EXCP_SECURE: 175 return true; 176 case ARMV7M_EXCP_DEBUG: 177 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 178 return false; 179 default: 180 /* reset, and reserved (unused) low exception numbers. 181 * We'll get called by code that loops through all the exception 182 * numbers, but it doesn't matter what we return here as these 183 * non-existent exceptions will never be pended or active. 184 */ 185 return true; 186 } 187 } 188 189 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 190 { 191 /* Return the group priority for this exception, given its raw 192 * (group-and-subgroup) priority value and whether it is targeting 193 * secure state or not. 194 */ 195 if (rawprio < 0) { 196 return rawprio; 197 } 198 rawprio &= nvic_gprio_mask(s, targets_secure); 199 /* AIRCR.PRIS causes us to squash all NS priorities into the 200 * lower half of the total range 201 */ 202 if (!targets_secure && 203 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 204 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 205 } 206 return rawprio; 207 } 208 209 /* Recompute vectpending and exception_prio for a CPU which implements 210 * the Security extension 211 */ 212 static void nvic_recompute_state_secure(NVICState *s) 213 { 214 int i, bank; 215 int pend_prio = NVIC_NOEXC_PRIO; 216 int active_prio = NVIC_NOEXC_PRIO; 217 int pend_irq = 0; 218 bool pending_is_s_banked = false; 219 int pend_subprio = 0; 220 221 /* R_CQRV: precedence is by: 222 * - lowest group priority; if both the same then 223 * - lowest subpriority; if both the same then 224 * - lowest exception number; if both the same (ie banked) then 225 * - secure exception takes precedence 226 * Compare pseudocode RawExecutionPriority. 227 * Annoyingly, now we have two prigroup values (for S and NS) 228 * we can't do the loop comparison on raw priority values. 229 */ 230 for (i = 1; i < s->num_irq; i++) { 231 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 232 VecInfo *vec; 233 int prio, subprio; 234 bool targets_secure; 235 236 if (bank == M_REG_S) { 237 if (!exc_is_banked(i)) { 238 continue; 239 } 240 vec = &s->sec_vectors[i]; 241 targets_secure = true; 242 } else { 243 vec = &s->vectors[i]; 244 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 245 } 246 247 prio = exc_group_prio(s, vec->prio, targets_secure); 248 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 249 if (vec->enabled && vec->pending && 250 ((prio < pend_prio) || 251 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 252 pend_prio = prio; 253 pend_subprio = subprio; 254 pend_irq = i; 255 pending_is_s_banked = (bank == M_REG_S); 256 } 257 if (vec->active && prio < active_prio) { 258 active_prio = prio; 259 } 260 } 261 } 262 263 s->vectpending_is_s_banked = pending_is_s_banked; 264 s->vectpending = pend_irq; 265 s->vectpending_prio = pend_prio; 266 s->exception_prio = active_prio; 267 268 trace_nvic_recompute_state_secure(s->vectpending, 269 s->vectpending_is_s_banked, 270 s->vectpending_prio, 271 s->exception_prio); 272 } 273 274 /* Recompute vectpending and exception_prio */ 275 static void nvic_recompute_state(NVICState *s) 276 { 277 int i; 278 int pend_prio = NVIC_NOEXC_PRIO; 279 int active_prio = NVIC_NOEXC_PRIO; 280 int pend_irq = 0; 281 282 /* In theory we could write one function that handled both 283 * the "security extension present" and "not present"; however 284 * the security related changes significantly complicate the 285 * recomputation just by themselves and mixing both cases together 286 * would be even worse, so we retain a separate non-secure-only 287 * version for CPUs which don't implement the security extension. 288 */ 289 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 290 nvic_recompute_state_secure(s); 291 return; 292 } 293 294 for (i = 1; i < s->num_irq; i++) { 295 VecInfo *vec = &s->vectors[i]; 296 297 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 298 pend_prio = vec->prio; 299 pend_irq = i; 300 } 301 if (vec->active && vec->prio < active_prio) { 302 active_prio = vec->prio; 303 } 304 } 305 306 if (active_prio > 0) { 307 active_prio &= nvic_gprio_mask(s, false); 308 } 309 310 if (pend_prio > 0) { 311 pend_prio &= nvic_gprio_mask(s, false); 312 } 313 314 s->vectpending = pend_irq; 315 s->vectpending_prio = pend_prio; 316 s->exception_prio = active_prio; 317 318 trace_nvic_recompute_state(s->vectpending, 319 s->vectpending_prio, 320 s->exception_prio); 321 } 322 323 /* Return the current execution priority of the CPU 324 * (equivalent to the pseudocode ExecutionPriority function). 325 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 326 */ 327 static inline int nvic_exec_prio(NVICState *s) 328 { 329 CPUARMState *env = &s->cpu->env; 330 int running = NVIC_NOEXC_PRIO; 331 332 if (env->v7m.basepri[M_REG_NS] > 0) { 333 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 334 } 335 336 if (env->v7m.basepri[M_REG_S] > 0) { 337 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 338 if (running > basepri) { 339 running = basepri; 340 } 341 } 342 343 if (env->v7m.primask[M_REG_NS]) { 344 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 345 if (running > NVIC_NS_PRIO_LIMIT) { 346 running = NVIC_NS_PRIO_LIMIT; 347 } 348 } else { 349 running = 0; 350 } 351 } 352 353 if (env->v7m.primask[M_REG_S]) { 354 running = 0; 355 } 356 357 if (env->v7m.faultmask[M_REG_NS]) { 358 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 359 running = -1; 360 } else { 361 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 362 if (running > NVIC_NS_PRIO_LIMIT) { 363 running = NVIC_NS_PRIO_LIMIT; 364 } 365 } else { 366 running = 0; 367 } 368 } 369 } 370 371 if (env->v7m.faultmask[M_REG_S]) { 372 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 373 } 374 375 /* consider priority of active handler */ 376 return MIN(running, s->exception_prio); 377 } 378 379 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 380 { 381 /* Return true if the requested execution priority is negative 382 * for the specified security state, ie that security state 383 * has an active NMI or HardFault or has set its FAULTMASK. 384 * Note that this is not the same as whether the execution 385 * priority is actually negative (for instance AIRCR.PRIS may 386 * mean we don't allow FAULTMASK_NS to actually make the execution 387 * priority negative). Compare pseudocode IsReqExcPriNeg(). 388 */ 389 NVICState *s = opaque; 390 391 if (s->cpu->env.v7m.faultmask[secure]) { 392 return true; 393 } 394 395 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 396 s->vectors[ARMV7M_EXCP_HARD].active) { 397 return true; 398 } 399 400 if (s->vectors[ARMV7M_EXCP_NMI].active && 401 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 402 return true; 403 } 404 405 return false; 406 } 407 408 bool armv7m_nvic_can_take_pending_exception(void *opaque) 409 { 410 NVICState *s = opaque; 411 412 return nvic_exec_prio(s) > nvic_pending_prio(s); 413 } 414 415 int armv7m_nvic_raw_execution_priority(void *opaque) 416 { 417 NVICState *s = opaque; 418 419 return s->exception_prio; 420 } 421 422 /* caller must call nvic_irq_update() after this. 423 * secure indicates the bank to use for banked exceptions (we assert if 424 * we are passed secure=true for a non-banked exception). 425 */ 426 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 427 { 428 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 429 assert(irq < s->num_irq); 430 431 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 432 433 if (secure) { 434 assert(exc_is_banked(irq)); 435 s->sec_vectors[irq].prio = prio; 436 } else { 437 s->vectors[irq].prio = prio; 438 } 439 440 trace_nvic_set_prio(irq, secure, prio); 441 } 442 443 /* Return the current raw priority register value. 444 * secure indicates the bank to use for banked exceptions (we assert if 445 * we are passed secure=true for a non-banked exception). 446 */ 447 static int get_prio(NVICState *s, unsigned irq, bool secure) 448 { 449 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 450 assert(irq < s->num_irq); 451 452 if (secure) { 453 assert(exc_is_banked(irq)); 454 return s->sec_vectors[irq].prio; 455 } else { 456 return s->vectors[irq].prio; 457 } 458 } 459 460 /* Recompute state and assert irq line accordingly. 461 * Must be called after changes to: 462 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 463 * prigroup 464 */ 465 static void nvic_irq_update(NVICState *s) 466 { 467 int lvl; 468 int pend_prio; 469 470 nvic_recompute_state(s); 471 pend_prio = nvic_pending_prio(s); 472 473 /* Raise NVIC output if this IRQ would be taken, except that we 474 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 475 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 476 * to those CPU registers don't cause us to recalculate the NVIC 477 * pending info. 478 */ 479 lvl = (pend_prio < s->exception_prio); 480 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 481 qemu_set_irq(s->excpout, lvl); 482 } 483 484 /** 485 * armv7m_nvic_clear_pending: mark the specified exception as not pending 486 * @opaque: the NVIC 487 * @irq: the exception number to mark as not pending 488 * @secure: false for non-banked exceptions or for the nonsecure 489 * version of a banked exception, true for the secure version of a banked 490 * exception. 491 * 492 * Marks the specified exception as not pending. Note that we will assert() 493 * if @secure is true and @irq does not specify one of the fixed set 494 * of architecturally banked exceptions. 495 */ 496 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 497 { 498 NVICState *s = (NVICState *)opaque; 499 VecInfo *vec; 500 501 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 502 503 if (secure) { 504 assert(exc_is_banked(irq)); 505 vec = &s->sec_vectors[irq]; 506 } else { 507 vec = &s->vectors[irq]; 508 } 509 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 510 if (vec->pending) { 511 vec->pending = 0; 512 nvic_irq_update(s); 513 } 514 } 515 516 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 517 bool derived) 518 { 519 /* Pend an exception, including possibly escalating it to HardFault. 520 * 521 * This function handles both "normal" pending of interrupts and 522 * exceptions, and also derived exceptions (ones which occur as 523 * a result of trying to take some other exception). 524 * 525 * If derived == true, the caller guarantees that we are part way through 526 * trying to take an exception (but have not yet called 527 * armv7m_nvic_acknowledge_irq() to make it active), and so: 528 * - s->vectpending is the "original exception" we were trying to take 529 * - irq is the "derived exception" 530 * - nvic_exec_prio(s) gives the priority before exception entry 531 * Here we handle the prioritization logic which the pseudocode puts 532 * in the DerivedLateArrival() function. 533 */ 534 535 NVICState *s = (NVICState *)opaque; 536 bool banked = exc_is_banked(irq); 537 VecInfo *vec; 538 bool targets_secure; 539 540 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 541 assert(!secure || banked); 542 543 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 544 545 targets_secure = banked ? secure : exc_targets_secure(s, irq); 546 547 trace_nvic_set_pending(irq, secure, targets_secure, 548 derived, vec->enabled, vec->prio); 549 550 if (derived) { 551 /* Derived exceptions are always synchronous. */ 552 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 553 554 if (irq == ARMV7M_EXCP_DEBUG && 555 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 556 /* DebugMonitorFault, but its priority is lower than the 557 * preempted exception priority: just ignore it. 558 */ 559 return; 560 } 561 562 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 563 /* If this is a terminal exception (one which means we cannot 564 * take the original exception, like a failure to read its 565 * vector table entry), then we must take the derived exception. 566 * If the derived exception can't take priority over the 567 * original exception, then we go into Lockup. 568 * 569 * For QEMU, we rely on the fact that a derived exception is 570 * terminal if and only if it's reported to us as HardFault, 571 * which saves having to have an extra argument is_terminal 572 * that we'd only use in one place. 573 */ 574 cpu_abort(&s->cpu->parent_obj, 575 "Lockup: can't take terminal derived exception " 576 "(original exception priority %d)\n", 577 s->vectpending_prio); 578 } 579 /* We now continue with the same code as for a normal pending 580 * exception, which will cause us to pend the derived exception. 581 * We'll then take either the original or the derived exception 582 * based on which is higher priority by the usual mechanism 583 * for selecting the highest priority pending interrupt. 584 */ 585 } 586 587 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 588 /* If a synchronous exception is pending then it may be 589 * escalated to HardFault if: 590 * * it is equal or lower priority to current execution 591 * * it is disabled 592 * (ie we need to take it immediately but we can't do so). 593 * Asynchronous exceptions (and interrupts) simply remain pending. 594 * 595 * For QEMU, we don't have any imprecise (asynchronous) faults, 596 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 597 * synchronous. 598 * Debug exceptions are awkward because only Debug exceptions 599 * resulting from the BKPT instruction should be escalated, 600 * but we don't currently implement any Debug exceptions other 601 * than those that result from BKPT, so we treat all debug exceptions 602 * as needing escalation. 603 * 604 * This all means we can identify whether to escalate based only on 605 * the exception number and don't (yet) need the caller to explicitly 606 * tell us whether this exception is synchronous or not. 607 */ 608 int running = nvic_exec_prio(s); 609 bool escalate = false; 610 611 if (exc_group_prio(s, vec->prio, secure) >= running) { 612 trace_nvic_escalate_prio(irq, vec->prio, running); 613 escalate = true; 614 } else if (!vec->enabled) { 615 trace_nvic_escalate_disabled(irq); 616 escalate = true; 617 } 618 619 if (escalate) { 620 621 /* We need to escalate this exception to a synchronous HardFault. 622 * If BFHFNMINS is set then we escalate to the banked HF for 623 * the target security state of the original exception; otherwise 624 * we take a Secure HardFault. 625 */ 626 irq = ARMV7M_EXCP_HARD; 627 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 628 (targets_secure || 629 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 630 vec = &s->sec_vectors[irq]; 631 } else { 632 vec = &s->vectors[irq]; 633 } 634 if (running <= vec->prio) { 635 /* We want to escalate to HardFault but we can't take the 636 * synchronous HardFault at this point either. This is a 637 * Lockup condition due to a guest bug. We don't model 638 * Lockup, so report via cpu_abort() instead. 639 */ 640 cpu_abort(&s->cpu->parent_obj, 641 "Lockup: can't escalate %d to HardFault " 642 "(current priority %d)\n", irq, running); 643 } 644 645 /* HF may be banked but there is only one shared HFSR */ 646 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 647 } 648 } 649 650 if (!vec->pending) { 651 vec->pending = 1; 652 nvic_irq_update(s); 653 } 654 } 655 656 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 657 { 658 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 659 } 660 661 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 662 { 663 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 664 } 665 666 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 667 { 668 /* 669 * Pend an exception during lazy FP stacking. This differs 670 * from the usual exception pending because the logic for 671 * whether we should escalate depends on the saved context 672 * in the FPCCR register, not on the current state of the CPU/NVIC. 673 */ 674 NVICState *s = (NVICState *)opaque; 675 bool banked = exc_is_banked(irq); 676 VecInfo *vec; 677 bool targets_secure; 678 bool escalate = false; 679 /* 680 * We will only look at bits in fpccr if this is a banked exception 681 * (in which case 'secure' tells us whether it is the S or NS version). 682 * All the bits for the non-banked exceptions are in fpccr_s. 683 */ 684 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 685 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 686 687 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 688 assert(!secure || banked); 689 690 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 691 692 targets_secure = banked ? secure : exc_targets_secure(s, irq); 693 694 switch (irq) { 695 case ARMV7M_EXCP_DEBUG: 696 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 697 /* Ignore DebugMonitor exception */ 698 return; 699 } 700 break; 701 case ARMV7M_EXCP_MEM: 702 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 703 break; 704 case ARMV7M_EXCP_USAGE: 705 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 706 break; 707 case ARMV7M_EXCP_BUS: 708 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 709 break; 710 case ARMV7M_EXCP_SECURE: 711 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 712 break; 713 default: 714 g_assert_not_reached(); 715 } 716 717 if (escalate) { 718 /* 719 * Escalate to HardFault: faults that initially targeted Secure 720 * continue to do so, even if HF normally targets NonSecure. 721 */ 722 irq = ARMV7M_EXCP_HARD; 723 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 724 (targets_secure || 725 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 726 vec = &s->sec_vectors[irq]; 727 } else { 728 vec = &s->vectors[irq]; 729 } 730 } 731 732 if (!vec->enabled || 733 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 734 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 735 /* 736 * We want to escalate to HardFault but the context the 737 * FP state belongs to prevents the exception pre-empting. 738 */ 739 cpu_abort(&s->cpu->parent_obj, 740 "Lockup: can't escalate to HardFault during " 741 "lazy FP register stacking\n"); 742 } 743 } 744 745 if (escalate) { 746 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 747 } 748 if (!vec->pending) { 749 vec->pending = 1; 750 /* 751 * We do not call nvic_irq_update(), because we know our caller 752 * is going to handle causing us to take the exception by 753 * raising EXCP_LAZYFP, so raising the IRQ line would be 754 * pointless extra work. We just need to recompute the 755 * priorities so that armv7m_nvic_can_take_pending_exception() 756 * returns the right answer. 757 */ 758 nvic_recompute_state(s); 759 } 760 } 761 762 /* Make pending IRQ active. */ 763 void armv7m_nvic_acknowledge_irq(void *opaque) 764 { 765 NVICState *s = (NVICState *)opaque; 766 CPUARMState *env = &s->cpu->env; 767 const int pending = s->vectpending; 768 const int running = nvic_exec_prio(s); 769 VecInfo *vec; 770 771 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 772 773 if (s->vectpending_is_s_banked) { 774 vec = &s->sec_vectors[pending]; 775 } else { 776 vec = &s->vectors[pending]; 777 } 778 779 assert(vec->enabled); 780 assert(vec->pending); 781 782 assert(s->vectpending_prio < running); 783 784 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 785 786 vec->active = 1; 787 vec->pending = 0; 788 789 write_v7m_exception(env, s->vectpending); 790 791 nvic_irq_update(s); 792 } 793 794 void armv7m_nvic_get_pending_irq_info(void *opaque, 795 int *pirq, bool *ptargets_secure) 796 { 797 NVICState *s = (NVICState *)opaque; 798 const int pending = s->vectpending; 799 bool targets_secure; 800 801 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 802 803 if (s->vectpending_is_s_banked) { 804 targets_secure = true; 805 } else { 806 targets_secure = !exc_is_banked(pending) && 807 exc_targets_secure(s, pending); 808 } 809 810 trace_nvic_get_pending_irq_info(pending, targets_secure); 811 812 *ptargets_secure = targets_secure; 813 *pirq = pending; 814 } 815 816 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 817 { 818 NVICState *s = (NVICState *)opaque; 819 VecInfo *vec = NULL; 820 int ret; 821 822 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 823 824 /* 825 * For negative priorities, v8M will forcibly deactivate the appropriate 826 * NMI or HardFault regardless of what interrupt we're being asked to 827 * deactivate (compare the DeActivate() pseudocode). This is a guard 828 * against software returning from NMI or HardFault with a corrupted 829 * IPSR and leaving the CPU in a negative-priority state. 830 * v7M does not do this, but simply deactivates the requested interrupt. 831 */ 832 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 833 switch (armv7m_nvic_raw_execution_priority(s)) { 834 case -1: 835 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 836 vec = &s->vectors[ARMV7M_EXCP_HARD]; 837 } else { 838 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 839 } 840 break; 841 case -2: 842 vec = &s->vectors[ARMV7M_EXCP_NMI]; 843 break; 844 case -3: 845 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 846 break; 847 default: 848 break; 849 } 850 } 851 852 if (!vec) { 853 if (secure && exc_is_banked(irq)) { 854 vec = &s->sec_vectors[irq]; 855 } else { 856 vec = &s->vectors[irq]; 857 } 858 } 859 860 trace_nvic_complete_irq(irq, secure); 861 862 if (!vec->active) { 863 /* Tell the caller this was an illegal exception return */ 864 return -1; 865 } 866 867 /* 868 * If this is a configurable exception and it is currently 869 * targeting the opposite security state from the one we're trying 870 * to complete it for, this counts as an illegal exception return. 871 * We still need to deactivate whatever vector the logic above has 872 * selected, though, as it might not be the same as the one for the 873 * requested exception number. 874 */ 875 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 876 ret = -1; 877 } else { 878 ret = nvic_rettobase(s); 879 } 880 881 vec->active = 0; 882 if (vec->level) { 883 /* Re-pend the exception if it's still held high; only 884 * happens for extenal IRQs 885 */ 886 assert(irq >= NVIC_FIRST_IRQ); 887 vec->pending = 1; 888 } 889 890 nvic_irq_update(s); 891 892 return ret; 893 } 894 895 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 896 { 897 /* 898 * Return whether an exception is "ready", i.e. it is enabled and is 899 * configured at a priority which would allow it to interrupt the 900 * current execution priority. 901 * 902 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 903 * for non-banked exceptions secure is always false; for banked exceptions 904 * it indicates which of the exceptions is required. 905 */ 906 NVICState *s = (NVICState *)opaque; 907 bool banked = exc_is_banked(irq); 908 VecInfo *vec; 909 int running = nvic_exec_prio(s); 910 911 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 912 assert(!secure || banked); 913 914 /* 915 * HardFault is an odd special case: we always check against -1, 916 * even if we're secure and HardFault has priority -3; we never 917 * need to check for enabled state. 918 */ 919 if (irq == ARMV7M_EXCP_HARD) { 920 return running > -1; 921 } 922 923 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 924 925 return vec->enabled && 926 exc_group_prio(s, vec->prio, secure) < running; 927 } 928 929 /* callback when external interrupt line is changed */ 930 static void set_irq_level(void *opaque, int n, int level) 931 { 932 NVICState *s = opaque; 933 VecInfo *vec; 934 935 n += NVIC_FIRST_IRQ; 936 937 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 938 939 trace_nvic_set_irq_level(n, level); 940 941 /* The pending status of an external interrupt is 942 * latched on rising edge and exception handler return. 943 * 944 * Pulsing the IRQ will always run the handler 945 * once, and the handler will re-run until the 946 * level is low when the handler completes. 947 */ 948 vec = &s->vectors[n]; 949 if (level != vec->level) { 950 vec->level = level; 951 if (level) { 952 armv7m_nvic_set_pending(s, n, false); 953 } 954 } 955 } 956 957 /* callback when external NMI line is changed */ 958 static void nvic_nmi_trigger(void *opaque, int n, int level) 959 { 960 NVICState *s = opaque; 961 962 trace_nvic_set_nmi_level(level); 963 964 /* 965 * The architecture doesn't specify whether NMI should share 966 * the normal-interrupt behaviour of being resampled on 967 * exception handler return. We choose not to, so just 968 * set NMI pending here and don't track the current level. 969 */ 970 if (level) { 971 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 972 } 973 } 974 975 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 976 { 977 ARMCPU *cpu = s->cpu; 978 uint32_t val; 979 980 switch (offset) { 981 case 4: /* Interrupt Control Type. */ 982 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 983 goto bad_offset; 984 } 985 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 986 case 0xc: /* CPPWR */ 987 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 988 goto bad_offset; 989 } 990 /* We make the IMPDEF choice that nothing can ever go into a 991 * non-retentive power state, which allows us to RAZ/WI this. 992 */ 993 return 0; 994 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 995 { 996 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 997 int i; 998 999 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1000 goto bad_offset; 1001 } 1002 if (!attrs.secure) { 1003 return 0; 1004 } 1005 val = 0; 1006 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1007 if (s->itns[startvec + i]) { 1008 val |= (1 << i); 1009 } 1010 } 1011 return val; 1012 } 1013 case 0xd00: /* CPUID Base. */ 1014 return cpu->midr; 1015 case 0xd04: /* Interrupt Control State (ICSR) */ 1016 /* VECTACTIVE */ 1017 val = cpu->env.v7m.exception; 1018 /* VECTPENDING */ 1019 val |= (s->vectpending & 0xff) << 12; 1020 /* ISRPENDING - set if any external IRQ is pending */ 1021 if (nvic_isrpending(s)) { 1022 val |= (1 << 22); 1023 } 1024 /* RETTOBASE - set if only one handler is active */ 1025 if (nvic_rettobase(s)) { 1026 val |= (1 << 11); 1027 } 1028 if (attrs.secure) { 1029 /* PENDSTSET */ 1030 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1031 val |= (1 << 26); 1032 } 1033 /* PENDSVSET */ 1034 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1035 val |= (1 << 28); 1036 } 1037 } else { 1038 /* PENDSTSET */ 1039 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1040 val |= (1 << 26); 1041 } 1042 /* PENDSVSET */ 1043 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1044 val |= (1 << 28); 1045 } 1046 } 1047 /* NMIPENDSET */ 1048 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1049 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1050 val |= (1 << 31); 1051 } 1052 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1053 /* STTNS: RES0 for the Main Extension */ 1054 return val; 1055 case 0xd08: /* Vector Table Offset. */ 1056 return cpu->env.v7m.vecbase[attrs.secure]; 1057 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1058 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1059 if (attrs.secure) { 1060 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1061 val |= cpu->env.v7m.aircr; 1062 } else { 1063 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1064 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1065 * security isn't supported then BFHFNMINS is RAO (and 1066 * the bit in env.v7m.aircr is always set). 1067 */ 1068 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1069 } 1070 } 1071 return val; 1072 case 0xd10: /* System Control. */ 1073 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1074 goto bad_offset; 1075 } 1076 return cpu->env.v7m.scr[attrs.secure]; 1077 case 0xd14: /* Configuration Control. */ 1078 /* The BFHFNMIGN bit is the only non-banked bit; we 1079 * keep it in the non-secure copy of the register. 1080 */ 1081 val = cpu->env.v7m.ccr[attrs.secure]; 1082 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1083 return val; 1084 case 0xd24: /* System Handler Control and State (SHCSR) */ 1085 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1086 goto bad_offset; 1087 } 1088 val = 0; 1089 if (attrs.secure) { 1090 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1091 val |= (1 << 0); 1092 } 1093 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1094 val |= (1 << 2); 1095 } 1096 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1097 val |= (1 << 3); 1098 } 1099 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1100 val |= (1 << 7); 1101 } 1102 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1103 val |= (1 << 10); 1104 } 1105 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1106 val |= (1 << 11); 1107 } 1108 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1109 val |= (1 << 12); 1110 } 1111 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1112 val |= (1 << 13); 1113 } 1114 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1115 val |= (1 << 15); 1116 } 1117 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1118 val |= (1 << 16); 1119 } 1120 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1121 val |= (1 << 18); 1122 } 1123 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1124 val |= (1 << 21); 1125 } 1126 /* SecureFault is not banked but is always RAZ/WI to NS */ 1127 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1128 val |= (1 << 4); 1129 } 1130 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1131 val |= (1 << 19); 1132 } 1133 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1134 val |= (1 << 20); 1135 } 1136 } else { 1137 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1138 val |= (1 << 0); 1139 } 1140 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1141 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1142 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1143 val |= (1 << 2); 1144 } 1145 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1146 val |= (1 << 21); 1147 } 1148 } 1149 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1150 val |= (1 << 3); 1151 } 1152 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1153 val |= (1 << 7); 1154 } 1155 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1156 val |= (1 << 10); 1157 } 1158 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1159 val |= (1 << 11); 1160 } 1161 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1162 val |= (1 << 12); 1163 } 1164 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1165 val |= (1 << 13); 1166 } 1167 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1168 val |= (1 << 15); 1169 } 1170 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1171 val |= (1 << 16); 1172 } 1173 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1174 val |= (1 << 18); 1175 } 1176 } 1177 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1178 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1179 val |= (1 << 1); 1180 } 1181 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1182 val |= (1 << 14); 1183 } 1184 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1185 val |= (1 << 17); 1186 } 1187 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1188 s->vectors[ARMV7M_EXCP_NMI].active) { 1189 /* NMIACT is not present in v7M */ 1190 val |= (1 << 5); 1191 } 1192 } 1193 1194 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1195 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1196 val |= (1 << 8); 1197 } 1198 return val; 1199 case 0xd2c: /* Hard Fault Status. */ 1200 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1201 goto bad_offset; 1202 } 1203 return cpu->env.v7m.hfsr; 1204 case 0xd30: /* Debug Fault Status. */ 1205 return cpu->env.v7m.dfsr; 1206 case 0xd34: /* MMFAR MemManage Fault Address */ 1207 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1208 goto bad_offset; 1209 } 1210 return cpu->env.v7m.mmfar[attrs.secure]; 1211 case 0xd38: /* Bus Fault Address. */ 1212 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1213 goto bad_offset; 1214 } 1215 if (!attrs.secure && 1216 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1217 return 0; 1218 } 1219 return cpu->env.v7m.bfar; 1220 case 0xd3c: /* Aux Fault Status. */ 1221 /* TODO: Implement fault status registers. */ 1222 qemu_log_mask(LOG_UNIMP, 1223 "Aux Fault status registers unimplemented\n"); 1224 return 0; 1225 case 0xd40: /* PFR0. */ 1226 return cpu->id_pfr0; 1227 case 0xd44: /* PFR1. */ 1228 return cpu->id_pfr1; 1229 case 0xd48: /* DFR0. */ 1230 return cpu->isar.id_dfr0; 1231 case 0xd4c: /* AFR0. */ 1232 return cpu->id_afr0; 1233 case 0xd50: /* MMFR0. */ 1234 return cpu->isar.id_mmfr0; 1235 case 0xd54: /* MMFR1. */ 1236 return cpu->isar.id_mmfr1; 1237 case 0xd58: /* MMFR2. */ 1238 return cpu->isar.id_mmfr2; 1239 case 0xd5c: /* MMFR3. */ 1240 return cpu->isar.id_mmfr3; 1241 case 0xd60: /* ISAR0. */ 1242 return cpu->isar.id_isar0; 1243 case 0xd64: /* ISAR1. */ 1244 return cpu->isar.id_isar1; 1245 case 0xd68: /* ISAR2. */ 1246 return cpu->isar.id_isar2; 1247 case 0xd6c: /* ISAR3. */ 1248 return cpu->isar.id_isar3; 1249 case 0xd70: /* ISAR4. */ 1250 return cpu->isar.id_isar4; 1251 case 0xd74: /* ISAR5. */ 1252 return cpu->isar.id_isar5; 1253 case 0xd78: /* CLIDR */ 1254 return cpu->clidr; 1255 case 0xd7c: /* CTR */ 1256 return cpu->ctr; 1257 case 0xd80: /* CSSIDR */ 1258 { 1259 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1260 return cpu->ccsidr[idx]; 1261 } 1262 case 0xd84: /* CSSELR */ 1263 return cpu->env.v7m.csselr[attrs.secure]; 1264 case 0xd88: /* CPACR */ 1265 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1266 return 0; 1267 } 1268 return cpu->env.v7m.cpacr[attrs.secure]; 1269 case 0xd8c: /* NSACR */ 1270 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1271 return 0; 1272 } 1273 return cpu->env.v7m.nsacr; 1274 /* TODO: Implement debug registers. */ 1275 case 0xd90: /* MPU_TYPE */ 1276 /* Unified MPU; if the MPU is not present this value is zero */ 1277 return cpu->pmsav7_dregion << 8; 1278 break; 1279 case 0xd94: /* MPU_CTRL */ 1280 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1281 case 0xd98: /* MPU_RNR */ 1282 return cpu->env.pmsav7.rnr[attrs.secure]; 1283 case 0xd9c: /* MPU_RBAR */ 1284 case 0xda4: /* MPU_RBAR_A1 */ 1285 case 0xdac: /* MPU_RBAR_A2 */ 1286 case 0xdb4: /* MPU_RBAR_A3 */ 1287 { 1288 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1289 1290 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1291 /* PMSAv8M handling of the aliases is different from v7M: 1292 * aliases A1, A2, A3 override the low two bits of the region 1293 * number in MPU_RNR, and there is no 'region' field in the 1294 * RBAR register. 1295 */ 1296 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1297 if (aliasno) { 1298 region = deposit32(region, 0, 2, aliasno); 1299 } 1300 if (region >= cpu->pmsav7_dregion) { 1301 return 0; 1302 } 1303 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1304 } 1305 1306 if (region >= cpu->pmsav7_dregion) { 1307 return 0; 1308 } 1309 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1310 } 1311 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1312 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1313 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1314 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1315 { 1316 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1317 1318 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1319 /* PMSAv8M handling of the aliases is different from v7M: 1320 * aliases A1, A2, A3 override the low two bits of the region 1321 * number in MPU_RNR. 1322 */ 1323 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1324 if (aliasno) { 1325 region = deposit32(region, 0, 2, aliasno); 1326 } 1327 if (region >= cpu->pmsav7_dregion) { 1328 return 0; 1329 } 1330 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1331 } 1332 1333 if (region >= cpu->pmsav7_dregion) { 1334 return 0; 1335 } 1336 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1337 (cpu->env.pmsav7.drsr[region] & 0xffff); 1338 } 1339 case 0xdc0: /* MPU_MAIR0 */ 1340 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1341 goto bad_offset; 1342 } 1343 return cpu->env.pmsav8.mair0[attrs.secure]; 1344 case 0xdc4: /* MPU_MAIR1 */ 1345 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1346 goto bad_offset; 1347 } 1348 return cpu->env.pmsav8.mair1[attrs.secure]; 1349 case 0xdd0: /* SAU_CTRL */ 1350 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1351 goto bad_offset; 1352 } 1353 if (!attrs.secure) { 1354 return 0; 1355 } 1356 return cpu->env.sau.ctrl; 1357 case 0xdd4: /* SAU_TYPE */ 1358 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1359 goto bad_offset; 1360 } 1361 if (!attrs.secure) { 1362 return 0; 1363 } 1364 return cpu->sau_sregion; 1365 case 0xdd8: /* SAU_RNR */ 1366 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1367 goto bad_offset; 1368 } 1369 if (!attrs.secure) { 1370 return 0; 1371 } 1372 return cpu->env.sau.rnr; 1373 case 0xddc: /* SAU_RBAR */ 1374 { 1375 int region = cpu->env.sau.rnr; 1376 1377 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1378 goto bad_offset; 1379 } 1380 if (!attrs.secure) { 1381 return 0; 1382 } 1383 if (region >= cpu->sau_sregion) { 1384 return 0; 1385 } 1386 return cpu->env.sau.rbar[region]; 1387 } 1388 case 0xde0: /* SAU_RLAR */ 1389 { 1390 int region = cpu->env.sau.rnr; 1391 1392 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1393 goto bad_offset; 1394 } 1395 if (!attrs.secure) { 1396 return 0; 1397 } 1398 if (region >= cpu->sau_sregion) { 1399 return 0; 1400 } 1401 return cpu->env.sau.rlar[region]; 1402 } 1403 case 0xde4: /* SFSR */ 1404 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1405 goto bad_offset; 1406 } 1407 if (!attrs.secure) { 1408 return 0; 1409 } 1410 return cpu->env.v7m.sfsr; 1411 case 0xde8: /* SFAR */ 1412 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1413 goto bad_offset; 1414 } 1415 if (!attrs.secure) { 1416 return 0; 1417 } 1418 return cpu->env.v7m.sfar; 1419 case 0xf34: /* FPCCR */ 1420 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1421 return 0; 1422 } 1423 if (attrs.secure) { 1424 return cpu->env.v7m.fpccr[M_REG_S]; 1425 } else { 1426 /* 1427 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1428 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1429 * other non-banked bits RAZ. 1430 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1431 */ 1432 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1433 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1434 R_V7M_FPCCR_CLRONRET_MASK | 1435 R_V7M_FPCCR_MONRDY_MASK; 1436 1437 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1438 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1439 } 1440 1441 value &= mask; 1442 1443 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1444 return value; 1445 } 1446 case 0xf38: /* FPCAR */ 1447 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1448 return 0; 1449 } 1450 return cpu->env.v7m.fpcar[attrs.secure]; 1451 case 0xf3c: /* FPDSCR */ 1452 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1453 return 0; 1454 } 1455 return cpu->env.v7m.fpdscr[attrs.secure]; 1456 case 0xf40: /* MVFR0 */ 1457 return cpu->isar.mvfr0; 1458 case 0xf44: /* MVFR1 */ 1459 return cpu->isar.mvfr1; 1460 case 0xf48: /* MVFR2 */ 1461 return cpu->isar.mvfr2; 1462 default: 1463 bad_offset: 1464 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1465 return 0; 1466 } 1467 } 1468 1469 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1470 MemTxAttrs attrs) 1471 { 1472 ARMCPU *cpu = s->cpu; 1473 1474 switch (offset) { 1475 case 0xc: /* CPPWR */ 1476 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1477 goto bad_offset; 1478 } 1479 /* Make the IMPDEF choice to RAZ/WI this. */ 1480 break; 1481 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1482 { 1483 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1484 int i; 1485 1486 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1487 goto bad_offset; 1488 } 1489 if (!attrs.secure) { 1490 break; 1491 } 1492 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1493 s->itns[startvec + i] = (value >> i) & 1; 1494 } 1495 nvic_irq_update(s); 1496 break; 1497 } 1498 case 0xd04: /* Interrupt Control State (ICSR) */ 1499 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1500 if (value & (1 << 31)) { 1501 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1502 } else if (value & (1 << 30) && 1503 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1504 /* PENDNMICLR didn't exist in v7M */ 1505 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1506 } 1507 } 1508 if (value & (1 << 28)) { 1509 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1510 } else if (value & (1 << 27)) { 1511 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1512 } 1513 if (value & (1 << 26)) { 1514 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1515 } else if (value & (1 << 25)) { 1516 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1517 } 1518 break; 1519 case 0xd08: /* Vector Table Offset. */ 1520 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1521 break; 1522 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1523 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1524 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1525 if (attrs.secure || 1526 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1527 qemu_irq_pulse(s->sysresetreq); 1528 } 1529 } 1530 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1531 qemu_log_mask(LOG_GUEST_ERROR, 1532 "Setting VECTCLRACTIVE when not in DEBUG mode " 1533 "is UNPREDICTABLE\n"); 1534 } 1535 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1536 /* NB: this bit is RES0 in v8M */ 1537 qemu_log_mask(LOG_GUEST_ERROR, 1538 "Setting VECTRESET when not in DEBUG mode " 1539 "is UNPREDICTABLE\n"); 1540 } 1541 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1542 s->prigroup[attrs.secure] = 1543 extract32(value, 1544 R_V7M_AIRCR_PRIGROUP_SHIFT, 1545 R_V7M_AIRCR_PRIGROUP_LENGTH); 1546 } 1547 if (attrs.secure) { 1548 /* These bits are only writable by secure */ 1549 cpu->env.v7m.aircr = value & 1550 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1551 R_V7M_AIRCR_BFHFNMINS_MASK | 1552 R_V7M_AIRCR_PRIS_MASK); 1553 /* BFHFNMINS changes the priority of Secure HardFault, and 1554 * allows a pending Non-secure HardFault to preempt (which 1555 * we implement by marking it enabled). 1556 */ 1557 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1558 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1559 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1560 } else { 1561 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1562 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1563 } 1564 } 1565 nvic_irq_update(s); 1566 } 1567 break; 1568 case 0xd10: /* System Control. */ 1569 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1570 goto bad_offset; 1571 } 1572 /* We don't implement deep-sleep so these bits are RAZ/WI. 1573 * The other bits in the register are banked. 1574 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1575 * is architecturally permitted. 1576 */ 1577 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1578 cpu->env.v7m.scr[attrs.secure] = value; 1579 break; 1580 case 0xd14: /* Configuration Control. */ 1581 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1582 goto bad_offset; 1583 } 1584 1585 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1586 value &= (R_V7M_CCR_STKALIGN_MASK | 1587 R_V7M_CCR_BFHFNMIGN_MASK | 1588 R_V7M_CCR_DIV_0_TRP_MASK | 1589 R_V7M_CCR_UNALIGN_TRP_MASK | 1590 R_V7M_CCR_USERSETMPEND_MASK | 1591 R_V7M_CCR_NONBASETHRDENA_MASK); 1592 1593 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1594 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1595 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1596 | R_V7M_CCR_STKALIGN_MASK; 1597 } 1598 if (attrs.secure) { 1599 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1600 cpu->env.v7m.ccr[M_REG_NS] = 1601 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1602 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1603 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1604 } 1605 1606 cpu->env.v7m.ccr[attrs.secure] = value; 1607 break; 1608 case 0xd24: /* System Handler Control and State (SHCSR) */ 1609 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1610 goto bad_offset; 1611 } 1612 if (attrs.secure) { 1613 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1614 /* Secure HardFault active bit cannot be written */ 1615 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1616 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1617 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1618 (value & (1 << 10)) != 0; 1619 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1620 (value & (1 << 11)) != 0; 1621 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1622 (value & (1 << 12)) != 0; 1623 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1624 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1625 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1626 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1627 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1628 (value & (1 << 18)) != 0; 1629 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1630 /* SecureFault not banked, but RAZ/WI to NS */ 1631 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1632 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1633 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1634 } else { 1635 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1636 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1637 /* HARDFAULTPENDED is not present in v7M */ 1638 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1639 } 1640 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1641 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1642 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1643 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1644 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1645 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1646 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1647 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1648 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1649 } 1650 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1651 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1652 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1653 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1654 } 1655 /* NMIACT can only be written if the write is of a zero, with 1656 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1657 */ 1658 if (!attrs.secure && cpu->env.v7m.secure && 1659 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1660 (value & (1 << 5)) == 0) { 1661 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1662 } 1663 /* HARDFAULTACT can only be written if the write is of a zero 1664 * to the non-secure HardFault state by the CPU in secure state. 1665 * The only case where we can be targeting the non-secure HF state 1666 * when in secure state is if this is a write via the NS alias 1667 * and BFHFNMINS is 1. 1668 */ 1669 if (!attrs.secure && cpu->env.v7m.secure && 1670 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1671 (value & (1 << 2)) == 0) { 1672 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1673 } 1674 1675 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1676 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1677 nvic_irq_update(s); 1678 break; 1679 case 0xd2c: /* Hard Fault Status. */ 1680 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1681 goto bad_offset; 1682 } 1683 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1684 break; 1685 case 0xd30: /* Debug Fault Status. */ 1686 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1687 break; 1688 case 0xd34: /* Mem Manage Address. */ 1689 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1690 goto bad_offset; 1691 } 1692 cpu->env.v7m.mmfar[attrs.secure] = value; 1693 return; 1694 case 0xd38: /* Bus Fault Address. */ 1695 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1696 goto bad_offset; 1697 } 1698 if (!attrs.secure && 1699 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1700 return; 1701 } 1702 cpu->env.v7m.bfar = value; 1703 return; 1704 case 0xd3c: /* Aux Fault Status. */ 1705 qemu_log_mask(LOG_UNIMP, 1706 "NVIC: Aux fault status registers unimplemented\n"); 1707 break; 1708 case 0xd84: /* CSSELR */ 1709 if (!arm_v7m_csselr_razwi(cpu)) { 1710 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1711 } 1712 break; 1713 case 0xd88: /* CPACR */ 1714 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1715 /* We implement only the Floating Point extension's CP10/CP11 */ 1716 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1717 } 1718 break; 1719 case 0xd8c: /* NSACR */ 1720 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1721 /* We implement only the Floating Point extension's CP10/CP11 */ 1722 cpu->env.v7m.nsacr = value & (3 << 10); 1723 } 1724 break; 1725 case 0xd90: /* MPU_TYPE */ 1726 return; /* RO */ 1727 case 0xd94: /* MPU_CTRL */ 1728 if ((value & 1729 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1730 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1731 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1732 "UNPREDICTABLE\n"); 1733 } 1734 cpu->env.v7m.mpu_ctrl[attrs.secure] 1735 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1736 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1737 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1738 tlb_flush(CPU(cpu)); 1739 break; 1740 case 0xd98: /* MPU_RNR */ 1741 if (value >= cpu->pmsav7_dregion) { 1742 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1743 PRIu32 "/%" PRIu32 "\n", 1744 value, cpu->pmsav7_dregion); 1745 } else { 1746 cpu->env.pmsav7.rnr[attrs.secure] = value; 1747 } 1748 break; 1749 case 0xd9c: /* MPU_RBAR */ 1750 case 0xda4: /* MPU_RBAR_A1 */ 1751 case 0xdac: /* MPU_RBAR_A2 */ 1752 case 0xdb4: /* MPU_RBAR_A3 */ 1753 { 1754 int region; 1755 1756 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1757 /* PMSAv8M handling of the aliases is different from v7M: 1758 * aliases A1, A2, A3 override the low two bits of the region 1759 * number in MPU_RNR, and there is no 'region' field in the 1760 * RBAR register. 1761 */ 1762 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1763 1764 region = cpu->env.pmsav7.rnr[attrs.secure]; 1765 if (aliasno) { 1766 region = deposit32(region, 0, 2, aliasno); 1767 } 1768 if (region >= cpu->pmsav7_dregion) { 1769 return; 1770 } 1771 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1772 tlb_flush(CPU(cpu)); 1773 return; 1774 } 1775 1776 if (value & (1 << 4)) { 1777 /* VALID bit means use the region number specified in this 1778 * value and also update MPU_RNR.REGION with that value. 1779 */ 1780 region = extract32(value, 0, 4); 1781 if (region >= cpu->pmsav7_dregion) { 1782 qemu_log_mask(LOG_GUEST_ERROR, 1783 "MPU region out of range %u/%" PRIu32 "\n", 1784 region, cpu->pmsav7_dregion); 1785 return; 1786 } 1787 cpu->env.pmsav7.rnr[attrs.secure] = region; 1788 } else { 1789 region = cpu->env.pmsav7.rnr[attrs.secure]; 1790 } 1791 1792 if (region >= cpu->pmsav7_dregion) { 1793 return; 1794 } 1795 1796 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1797 tlb_flush(CPU(cpu)); 1798 break; 1799 } 1800 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1801 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1802 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1803 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1804 { 1805 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1806 1807 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1808 /* PMSAv8M handling of the aliases is different from v7M: 1809 * aliases A1, A2, A3 override the low two bits of the region 1810 * number in MPU_RNR. 1811 */ 1812 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1813 1814 region = cpu->env.pmsav7.rnr[attrs.secure]; 1815 if (aliasno) { 1816 region = deposit32(region, 0, 2, aliasno); 1817 } 1818 if (region >= cpu->pmsav7_dregion) { 1819 return; 1820 } 1821 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1822 tlb_flush(CPU(cpu)); 1823 return; 1824 } 1825 1826 if (region >= cpu->pmsav7_dregion) { 1827 return; 1828 } 1829 1830 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1831 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1832 tlb_flush(CPU(cpu)); 1833 break; 1834 } 1835 case 0xdc0: /* MPU_MAIR0 */ 1836 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1837 goto bad_offset; 1838 } 1839 if (cpu->pmsav7_dregion) { 1840 /* Register is RES0 if no MPU regions are implemented */ 1841 cpu->env.pmsav8.mair0[attrs.secure] = value; 1842 } 1843 /* We don't need to do anything else because memory attributes 1844 * only affect cacheability, and we don't implement caching. 1845 */ 1846 break; 1847 case 0xdc4: /* MPU_MAIR1 */ 1848 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1849 goto bad_offset; 1850 } 1851 if (cpu->pmsav7_dregion) { 1852 /* Register is RES0 if no MPU regions are implemented */ 1853 cpu->env.pmsav8.mair1[attrs.secure] = value; 1854 } 1855 /* We don't need to do anything else because memory attributes 1856 * only affect cacheability, and we don't implement caching. 1857 */ 1858 break; 1859 case 0xdd0: /* SAU_CTRL */ 1860 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1861 goto bad_offset; 1862 } 1863 if (!attrs.secure) { 1864 return; 1865 } 1866 cpu->env.sau.ctrl = value & 3; 1867 break; 1868 case 0xdd4: /* SAU_TYPE */ 1869 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1870 goto bad_offset; 1871 } 1872 break; 1873 case 0xdd8: /* SAU_RNR */ 1874 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1875 goto bad_offset; 1876 } 1877 if (!attrs.secure) { 1878 return; 1879 } 1880 if (value >= cpu->sau_sregion) { 1881 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1882 PRIu32 "/%" PRIu32 "\n", 1883 value, cpu->sau_sregion); 1884 } else { 1885 cpu->env.sau.rnr = value; 1886 } 1887 break; 1888 case 0xddc: /* SAU_RBAR */ 1889 { 1890 int region = cpu->env.sau.rnr; 1891 1892 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1893 goto bad_offset; 1894 } 1895 if (!attrs.secure) { 1896 return; 1897 } 1898 if (region >= cpu->sau_sregion) { 1899 return; 1900 } 1901 cpu->env.sau.rbar[region] = value & ~0x1f; 1902 tlb_flush(CPU(cpu)); 1903 break; 1904 } 1905 case 0xde0: /* SAU_RLAR */ 1906 { 1907 int region = cpu->env.sau.rnr; 1908 1909 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1910 goto bad_offset; 1911 } 1912 if (!attrs.secure) { 1913 return; 1914 } 1915 if (region >= cpu->sau_sregion) { 1916 return; 1917 } 1918 cpu->env.sau.rlar[region] = value & ~0x1c; 1919 tlb_flush(CPU(cpu)); 1920 break; 1921 } 1922 case 0xde4: /* SFSR */ 1923 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1924 goto bad_offset; 1925 } 1926 if (!attrs.secure) { 1927 return; 1928 } 1929 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1930 break; 1931 case 0xde8: /* SFAR */ 1932 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1933 goto bad_offset; 1934 } 1935 if (!attrs.secure) { 1936 return; 1937 } 1938 cpu->env.v7m.sfsr = value; 1939 break; 1940 case 0xf00: /* Software Triggered Interrupt Register */ 1941 { 1942 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1943 1944 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1945 goto bad_offset; 1946 } 1947 1948 if (excnum < s->num_irq) { 1949 armv7m_nvic_set_pending(s, excnum, false); 1950 } 1951 break; 1952 } 1953 case 0xf34: /* FPCCR */ 1954 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1955 /* Not all bits here are banked. */ 1956 uint32_t fpccr_s; 1957 1958 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1959 /* Don't allow setting of bits not present in v7M */ 1960 value &= (R_V7M_FPCCR_LSPACT_MASK | 1961 R_V7M_FPCCR_USER_MASK | 1962 R_V7M_FPCCR_THREAD_MASK | 1963 R_V7M_FPCCR_HFRDY_MASK | 1964 R_V7M_FPCCR_MMRDY_MASK | 1965 R_V7M_FPCCR_BFRDY_MASK | 1966 R_V7M_FPCCR_MONRDY_MASK | 1967 R_V7M_FPCCR_LSPEN_MASK | 1968 R_V7M_FPCCR_ASPEN_MASK); 1969 } 1970 value &= ~R_V7M_FPCCR_RES0_MASK; 1971 1972 if (!attrs.secure) { 1973 /* Some non-banked bits are configurably writable by NS */ 1974 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 1975 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 1976 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 1977 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 1978 } 1979 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 1980 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 1981 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 1982 } 1983 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1984 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 1985 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 1986 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 1987 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 1988 } 1989 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 1990 { 1991 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 1992 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 1993 } 1994 1995 /* 1996 * All other non-banked bits are RAZ/WI from NS; write 1997 * just the banked bits to fpccr[M_REG_NS]. 1998 */ 1999 value &= R_V7M_FPCCR_BANKED_MASK; 2000 cpu->env.v7m.fpccr[M_REG_NS] = value; 2001 } else { 2002 fpccr_s = value; 2003 } 2004 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2005 } 2006 break; 2007 case 0xf38: /* FPCAR */ 2008 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 2009 value &= ~7; 2010 cpu->env.v7m.fpcar[attrs.secure] = value; 2011 } 2012 break; 2013 case 0xf3c: /* FPDSCR */ 2014 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 2015 value &= 0x07c00000; 2016 cpu->env.v7m.fpdscr[attrs.secure] = value; 2017 } 2018 break; 2019 case 0xf50: /* ICIALLU */ 2020 case 0xf58: /* ICIMVAU */ 2021 case 0xf5c: /* DCIMVAC */ 2022 case 0xf60: /* DCISW */ 2023 case 0xf64: /* DCCMVAU */ 2024 case 0xf68: /* DCCMVAC */ 2025 case 0xf6c: /* DCCSW */ 2026 case 0xf70: /* DCCIMVAC */ 2027 case 0xf74: /* DCCISW */ 2028 case 0xf78: /* BPIALL */ 2029 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2030 break; 2031 default: 2032 bad_offset: 2033 qemu_log_mask(LOG_GUEST_ERROR, 2034 "NVIC: Bad write offset 0x%x\n", offset); 2035 } 2036 } 2037 2038 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2039 { 2040 /* Return true if unprivileged access to this register is permitted. */ 2041 switch (offset) { 2042 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2043 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2044 * controls access even though the CPU is in Secure state (I_QDKX). 2045 */ 2046 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2047 default: 2048 /* All other user accesses cause a BusFault unconditionally */ 2049 return false; 2050 } 2051 } 2052 2053 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2054 { 2055 /* Behaviour for the SHPR register field for this exception: 2056 * return M_REG_NS to use the nonsecure vector (including for 2057 * non-banked exceptions), M_REG_S for the secure version of 2058 * a banked exception, and -1 if this field should RAZ/WI. 2059 */ 2060 switch (exc) { 2061 case ARMV7M_EXCP_MEM: 2062 case ARMV7M_EXCP_USAGE: 2063 case ARMV7M_EXCP_SVC: 2064 case ARMV7M_EXCP_PENDSV: 2065 case ARMV7M_EXCP_SYSTICK: 2066 /* Banked exceptions */ 2067 return attrs.secure; 2068 case ARMV7M_EXCP_BUS: 2069 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2070 if (!attrs.secure && 2071 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2072 return -1; 2073 } 2074 return M_REG_NS; 2075 case ARMV7M_EXCP_SECURE: 2076 /* Not banked, RAZ/WI from nonsecure */ 2077 if (!attrs.secure) { 2078 return -1; 2079 } 2080 return M_REG_NS; 2081 case ARMV7M_EXCP_DEBUG: 2082 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2083 return M_REG_NS; 2084 case 8 ... 10: 2085 case 13: 2086 /* RES0 */ 2087 return -1; 2088 default: 2089 /* Not reachable due to decode of SHPR register addresses */ 2090 g_assert_not_reached(); 2091 } 2092 } 2093 2094 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2095 uint64_t *data, unsigned size, 2096 MemTxAttrs attrs) 2097 { 2098 NVICState *s = (NVICState *)opaque; 2099 uint32_t offset = addr; 2100 unsigned i, startvec, end; 2101 uint32_t val; 2102 2103 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2104 /* Generate BusFault for unprivileged accesses */ 2105 return MEMTX_ERROR; 2106 } 2107 2108 switch (offset) { 2109 /* reads of set and clear both return the status */ 2110 case 0x100 ... 0x13f: /* NVIC Set enable */ 2111 offset += 0x80; 2112 /* fall through */ 2113 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2114 val = 0; 2115 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2116 2117 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2118 if (s->vectors[startvec + i].enabled && 2119 (attrs.secure || s->itns[startvec + i])) { 2120 val |= (1 << i); 2121 } 2122 } 2123 break; 2124 case 0x200 ... 0x23f: /* NVIC Set pend */ 2125 offset += 0x80; 2126 /* fall through */ 2127 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2128 val = 0; 2129 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2130 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2131 if (s->vectors[startvec + i].pending && 2132 (attrs.secure || s->itns[startvec + i])) { 2133 val |= (1 << i); 2134 } 2135 } 2136 break; 2137 case 0x300 ... 0x33f: /* NVIC Active */ 2138 val = 0; 2139 2140 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2141 break; 2142 } 2143 2144 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2145 2146 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2147 if (s->vectors[startvec + i].active && 2148 (attrs.secure || s->itns[startvec + i])) { 2149 val |= (1 << i); 2150 } 2151 } 2152 break; 2153 case 0x400 ... 0x5ef: /* NVIC Priority */ 2154 val = 0; 2155 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2156 2157 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2158 if (attrs.secure || s->itns[startvec + i]) { 2159 val |= s->vectors[startvec + i].prio << (8 * i); 2160 } 2161 } 2162 break; 2163 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2164 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2165 val = 0; 2166 break; 2167 } 2168 /* fall through */ 2169 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2170 val = 0; 2171 for (i = 0; i < size; i++) { 2172 unsigned hdlidx = (offset - 0xd14) + i; 2173 int sbank = shpr_bank(s, hdlidx, attrs); 2174 2175 if (sbank < 0) { 2176 continue; 2177 } 2178 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2179 } 2180 break; 2181 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2182 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2183 val = 0; 2184 break; 2185 }; 2186 /* 2187 * The BFSR bits [15:8] are shared between security states 2188 * and we store them in the NS copy. They are RAZ/WI for 2189 * NS code if AIRCR.BFHFNMINS is 0. 2190 */ 2191 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2192 if (!attrs.secure && 2193 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2194 val &= ~R_V7M_CFSR_BFSR_MASK; 2195 } else { 2196 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2197 } 2198 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2199 break; 2200 case 0xfe0 ... 0xfff: /* ID. */ 2201 if (offset & 3) { 2202 val = 0; 2203 } else { 2204 val = nvic_id[(offset - 0xfe0) >> 2]; 2205 } 2206 break; 2207 default: 2208 if (size == 4) { 2209 val = nvic_readl(s, offset, attrs); 2210 } else { 2211 qemu_log_mask(LOG_GUEST_ERROR, 2212 "NVIC: Bad read of size %d at offset 0x%x\n", 2213 size, offset); 2214 val = 0; 2215 } 2216 } 2217 2218 trace_nvic_sysreg_read(addr, val, size); 2219 *data = val; 2220 return MEMTX_OK; 2221 } 2222 2223 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2224 uint64_t value, unsigned size, 2225 MemTxAttrs attrs) 2226 { 2227 NVICState *s = (NVICState *)opaque; 2228 uint32_t offset = addr; 2229 unsigned i, startvec, end; 2230 unsigned setval = 0; 2231 2232 trace_nvic_sysreg_write(addr, value, size); 2233 2234 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2235 /* Generate BusFault for unprivileged accesses */ 2236 return MEMTX_ERROR; 2237 } 2238 2239 switch (offset) { 2240 case 0x100 ... 0x13f: /* NVIC Set enable */ 2241 offset += 0x80; 2242 setval = 1; 2243 /* fall through */ 2244 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2245 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2246 2247 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2248 if (value & (1 << i) && 2249 (attrs.secure || s->itns[startvec + i])) { 2250 s->vectors[startvec + i].enabled = setval; 2251 } 2252 } 2253 nvic_irq_update(s); 2254 goto exit_ok; 2255 case 0x200 ... 0x23f: /* NVIC Set pend */ 2256 /* the special logic in armv7m_nvic_set_pending() 2257 * is not needed since IRQs are never escalated 2258 */ 2259 offset += 0x80; 2260 setval = 1; 2261 /* fall through */ 2262 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2263 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2264 2265 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2266 if (value & (1 << i) && 2267 (attrs.secure || s->itns[startvec + i])) { 2268 s->vectors[startvec + i].pending = setval; 2269 } 2270 } 2271 nvic_irq_update(s); 2272 goto exit_ok; 2273 case 0x300 ... 0x33f: /* NVIC Active */ 2274 goto exit_ok; /* R/O */ 2275 case 0x400 ... 0x5ef: /* NVIC Priority */ 2276 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2277 2278 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2279 if (attrs.secure || s->itns[startvec + i]) { 2280 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2281 } 2282 } 2283 nvic_irq_update(s); 2284 goto exit_ok; 2285 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2286 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2287 goto exit_ok; 2288 } 2289 /* fall through */ 2290 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2291 for (i = 0; i < size; i++) { 2292 unsigned hdlidx = (offset - 0xd14) + i; 2293 int newprio = extract32(value, i * 8, 8); 2294 int sbank = shpr_bank(s, hdlidx, attrs); 2295 2296 if (sbank < 0) { 2297 continue; 2298 } 2299 set_prio(s, hdlidx, sbank, newprio); 2300 } 2301 nvic_irq_update(s); 2302 goto exit_ok; 2303 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2304 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2305 goto exit_ok; 2306 } 2307 /* All bits are W1C, so construct 32 bit value with 0s in 2308 * the parts not written by the access size 2309 */ 2310 value <<= ((offset - 0xd28) * 8); 2311 2312 if (!attrs.secure && 2313 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2314 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2315 value &= ~R_V7M_CFSR_BFSR_MASK; 2316 } 2317 2318 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2319 if (attrs.secure) { 2320 /* The BFSR bits [15:8] are shared between security states 2321 * and we store them in the NS copy. 2322 */ 2323 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2324 } 2325 goto exit_ok; 2326 } 2327 if (size == 4) { 2328 nvic_writel(s, offset, value, attrs); 2329 goto exit_ok; 2330 } 2331 qemu_log_mask(LOG_GUEST_ERROR, 2332 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2333 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2334 2335 exit_ok: 2336 /* Ensure any changes made are reflected in the cached hflags. */ 2337 arm_rebuild_hflags(&s->cpu->env); 2338 return MEMTX_OK; 2339 } 2340 2341 static const MemoryRegionOps nvic_sysreg_ops = { 2342 .read_with_attrs = nvic_sysreg_read, 2343 .write_with_attrs = nvic_sysreg_write, 2344 .endianness = DEVICE_NATIVE_ENDIAN, 2345 }; 2346 2347 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2348 uint64_t value, unsigned size, 2349 MemTxAttrs attrs) 2350 { 2351 MemoryRegion *mr = opaque; 2352 2353 if (attrs.secure) { 2354 /* S accesses to the alias act like NS accesses to the real region */ 2355 attrs.secure = 0; 2356 return memory_region_dispatch_write(mr, addr, value, 2357 size_memop(size) | MO_TE, attrs); 2358 } else { 2359 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2360 if (attrs.user) { 2361 return MEMTX_ERROR; 2362 } 2363 return MEMTX_OK; 2364 } 2365 } 2366 2367 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2368 uint64_t *data, unsigned size, 2369 MemTxAttrs attrs) 2370 { 2371 MemoryRegion *mr = opaque; 2372 2373 if (attrs.secure) { 2374 /* S accesses to the alias act like NS accesses to the real region */ 2375 attrs.secure = 0; 2376 return memory_region_dispatch_read(mr, addr, data, 2377 size_memop(size) | MO_TE, attrs); 2378 } else { 2379 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2380 if (attrs.user) { 2381 return MEMTX_ERROR; 2382 } 2383 *data = 0; 2384 return MEMTX_OK; 2385 } 2386 } 2387 2388 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2389 .read_with_attrs = nvic_sysreg_ns_read, 2390 .write_with_attrs = nvic_sysreg_ns_write, 2391 .endianness = DEVICE_NATIVE_ENDIAN, 2392 }; 2393 2394 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2395 uint64_t value, unsigned size, 2396 MemTxAttrs attrs) 2397 { 2398 NVICState *s = opaque; 2399 MemoryRegion *mr; 2400 2401 /* Direct the access to the correct systick */ 2402 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2403 return memory_region_dispatch_write(mr, addr, value, 2404 size_memop(size) | MO_TE, attrs); 2405 } 2406 2407 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2408 uint64_t *data, unsigned size, 2409 MemTxAttrs attrs) 2410 { 2411 NVICState *s = opaque; 2412 MemoryRegion *mr; 2413 2414 /* Direct the access to the correct systick */ 2415 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2416 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2417 attrs); 2418 } 2419 2420 static const MemoryRegionOps nvic_systick_ops = { 2421 .read_with_attrs = nvic_systick_read, 2422 .write_with_attrs = nvic_systick_write, 2423 .endianness = DEVICE_NATIVE_ENDIAN, 2424 }; 2425 2426 static int nvic_post_load(void *opaque, int version_id) 2427 { 2428 NVICState *s = opaque; 2429 unsigned i; 2430 int resetprio; 2431 2432 /* Check for out of range priority settings */ 2433 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2434 2435 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2436 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2437 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2438 return 1; 2439 } 2440 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2441 if (s->vectors[i].prio & ~0xff) { 2442 return 1; 2443 } 2444 } 2445 2446 nvic_recompute_state(s); 2447 2448 return 0; 2449 } 2450 2451 static const VMStateDescription vmstate_VecInfo = { 2452 .name = "armv7m_nvic_info", 2453 .version_id = 1, 2454 .minimum_version_id = 1, 2455 .fields = (VMStateField[]) { 2456 VMSTATE_INT16(prio, VecInfo), 2457 VMSTATE_UINT8(enabled, VecInfo), 2458 VMSTATE_UINT8(pending, VecInfo), 2459 VMSTATE_UINT8(active, VecInfo), 2460 VMSTATE_UINT8(level, VecInfo), 2461 VMSTATE_END_OF_LIST() 2462 } 2463 }; 2464 2465 static bool nvic_security_needed(void *opaque) 2466 { 2467 NVICState *s = opaque; 2468 2469 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2470 } 2471 2472 static int nvic_security_post_load(void *opaque, int version_id) 2473 { 2474 NVICState *s = opaque; 2475 int i; 2476 2477 /* Check for out of range priority settings */ 2478 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2479 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2480 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2481 * if the CPU state has been migrated yet; a mismatch won't 2482 * cause the emulation to blow up, though. 2483 */ 2484 return 1; 2485 } 2486 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2487 if (s->sec_vectors[i].prio & ~0xff) { 2488 return 1; 2489 } 2490 } 2491 return 0; 2492 } 2493 2494 static const VMStateDescription vmstate_nvic_security = { 2495 .name = "armv7m_nvic/m-security", 2496 .version_id = 1, 2497 .minimum_version_id = 1, 2498 .needed = nvic_security_needed, 2499 .post_load = &nvic_security_post_load, 2500 .fields = (VMStateField[]) { 2501 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2502 vmstate_VecInfo, VecInfo), 2503 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2504 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2505 VMSTATE_END_OF_LIST() 2506 } 2507 }; 2508 2509 static const VMStateDescription vmstate_nvic = { 2510 .name = "armv7m_nvic", 2511 .version_id = 4, 2512 .minimum_version_id = 4, 2513 .post_load = &nvic_post_load, 2514 .fields = (VMStateField[]) { 2515 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2516 vmstate_VecInfo, VecInfo), 2517 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2518 VMSTATE_END_OF_LIST() 2519 }, 2520 .subsections = (const VMStateDescription*[]) { 2521 &vmstate_nvic_security, 2522 NULL 2523 } 2524 }; 2525 2526 static Property props_nvic[] = { 2527 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2528 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2529 DEFINE_PROP_END_OF_LIST() 2530 }; 2531 2532 static void armv7m_nvic_reset(DeviceState *dev) 2533 { 2534 int resetprio; 2535 NVICState *s = NVIC(dev); 2536 2537 memset(s->vectors, 0, sizeof(s->vectors)); 2538 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2539 s->prigroup[M_REG_NS] = 0; 2540 s->prigroup[M_REG_S] = 0; 2541 2542 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2543 /* MEM, BUS, and USAGE are enabled through 2544 * the System Handler Control register 2545 */ 2546 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2547 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2548 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2549 2550 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2551 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2552 2553 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2554 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2555 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2556 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2557 2558 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2559 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2560 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2561 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2562 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2563 2564 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2565 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2566 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2567 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2568 } else { 2569 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2570 } 2571 2572 /* Strictly speaking the reset handler should be enabled. 2573 * However, we don't simulate soft resets through the NVIC, 2574 * and the reset vector should never be pended. 2575 * So we leave it disabled to catch logic errors. 2576 */ 2577 2578 s->exception_prio = NVIC_NOEXC_PRIO; 2579 s->vectpending = 0; 2580 s->vectpending_is_s_banked = false; 2581 s->vectpending_prio = NVIC_NOEXC_PRIO; 2582 2583 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2584 memset(s->itns, 0, sizeof(s->itns)); 2585 } else { 2586 /* This state is constant and not guest accessible in a non-security 2587 * NVIC; we set the bits to true to avoid having to do a feature 2588 * bit check in the NVIC enable/pend/etc register accessors. 2589 */ 2590 int i; 2591 2592 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2593 s->itns[i] = true; 2594 } 2595 } 2596 } 2597 2598 static void nvic_systick_trigger(void *opaque, int n, int level) 2599 { 2600 NVICState *s = opaque; 2601 2602 if (level) { 2603 /* SysTick just asked us to pend its exception. 2604 * (This is different from an external interrupt line's 2605 * behaviour.) 2606 * n == 0 : NonSecure systick 2607 * n == 1 : Secure systick 2608 */ 2609 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2610 } 2611 } 2612 2613 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2614 { 2615 NVICState *s = NVIC(dev); 2616 Error *err = NULL; 2617 int regionlen; 2618 2619 /* The armv7m container object will have set our CPU pointer */ 2620 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2621 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2622 return; 2623 } 2624 2625 if (s->num_irq > NVIC_MAX_IRQ) { 2626 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2627 return; 2628 } 2629 2630 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2631 2632 /* include space for internal exception vectors */ 2633 s->num_irq += NVIC_FIRST_IRQ; 2634 2635 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2636 2637 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2638 "realized", &err); 2639 if (err != NULL) { 2640 error_propagate(errp, err); 2641 return; 2642 } 2643 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2644 qdev_get_gpio_in_named(dev, "systick-trigger", 2645 M_REG_NS)); 2646 2647 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2648 /* We couldn't init the secure systick device in instance_init 2649 * as we didn't know then if the CPU had the security extensions; 2650 * so we have to do it here. 2651 */ 2652 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s", 2653 &s->systick[M_REG_S], 2654 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK); 2655 2656 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2657 "realized", &err); 2658 if (err != NULL) { 2659 error_propagate(errp, err); 2660 return; 2661 } 2662 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2663 qdev_get_gpio_in_named(dev, "systick-trigger", 2664 M_REG_S)); 2665 } 2666 2667 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2668 * and looks like this: 2669 * 0x004 - ICTR 2670 * 0x010 - 0xff - systick 2671 * 0x100..0x7ec - NVIC 2672 * 0x7f0..0xcff - Reserved 2673 * 0xd00..0xd3c - SCS registers 2674 * 0xd40..0xeff - Reserved or Not implemented 2675 * 0xf00 - STIR 2676 * 2677 * Some registers within this space are banked between security states. 2678 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2679 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2680 * to the main SCS range, and non-secure accesses (including when 2681 * the security extension is not implemented) are RAZ/WI. 2682 * Note that both the main SCS range and the alias range are defined 2683 * to be exempt from memory attribution (R_BLJT) and so the memory 2684 * transaction attribute always matches the current CPU security 2685 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2686 * wrappers we change attrs.secure to indicate the NS access; so 2687 * generally code determining which banked register to use should 2688 * use attrs.secure; code determining actual behaviour of the system 2689 * should use env->v7m.secure. 2690 */ 2691 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2692 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2693 /* The system register region goes at the bottom of the priority 2694 * stack as it covers the whole page. 2695 */ 2696 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2697 "nvic_sysregs", 0x1000); 2698 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2699 2700 memory_region_init_io(&s->systickmem, OBJECT(s), 2701 &nvic_systick_ops, s, 2702 "nvic_systick", 0xe0); 2703 2704 memory_region_add_subregion_overlap(&s->container, 0x10, 2705 &s->systickmem, 1); 2706 2707 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2708 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2709 &nvic_sysreg_ns_ops, &s->sysregmem, 2710 "nvic_sysregs_ns", 0x1000); 2711 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2712 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2713 &nvic_sysreg_ns_ops, &s->systickmem, 2714 "nvic_systick_ns", 0xe0); 2715 memory_region_add_subregion_overlap(&s->container, 0x20010, 2716 &s->systick_ns_mem, 1); 2717 } 2718 2719 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2720 } 2721 2722 static void armv7m_nvic_instance_init(Object *obj) 2723 { 2724 /* We have a different default value for the num-irq property 2725 * than our superclass. This function runs after qdev init 2726 * has set the defaults from the Property array and before 2727 * any user-specified property setting, so just modify the 2728 * value in the GICState struct. 2729 */ 2730 DeviceState *dev = DEVICE(obj); 2731 NVICState *nvic = NVIC(obj); 2732 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2733 2734 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2735 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2736 /* We can't initialize the secure systick here, as we don't know 2737 * yet if we need it. 2738 */ 2739 2740 sysbus_init_irq(sbd, &nvic->excpout); 2741 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2742 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2743 M_REG_NUM_BANKS); 2744 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2745 } 2746 2747 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2748 { 2749 DeviceClass *dc = DEVICE_CLASS(klass); 2750 2751 dc->vmsd = &vmstate_nvic; 2752 device_class_set_props(dc, props_nvic); 2753 dc->reset = armv7m_nvic_reset; 2754 dc->realize = armv7m_nvic_realize; 2755 } 2756 2757 static const TypeInfo armv7m_nvic_info = { 2758 .name = TYPE_NVIC, 2759 .parent = TYPE_SYS_BUS_DEVICE, 2760 .instance_init = armv7m_nvic_instance_init, 2761 .instance_size = sizeof(NVICState), 2762 .class_init = armv7m_nvic_class_init, 2763 .class_size = sizeof(SysBusDeviceClass), 2764 }; 2765 2766 static void armv7m_nvic_register_types(void) 2767 { 2768 type_register_static(&armv7m_nvic_info); 2769 } 2770 2771 type_init(armv7m_nvic_register_types) 2772