1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "exec/exec-all.h" 25 #include "exec/memop.h" 26 #include "qemu/log.h" 27 #include "qemu/module.h" 28 #include "trace.h" 29 30 /* IRQ number counting: 31 * 32 * the num-irq property counts the number of external IRQ lines 33 * 34 * NVICState::num_irq counts the total number of exceptions 35 * (external IRQs, the 15 internal exceptions including reset, 36 * and one for the unused exception number 0). 37 * 38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 39 * 40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 41 * 42 * Iterating through all exceptions should typically be done with 43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 44 * 45 * The external qemu_irq lines are the NVIC's external IRQ lines, 46 * so line 0 is exception 16. 47 * 48 * In the terminology of the architecture manual, "interrupts" are 49 * a subcategory of exception referring to the external interrupts 50 * (which are exception numbers NVIC_FIRST_IRQ and upward). 51 * For historical reasons QEMU tends to use "interrupt" and 52 * "exception" more or less interchangeably. 53 */ 54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 56 57 /* Effective running priority of the CPU when no exception is active 58 * (higher than the highest possible priority value) 59 */ 60 #define NVIC_NOEXC_PRIO 0x100 61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 62 #define NVIC_NS_PRIO_LIMIT 0x80 63 64 static const uint8_t nvic_id[] = { 65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 66 }; 67 68 static void signal_sysresetreq(NVICState *s) 69 { 70 if (qemu_irq_is_connected(s->sysresetreq)) { 71 qemu_irq_pulse(s->sysresetreq); 72 } else { 73 /* 74 * Default behaviour if the SoC doesn't need to wire up 75 * SYSRESETREQ (eg to a system reset controller of some kind): 76 * perform a system reset via the usual QEMU API. 77 */ 78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 79 } 80 } 81 82 static int nvic_pending_prio(NVICState *s) 83 { 84 /* return the group priority of the current pending interrupt, 85 * or NVIC_NOEXC_PRIO if no interrupt is pending 86 */ 87 return s->vectpending_prio; 88 } 89 90 /* Return the value of the ISCR RETTOBASE bit: 91 * 1 if there is exactly one active exception 92 * 0 if there is more than one active exception 93 * UNKNOWN if there are no active exceptions (we choose 1, 94 * which matches the choice Cortex-M3 is documented as making). 95 * 96 * NB: some versions of the documentation talk about this 97 * counting "active exceptions other than the one shown by IPSR"; 98 * this is only different in the obscure corner case where guest 99 * code has manually deactivated an exception and is about 100 * to fail an exception-return integrity check. The definition 101 * above is the one from the v8M ARM ARM and is also in line 102 * with the behaviour documented for the Cortex-M3. 103 */ 104 static bool nvic_rettobase(NVICState *s) 105 { 106 int irq, nhand = 0; 107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 108 109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 110 if (s->vectors[irq].active || 111 (check_sec && irq < NVIC_INTERNAL_VECTORS && 112 s->sec_vectors[irq].active)) { 113 nhand++; 114 if (nhand == 2) { 115 return 0; 116 } 117 } 118 } 119 120 return 1; 121 } 122 123 /* Return the value of the ISCR ISRPENDING bit: 124 * 1 if an external interrupt is pending 125 * 0 if no external interrupt is pending 126 */ 127 static bool nvic_isrpending(NVICState *s) 128 { 129 int irq; 130 131 /* We can shortcut if the highest priority pending interrupt 132 * happens to be external or if there is nothing pending. 133 */ 134 if (s->vectpending > NVIC_FIRST_IRQ) { 135 return true; 136 } 137 if (s->vectpending == 0) { 138 return false; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 NVICState *s = opaque; 405 406 if (s->cpu->env.v7m.faultmask[secure]) { 407 return true; 408 } 409 410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 411 s->vectors[ARMV7M_EXCP_HARD].active) { 412 return true; 413 } 414 415 if (s->vectors[ARMV7M_EXCP_NMI].active && 416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 417 return true; 418 } 419 420 return false; 421 } 422 423 bool armv7m_nvic_can_take_pending_exception(void *opaque) 424 { 425 NVICState *s = opaque; 426 427 return nvic_exec_prio(s) > nvic_pending_prio(s); 428 } 429 430 int armv7m_nvic_raw_execution_priority(void *opaque) 431 { 432 NVICState *s = opaque; 433 434 return s->exception_prio; 435 } 436 437 /* caller must call nvic_irq_update() after this. 438 * secure indicates the bank to use for banked exceptions (we assert if 439 * we are passed secure=true for a non-banked exception). 440 */ 441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 442 { 443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 444 assert(irq < s->num_irq); 445 446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 447 448 if (secure) { 449 assert(exc_is_banked(irq)); 450 s->sec_vectors[irq].prio = prio; 451 } else { 452 s->vectors[irq].prio = prio; 453 } 454 455 trace_nvic_set_prio(irq, secure, prio); 456 } 457 458 /* Return the current raw priority register value. 459 * secure indicates the bank to use for banked exceptions (we assert if 460 * we are passed secure=true for a non-banked exception). 461 */ 462 static int get_prio(NVICState *s, unsigned irq, bool secure) 463 { 464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 465 assert(irq < s->num_irq); 466 467 if (secure) { 468 assert(exc_is_banked(irq)); 469 return s->sec_vectors[irq].prio; 470 } else { 471 return s->vectors[irq].prio; 472 } 473 } 474 475 /* Recompute state and assert irq line accordingly. 476 * Must be called after changes to: 477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 478 * prigroup 479 */ 480 static void nvic_irq_update(NVICState *s) 481 { 482 int lvl; 483 int pend_prio; 484 485 nvic_recompute_state(s); 486 pend_prio = nvic_pending_prio(s); 487 488 /* Raise NVIC output if this IRQ would be taken, except that we 489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 491 * to those CPU registers don't cause us to recalculate the NVIC 492 * pending info. 493 */ 494 lvl = (pend_prio < s->exception_prio); 495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 496 qemu_set_irq(s->excpout, lvl); 497 } 498 499 /** 500 * armv7m_nvic_clear_pending: mark the specified exception as not pending 501 * @opaque: the NVIC 502 * @irq: the exception number to mark as not pending 503 * @secure: false for non-banked exceptions or for the nonsecure 504 * version of a banked exception, true for the secure version of a banked 505 * exception. 506 * 507 * Marks the specified exception as not pending. Note that we will assert() 508 * if @secure is true and @irq does not specify one of the fixed set 509 * of architecturally banked exceptions. 510 */ 511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 512 { 513 NVICState *s = (NVICState *)opaque; 514 VecInfo *vec; 515 516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 517 518 if (secure) { 519 assert(exc_is_banked(irq)); 520 vec = &s->sec_vectors[irq]; 521 } else { 522 vec = &s->vectors[irq]; 523 } 524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 525 if (vec->pending) { 526 vec->pending = 0; 527 nvic_irq_update(s); 528 } 529 } 530 531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 532 bool derived) 533 { 534 /* Pend an exception, including possibly escalating it to HardFault. 535 * 536 * This function handles both "normal" pending of interrupts and 537 * exceptions, and also derived exceptions (ones which occur as 538 * a result of trying to take some other exception). 539 * 540 * If derived == true, the caller guarantees that we are part way through 541 * trying to take an exception (but have not yet called 542 * armv7m_nvic_acknowledge_irq() to make it active), and so: 543 * - s->vectpending is the "original exception" we were trying to take 544 * - irq is the "derived exception" 545 * - nvic_exec_prio(s) gives the priority before exception entry 546 * Here we handle the prioritization logic which the pseudocode puts 547 * in the DerivedLateArrival() function. 548 */ 549 550 NVICState *s = (NVICState *)opaque; 551 bool banked = exc_is_banked(irq); 552 VecInfo *vec; 553 bool targets_secure; 554 555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 556 assert(!secure || banked); 557 558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 559 560 targets_secure = banked ? secure : exc_targets_secure(s, irq); 561 562 trace_nvic_set_pending(irq, secure, targets_secure, 563 derived, vec->enabled, vec->prio); 564 565 if (derived) { 566 /* Derived exceptions are always synchronous. */ 567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 568 569 if (irq == ARMV7M_EXCP_DEBUG && 570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 571 /* DebugMonitorFault, but its priority is lower than the 572 * preempted exception priority: just ignore it. 573 */ 574 return; 575 } 576 577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 578 /* If this is a terminal exception (one which means we cannot 579 * take the original exception, like a failure to read its 580 * vector table entry), then we must take the derived exception. 581 * If the derived exception can't take priority over the 582 * original exception, then we go into Lockup. 583 * 584 * For QEMU, we rely on the fact that a derived exception is 585 * terminal if and only if it's reported to us as HardFault, 586 * which saves having to have an extra argument is_terminal 587 * that we'd only use in one place. 588 */ 589 cpu_abort(&s->cpu->parent_obj, 590 "Lockup: can't take terminal derived exception " 591 "(original exception priority %d)\n", 592 s->vectpending_prio); 593 } 594 /* We now continue with the same code as for a normal pending 595 * exception, which will cause us to pend the derived exception. 596 * We'll then take either the original or the derived exception 597 * based on which is higher priority by the usual mechanism 598 * for selecting the highest priority pending interrupt. 599 */ 600 } 601 602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 603 /* If a synchronous exception is pending then it may be 604 * escalated to HardFault if: 605 * * it is equal or lower priority to current execution 606 * * it is disabled 607 * (ie we need to take it immediately but we can't do so). 608 * Asynchronous exceptions (and interrupts) simply remain pending. 609 * 610 * For QEMU, we don't have any imprecise (asynchronous) faults, 611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 612 * synchronous. 613 * Debug exceptions are awkward because only Debug exceptions 614 * resulting from the BKPT instruction should be escalated, 615 * but we don't currently implement any Debug exceptions other 616 * than those that result from BKPT, so we treat all debug exceptions 617 * as needing escalation. 618 * 619 * This all means we can identify whether to escalate based only on 620 * the exception number and don't (yet) need the caller to explicitly 621 * tell us whether this exception is synchronous or not. 622 */ 623 int running = nvic_exec_prio(s); 624 bool escalate = false; 625 626 if (exc_group_prio(s, vec->prio, secure) >= running) { 627 trace_nvic_escalate_prio(irq, vec->prio, running); 628 escalate = true; 629 } else if (!vec->enabled) { 630 trace_nvic_escalate_disabled(irq); 631 escalate = true; 632 } 633 634 if (escalate) { 635 636 /* We need to escalate this exception to a synchronous HardFault. 637 * If BFHFNMINS is set then we escalate to the banked HF for 638 * the target security state of the original exception; otherwise 639 * we take a Secure HardFault. 640 */ 641 irq = ARMV7M_EXCP_HARD; 642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 643 (targets_secure || 644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 645 vec = &s->sec_vectors[irq]; 646 } else { 647 vec = &s->vectors[irq]; 648 } 649 if (running <= vec->prio) { 650 /* We want to escalate to HardFault but we can't take the 651 * synchronous HardFault at this point either. This is a 652 * Lockup condition due to a guest bug. We don't model 653 * Lockup, so report via cpu_abort() instead. 654 */ 655 cpu_abort(&s->cpu->parent_obj, 656 "Lockup: can't escalate %d to HardFault " 657 "(current priority %d)\n", irq, running); 658 } 659 660 /* HF may be banked but there is only one shared HFSR */ 661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 662 } 663 } 664 665 if (!vec->pending) { 666 vec->pending = 1; 667 nvic_irq_update(s); 668 } 669 } 670 671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 672 { 673 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 674 } 675 676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 677 { 678 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 679 } 680 681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 682 { 683 /* 684 * Pend an exception during lazy FP stacking. This differs 685 * from the usual exception pending because the logic for 686 * whether we should escalate depends on the saved context 687 * in the FPCCR register, not on the current state of the CPU/NVIC. 688 */ 689 NVICState *s = (NVICState *)opaque; 690 bool banked = exc_is_banked(irq); 691 VecInfo *vec; 692 bool targets_secure; 693 bool escalate = false; 694 /* 695 * We will only look at bits in fpccr if this is a banked exception 696 * (in which case 'secure' tells us whether it is the S or NS version). 697 * All the bits for the non-banked exceptions are in fpccr_s. 698 */ 699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 701 702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 703 assert(!secure || banked); 704 705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 706 707 targets_secure = banked ? secure : exc_targets_secure(s, irq); 708 709 switch (irq) { 710 case ARMV7M_EXCP_DEBUG: 711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 712 /* Ignore DebugMonitor exception */ 713 return; 714 } 715 break; 716 case ARMV7M_EXCP_MEM: 717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 718 break; 719 case ARMV7M_EXCP_USAGE: 720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 721 break; 722 case ARMV7M_EXCP_BUS: 723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 724 break; 725 case ARMV7M_EXCP_SECURE: 726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 727 break; 728 default: 729 g_assert_not_reached(); 730 } 731 732 if (escalate) { 733 /* 734 * Escalate to HardFault: faults that initially targeted Secure 735 * continue to do so, even if HF normally targets NonSecure. 736 */ 737 irq = ARMV7M_EXCP_HARD; 738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 739 (targets_secure || 740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 741 vec = &s->sec_vectors[irq]; 742 } else { 743 vec = &s->vectors[irq]; 744 } 745 } 746 747 if (!vec->enabled || 748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 750 /* 751 * We want to escalate to HardFault but the context the 752 * FP state belongs to prevents the exception pre-empting. 753 */ 754 cpu_abort(&s->cpu->parent_obj, 755 "Lockup: can't escalate to HardFault during " 756 "lazy FP register stacking\n"); 757 } 758 } 759 760 if (escalate) { 761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 762 } 763 if (!vec->pending) { 764 vec->pending = 1; 765 /* 766 * We do not call nvic_irq_update(), because we know our caller 767 * is going to handle causing us to take the exception by 768 * raising EXCP_LAZYFP, so raising the IRQ line would be 769 * pointless extra work. We just need to recompute the 770 * priorities so that armv7m_nvic_can_take_pending_exception() 771 * returns the right answer. 772 */ 773 nvic_recompute_state(s); 774 } 775 } 776 777 /* Make pending IRQ active. */ 778 void armv7m_nvic_acknowledge_irq(void *opaque) 779 { 780 NVICState *s = (NVICState *)opaque; 781 CPUARMState *env = &s->cpu->env; 782 const int pending = s->vectpending; 783 const int running = nvic_exec_prio(s); 784 VecInfo *vec; 785 786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 787 788 if (s->vectpending_is_s_banked) { 789 vec = &s->sec_vectors[pending]; 790 } else { 791 vec = &s->vectors[pending]; 792 } 793 794 assert(vec->enabled); 795 assert(vec->pending); 796 797 assert(s->vectpending_prio < running); 798 799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 800 801 vec->active = 1; 802 vec->pending = 0; 803 804 write_v7m_exception(env, s->vectpending); 805 806 nvic_irq_update(s); 807 } 808 809 void armv7m_nvic_get_pending_irq_info(void *opaque, 810 int *pirq, bool *ptargets_secure) 811 { 812 NVICState *s = (NVICState *)opaque; 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 if (s->vectpending_is_s_banked) { 819 targets_secure = true; 820 } else { 821 targets_secure = !exc_is_banked(pending) && 822 exc_targets_secure(s, pending); 823 } 824 825 trace_nvic_get_pending_irq_info(pending, targets_secure); 826 827 *ptargets_secure = targets_secure; 828 *pirq = pending; 829 } 830 831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 832 { 833 NVICState *s = (NVICState *)opaque; 834 VecInfo *vec = NULL; 835 int ret = 0; 836 837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 838 839 trace_nvic_complete_irq(irq, secure); 840 841 if (secure && exc_is_banked(irq)) { 842 vec = &s->sec_vectors[irq]; 843 } else { 844 vec = &s->vectors[irq]; 845 } 846 847 /* 848 * Identify illegal exception return cases. We can't immediately 849 * return at this point because we still need to deactivate 850 * (either this exception or NMI/HardFault) first. 851 */ 852 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 853 /* 854 * Return from a configurable exception targeting the opposite 855 * security state from the one we're trying to complete it for. 856 * Clear vec because it's not really the VecInfo for this 857 * (irq, secstate) so we mustn't deactivate it. 858 */ 859 ret = -1; 860 vec = NULL; 861 } else if (!vec->active) { 862 /* Return from an inactive interrupt */ 863 ret = -1; 864 } else { 865 /* Legal return, we will return the RETTOBASE bit value to the caller */ 866 ret = nvic_rettobase(s); 867 } 868 869 /* 870 * For negative priorities, v8M will forcibly deactivate the appropriate 871 * NMI or HardFault regardless of what interrupt we're being asked to 872 * deactivate (compare the DeActivate() pseudocode). This is a guard 873 * against software returning from NMI or HardFault with a corrupted 874 * IPSR and leaving the CPU in a negative-priority state. 875 * v7M does not do this, but simply deactivates the requested interrupt. 876 */ 877 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 878 switch (armv7m_nvic_raw_execution_priority(s)) { 879 case -1: 880 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 881 vec = &s->vectors[ARMV7M_EXCP_HARD]; 882 } else { 883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 884 } 885 break; 886 case -2: 887 vec = &s->vectors[ARMV7M_EXCP_NMI]; 888 break; 889 case -3: 890 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 891 break; 892 default: 893 break; 894 } 895 } 896 897 if (!vec) { 898 return ret; 899 } 900 901 vec->active = 0; 902 if (vec->level) { 903 /* Re-pend the exception if it's still held high; only 904 * happens for extenal IRQs 905 */ 906 assert(irq >= NVIC_FIRST_IRQ); 907 vec->pending = 1; 908 } 909 910 nvic_irq_update(s); 911 912 return ret; 913 } 914 915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 916 { 917 /* 918 * Return whether an exception is "ready", i.e. it is enabled and is 919 * configured at a priority which would allow it to interrupt the 920 * current execution priority. 921 * 922 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 923 * for non-banked exceptions secure is always false; for banked exceptions 924 * it indicates which of the exceptions is required. 925 */ 926 NVICState *s = (NVICState *)opaque; 927 bool banked = exc_is_banked(irq); 928 VecInfo *vec; 929 int running = nvic_exec_prio(s); 930 931 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 932 assert(!secure || banked); 933 934 /* 935 * HardFault is an odd special case: we always check against -1, 936 * even if we're secure and HardFault has priority -3; we never 937 * need to check for enabled state. 938 */ 939 if (irq == ARMV7M_EXCP_HARD) { 940 return running > -1; 941 } 942 943 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 944 945 return vec->enabled && 946 exc_group_prio(s, vec->prio, secure) < running; 947 } 948 949 /* callback when external interrupt line is changed */ 950 static void set_irq_level(void *opaque, int n, int level) 951 { 952 NVICState *s = opaque; 953 VecInfo *vec; 954 955 n += NVIC_FIRST_IRQ; 956 957 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 958 959 trace_nvic_set_irq_level(n, level); 960 961 /* The pending status of an external interrupt is 962 * latched on rising edge and exception handler return. 963 * 964 * Pulsing the IRQ will always run the handler 965 * once, and the handler will re-run until the 966 * level is low when the handler completes. 967 */ 968 vec = &s->vectors[n]; 969 if (level != vec->level) { 970 vec->level = level; 971 if (level) { 972 armv7m_nvic_set_pending(s, n, false); 973 } 974 } 975 } 976 977 /* callback when external NMI line is changed */ 978 static void nvic_nmi_trigger(void *opaque, int n, int level) 979 { 980 NVICState *s = opaque; 981 982 trace_nvic_set_nmi_level(level); 983 984 /* 985 * The architecture doesn't specify whether NMI should share 986 * the normal-interrupt behaviour of being resampled on 987 * exception handler return. We choose not to, so just 988 * set NMI pending here and don't track the current level. 989 */ 990 if (level) { 991 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 992 } 993 } 994 995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 996 { 997 ARMCPU *cpu = s->cpu; 998 uint32_t val; 999 1000 switch (offset) { 1001 case 4: /* Interrupt Control Type. */ 1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1003 goto bad_offset; 1004 } 1005 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1006 case 0xc: /* CPPWR */ 1007 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1008 goto bad_offset; 1009 } 1010 /* We make the IMPDEF choice that nothing can ever go into a 1011 * non-retentive power state, which allows us to RAZ/WI this. 1012 */ 1013 return 0; 1014 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1015 { 1016 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1017 int i; 1018 1019 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1020 goto bad_offset; 1021 } 1022 if (!attrs.secure) { 1023 return 0; 1024 } 1025 val = 0; 1026 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1027 if (s->itns[startvec + i]) { 1028 val |= (1 << i); 1029 } 1030 } 1031 return val; 1032 } 1033 case 0xcfc: 1034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1035 goto bad_offset; 1036 } 1037 return cpu->revidr; 1038 case 0xd00: /* CPUID Base. */ 1039 return cpu->midr; 1040 case 0xd04: /* Interrupt Control State (ICSR) */ 1041 /* VECTACTIVE */ 1042 val = cpu->env.v7m.exception; 1043 /* VECTPENDING */ 1044 val |= (s->vectpending & 0xff) << 12; 1045 /* ISRPENDING - set if any external IRQ is pending */ 1046 if (nvic_isrpending(s)) { 1047 val |= (1 << 22); 1048 } 1049 /* RETTOBASE - set if only one handler is active */ 1050 if (nvic_rettobase(s)) { 1051 val |= (1 << 11); 1052 } 1053 if (attrs.secure) { 1054 /* PENDSTSET */ 1055 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1056 val |= (1 << 26); 1057 } 1058 /* PENDSVSET */ 1059 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1060 val |= (1 << 28); 1061 } 1062 } else { 1063 /* PENDSTSET */ 1064 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1065 val |= (1 << 26); 1066 } 1067 /* PENDSVSET */ 1068 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1069 val |= (1 << 28); 1070 } 1071 } 1072 /* NMIPENDSET */ 1073 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1074 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1075 val |= (1 << 31); 1076 } 1077 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1078 /* STTNS: RES0 for the Main Extension */ 1079 return val; 1080 case 0xd08: /* Vector Table Offset. */ 1081 return cpu->env.v7m.vecbase[attrs.secure]; 1082 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1083 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1084 if (attrs.secure) { 1085 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1086 val |= cpu->env.v7m.aircr; 1087 } else { 1088 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1089 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1090 * security isn't supported then BFHFNMINS is RAO (and 1091 * the bit in env.v7m.aircr is always set). 1092 */ 1093 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1094 } 1095 } 1096 return val; 1097 case 0xd10: /* System Control. */ 1098 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1099 goto bad_offset; 1100 } 1101 return cpu->env.v7m.scr[attrs.secure]; 1102 case 0xd14: /* Configuration Control. */ 1103 /* 1104 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1105 * and TRD (stored in the S copy of the register) 1106 */ 1107 val = cpu->env.v7m.ccr[attrs.secure]; 1108 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1109 return val; 1110 case 0xd24: /* System Handler Control and State (SHCSR) */ 1111 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1112 goto bad_offset; 1113 } 1114 val = 0; 1115 if (attrs.secure) { 1116 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1117 val |= (1 << 0); 1118 } 1119 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1120 val |= (1 << 2); 1121 } 1122 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1123 val |= (1 << 3); 1124 } 1125 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1126 val |= (1 << 7); 1127 } 1128 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1129 val |= (1 << 10); 1130 } 1131 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1132 val |= (1 << 11); 1133 } 1134 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1135 val |= (1 << 12); 1136 } 1137 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1138 val |= (1 << 13); 1139 } 1140 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1141 val |= (1 << 15); 1142 } 1143 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1144 val |= (1 << 16); 1145 } 1146 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1147 val |= (1 << 18); 1148 } 1149 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1150 val |= (1 << 21); 1151 } 1152 /* SecureFault is not banked but is always RAZ/WI to NS */ 1153 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1154 val |= (1 << 4); 1155 } 1156 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1157 val |= (1 << 19); 1158 } 1159 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1160 val |= (1 << 20); 1161 } 1162 } else { 1163 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1164 val |= (1 << 0); 1165 } 1166 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1167 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1168 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1169 val |= (1 << 2); 1170 } 1171 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1172 val |= (1 << 21); 1173 } 1174 } 1175 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1176 val |= (1 << 3); 1177 } 1178 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1179 val |= (1 << 7); 1180 } 1181 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1182 val |= (1 << 10); 1183 } 1184 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1185 val |= (1 << 11); 1186 } 1187 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1188 val |= (1 << 12); 1189 } 1190 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1191 val |= (1 << 13); 1192 } 1193 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1194 val |= (1 << 15); 1195 } 1196 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1197 val |= (1 << 16); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1200 val |= (1 << 18); 1201 } 1202 } 1203 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1204 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1205 val |= (1 << 1); 1206 } 1207 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1208 val |= (1 << 14); 1209 } 1210 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1211 val |= (1 << 17); 1212 } 1213 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1214 s->vectors[ARMV7M_EXCP_NMI].active) { 1215 /* NMIACT is not present in v7M */ 1216 val |= (1 << 5); 1217 } 1218 } 1219 1220 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1221 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1222 val |= (1 << 8); 1223 } 1224 return val; 1225 case 0xd2c: /* Hard Fault Status. */ 1226 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1227 goto bad_offset; 1228 } 1229 return cpu->env.v7m.hfsr; 1230 case 0xd30: /* Debug Fault Status. */ 1231 return cpu->env.v7m.dfsr; 1232 case 0xd34: /* MMFAR MemManage Fault Address */ 1233 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1234 goto bad_offset; 1235 } 1236 return cpu->env.v7m.mmfar[attrs.secure]; 1237 case 0xd38: /* Bus Fault Address. */ 1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1239 goto bad_offset; 1240 } 1241 if (!attrs.secure && 1242 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1243 return 0; 1244 } 1245 return cpu->env.v7m.bfar; 1246 case 0xd3c: /* Aux Fault Status. */ 1247 /* TODO: Implement fault status registers. */ 1248 qemu_log_mask(LOG_UNIMP, 1249 "Aux Fault status registers unimplemented\n"); 1250 return 0; 1251 case 0xd40: /* PFR0. */ 1252 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1253 goto bad_offset; 1254 } 1255 return cpu->isar.id_pfr0; 1256 case 0xd44: /* PFR1. */ 1257 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1258 goto bad_offset; 1259 } 1260 return cpu->isar.id_pfr1; 1261 case 0xd48: /* DFR0. */ 1262 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1263 goto bad_offset; 1264 } 1265 return cpu->isar.id_dfr0; 1266 case 0xd4c: /* AFR0. */ 1267 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1268 goto bad_offset; 1269 } 1270 return cpu->id_afr0; 1271 case 0xd50: /* MMFR0. */ 1272 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1273 goto bad_offset; 1274 } 1275 return cpu->isar.id_mmfr0; 1276 case 0xd54: /* MMFR1. */ 1277 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1278 goto bad_offset; 1279 } 1280 return cpu->isar.id_mmfr1; 1281 case 0xd58: /* MMFR2. */ 1282 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1283 goto bad_offset; 1284 } 1285 return cpu->isar.id_mmfr2; 1286 case 0xd5c: /* MMFR3. */ 1287 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1288 goto bad_offset; 1289 } 1290 return cpu->isar.id_mmfr3; 1291 case 0xd60: /* ISAR0. */ 1292 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1293 goto bad_offset; 1294 } 1295 return cpu->isar.id_isar0; 1296 case 0xd64: /* ISAR1. */ 1297 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1298 goto bad_offset; 1299 } 1300 return cpu->isar.id_isar1; 1301 case 0xd68: /* ISAR2. */ 1302 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1303 goto bad_offset; 1304 } 1305 return cpu->isar.id_isar2; 1306 case 0xd6c: /* ISAR3. */ 1307 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1308 goto bad_offset; 1309 } 1310 return cpu->isar.id_isar3; 1311 case 0xd70: /* ISAR4. */ 1312 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1313 goto bad_offset; 1314 } 1315 return cpu->isar.id_isar4; 1316 case 0xd74: /* ISAR5. */ 1317 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1318 goto bad_offset; 1319 } 1320 return cpu->isar.id_isar5; 1321 case 0xd78: /* CLIDR */ 1322 return cpu->clidr; 1323 case 0xd7c: /* CTR */ 1324 return cpu->ctr; 1325 case 0xd80: /* CSSIDR */ 1326 { 1327 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1328 return cpu->ccsidr[idx]; 1329 } 1330 case 0xd84: /* CSSELR */ 1331 return cpu->env.v7m.csselr[attrs.secure]; 1332 case 0xd88: /* CPACR */ 1333 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1334 return 0; 1335 } 1336 return cpu->env.v7m.cpacr[attrs.secure]; 1337 case 0xd8c: /* NSACR */ 1338 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1339 return 0; 1340 } 1341 return cpu->env.v7m.nsacr; 1342 /* TODO: Implement debug registers. */ 1343 case 0xd90: /* MPU_TYPE */ 1344 /* Unified MPU; if the MPU is not present this value is zero */ 1345 return cpu->pmsav7_dregion << 8; 1346 case 0xd94: /* MPU_CTRL */ 1347 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1348 case 0xd98: /* MPU_RNR */ 1349 return cpu->env.pmsav7.rnr[attrs.secure]; 1350 case 0xd9c: /* MPU_RBAR */ 1351 case 0xda4: /* MPU_RBAR_A1 */ 1352 case 0xdac: /* MPU_RBAR_A2 */ 1353 case 0xdb4: /* MPU_RBAR_A3 */ 1354 { 1355 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1356 1357 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1358 /* PMSAv8M handling of the aliases is different from v7M: 1359 * aliases A1, A2, A3 override the low two bits of the region 1360 * number in MPU_RNR, and there is no 'region' field in the 1361 * RBAR register. 1362 */ 1363 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1364 if (aliasno) { 1365 region = deposit32(region, 0, 2, aliasno); 1366 } 1367 if (region >= cpu->pmsav7_dregion) { 1368 return 0; 1369 } 1370 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1371 } 1372 1373 if (region >= cpu->pmsav7_dregion) { 1374 return 0; 1375 } 1376 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1377 } 1378 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1379 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1380 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1381 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1382 { 1383 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1384 1385 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1386 /* PMSAv8M handling of the aliases is different from v7M: 1387 * aliases A1, A2, A3 override the low two bits of the region 1388 * number in MPU_RNR. 1389 */ 1390 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1391 if (aliasno) { 1392 region = deposit32(region, 0, 2, aliasno); 1393 } 1394 if (region >= cpu->pmsav7_dregion) { 1395 return 0; 1396 } 1397 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1398 } 1399 1400 if (region >= cpu->pmsav7_dregion) { 1401 return 0; 1402 } 1403 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1404 (cpu->env.pmsav7.drsr[region] & 0xffff); 1405 } 1406 case 0xdc0: /* MPU_MAIR0 */ 1407 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1408 goto bad_offset; 1409 } 1410 return cpu->env.pmsav8.mair0[attrs.secure]; 1411 case 0xdc4: /* MPU_MAIR1 */ 1412 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1413 goto bad_offset; 1414 } 1415 return cpu->env.pmsav8.mair1[attrs.secure]; 1416 case 0xdd0: /* SAU_CTRL */ 1417 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1418 goto bad_offset; 1419 } 1420 if (!attrs.secure) { 1421 return 0; 1422 } 1423 return cpu->env.sau.ctrl; 1424 case 0xdd4: /* SAU_TYPE */ 1425 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1426 goto bad_offset; 1427 } 1428 if (!attrs.secure) { 1429 return 0; 1430 } 1431 return cpu->sau_sregion; 1432 case 0xdd8: /* SAU_RNR */ 1433 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1434 goto bad_offset; 1435 } 1436 if (!attrs.secure) { 1437 return 0; 1438 } 1439 return cpu->env.sau.rnr; 1440 case 0xddc: /* SAU_RBAR */ 1441 { 1442 int region = cpu->env.sau.rnr; 1443 1444 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1445 goto bad_offset; 1446 } 1447 if (!attrs.secure) { 1448 return 0; 1449 } 1450 if (region >= cpu->sau_sregion) { 1451 return 0; 1452 } 1453 return cpu->env.sau.rbar[region]; 1454 } 1455 case 0xde0: /* SAU_RLAR */ 1456 { 1457 int region = cpu->env.sau.rnr; 1458 1459 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1460 goto bad_offset; 1461 } 1462 if (!attrs.secure) { 1463 return 0; 1464 } 1465 if (region >= cpu->sau_sregion) { 1466 return 0; 1467 } 1468 return cpu->env.sau.rlar[region]; 1469 } 1470 case 0xde4: /* SFSR */ 1471 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1472 goto bad_offset; 1473 } 1474 if (!attrs.secure) { 1475 return 0; 1476 } 1477 return cpu->env.v7m.sfsr; 1478 case 0xde8: /* SFAR */ 1479 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1480 goto bad_offset; 1481 } 1482 if (!attrs.secure) { 1483 return 0; 1484 } 1485 return cpu->env.v7m.sfar; 1486 case 0xf04: /* RFSR */ 1487 if (!cpu_isar_feature(aa32_ras, cpu)) { 1488 goto bad_offset; 1489 } 1490 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1491 return 0; 1492 case 0xf34: /* FPCCR */ 1493 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1494 return 0; 1495 } 1496 if (attrs.secure) { 1497 return cpu->env.v7m.fpccr[M_REG_S]; 1498 } else { 1499 /* 1500 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1501 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1502 * other non-banked bits RAZ. 1503 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1504 */ 1505 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1506 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1507 R_V7M_FPCCR_CLRONRET_MASK | 1508 R_V7M_FPCCR_MONRDY_MASK; 1509 1510 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1511 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1512 } 1513 1514 value &= mask; 1515 1516 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1517 return value; 1518 } 1519 case 0xf38: /* FPCAR */ 1520 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1521 return 0; 1522 } 1523 return cpu->env.v7m.fpcar[attrs.secure]; 1524 case 0xf3c: /* FPDSCR */ 1525 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1526 return 0; 1527 } 1528 return cpu->env.v7m.fpdscr[attrs.secure]; 1529 case 0xf40: /* MVFR0 */ 1530 return cpu->isar.mvfr0; 1531 case 0xf44: /* MVFR1 */ 1532 return cpu->isar.mvfr1; 1533 case 0xf48: /* MVFR2 */ 1534 return cpu->isar.mvfr2; 1535 default: 1536 bad_offset: 1537 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1538 return 0; 1539 } 1540 } 1541 1542 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1543 MemTxAttrs attrs) 1544 { 1545 ARMCPU *cpu = s->cpu; 1546 1547 switch (offset) { 1548 case 0xc: /* CPPWR */ 1549 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1550 goto bad_offset; 1551 } 1552 /* Make the IMPDEF choice to RAZ/WI this. */ 1553 break; 1554 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1555 { 1556 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1557 int i; 1558 1559 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1560 goto bad_offset; 1561 } 1562 if (!attrs.secure) { 1563 break; 1564 } 1565 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1566 s->itns[startvec + i] = (value >> i) & 1; 1567 } 1568 nvic_irq_update(s); 1569 break; 1570 } 1571 case 0xd04: /* Interrupt Control State (ICSR) */ 1572 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1573 if (value & (1 << 31)) { 1574 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1575 } else if (value & (1 << 30) && 1576 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1577 /* PENDNMICLR didn't exist in v7M */ 1578 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1579 } 1580 } 1581 if (value & (1 << 28)) { 1582 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1583 } else if (value & (1 << 27)) { 1584 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1585 } 1586 if (value & (1 << 26)) { 1587 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1588 } else if (value & (1 << 25)) { 1589 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1590 } 1591 break; 1592 case 0xd08: /* Vector Table Offset. */ 1593 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1594 break; 1595 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1596 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1597 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1598 if (attrs.secure || 1599 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1600 signal_sysresetreq(s); 1601 } 1602 } 1603 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1604 qemu_log_mask(LOG_GUEST_ERROR, 1605 "Setting VECTCLRACTIVE when not in DEBUG mode " 1606 "is UNPREDICTABLE\n"); 1607 } 1608 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1609 /* NB: this bit is RES0 in v8M */ 1610 qemu_log_mask(LOG_GUEST_ERROR, 1611 "Setting VECTRESET when not in DEBUG mode " 1612 "is UNPREDICTABLE\n"); 1613 } 1614 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1615 s->prigroup[attrs.secure] = 1616 extract32(value, 1617 R_V7M_AIRCR_PRIGROUP_SHIFT, 1618 R_V7M_AIRCR_PRIGROUP_LENGTH); 1619 } 1620 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1621 if (attrs.secure) { 1622 /* These bits are only writable by secure */ 1623 cpu->env.v7m.aircr = value & 1624 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1625 R_V7M_AIRCR_BFHFNMINS_MASK | 1626 R_V7M_AIRCR_PRIS_MASK); 1627 /* BFHFNMINS changes the priority of Secure HardFault, and 1628 * allows a pending Non-secure HardFault to preempt (which 1629 * we implement by marking it enabled). 1630 */ 1631 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1632 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1633 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1634 } else { 1635 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1636 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1637 } 1638 } 1639 nvic_irq_update(s); 1640 } 1641 break; 1642 case 0xd10: /* System Control. */ 1643 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1644 goto bad_offset; 1645 } 1646 /* We don't implement deep-sleep so these bits are RAZ/WI. 1647 * The other bits in the register are banked. 1648 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1649 * is architecturally permitted. 1650 */ 1651 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1652 cpu->env.v7m.scr[attrs.secure] = value; 1653 break; 1654 case 0xd14: /* Configuration Control. */ 1655 { 1656 uint32_t mask; 1657 1658 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1659 goto bad_offset; 1660 } 1661 1662 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1663 mask = R_V7M_CCR_STKALIGN_MASK | 1664 R_V7M_CCR_BFHFNMIGN_MASK | 1665 R_V7M_CCR_DIV_0_TRP_MASK | 1666 R_V7M_CCR_UNALIGN_TRP_MASK | 1667 R_V7M_CCR_USERSETMPEND_MASK | 1668 R_V7M_CCR_NONBASETHRDENA_MASK; 1669 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1670 /* TRD is always RAZ/WI from NS */ 1671 mask |= R_V7M_CCR_TRD_MASK; 1672 } 1673 value &= mask; 1674 1675 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1676 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1677 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1678 | R_V7M_CCR_STKALIGN_MASK; 1679 } 1680 if (attrs.secure) { 1681 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1682 cpu->env.v7m.ccr[M_REG_NS] = 1683 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1684 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1685 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1686 } 1687 1688 cpu->env.v7m.ccr[attrs.secure] = value; 1689 break; 1690 } 1691 case 0xd24: /* System Handler Control and State (SHCSR) */ 1692 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1693 goto bad_offset; 1694 } 1695 if (attrs.secure) { 1696 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1697 /* Secure HardFault active bit cannot be written */ 1698 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1699 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1700 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1701 (value & (1 << 10)) != 0; 1702 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1703 (value & (1 << 11)) != 0; 1704 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1705 (value & (1 << 12)) != 0; 1706 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1707 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1708 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1709 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1710 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1711 (value & (1 << 18)) != 0; 1712 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1713 /* SecureFault not banked, but RAZ/WI to NS */ 1714 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1715 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1716 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1717 } else { 1718 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1719 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1720 /* HARDFAULTPENDED is not present in v7M */ 1721 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1722 } 1723 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1724 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1725 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1726 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1727 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1728 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1729 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1730 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1731 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1732 } 1733 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1734 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1735 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1736 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1737 } 1738 /* NMIACT can only be written if the write is of a zero, with 1739 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1740 */ 1741 if (!attrs.secure && cpu->env.v7m.secure && 1742 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1743 (value & (1 << 5)) == 0) { 1744 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1745 } 1746 /* HARDFAULTACT can only be written if the write is of a zero 1747 * to the non-secure HardFault state by the CPU in secure state. 1748 * The only case where we can be targeting the non-secure HF state 1749 * when in secure state is if this is a write via the NS alias 1750 * and BFHFNMINS is 1. 1751 */ 1752 if (!attrs.secure && cpu->env.v7m.secure && 1753 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1754 (value & (1 << 2)) == 0) { 1755 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1756 } 1757 1758 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1759 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1760 nvic_irq_update(s); 1761 break; 1762 case 0xd2c: /* Hard Fault Status. */ 1763 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1764 goto bad_offset; 1765 } 1766 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1767 break; 1768 case 0xd30: /* Debug Fault Status. */ 1769 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1770 break; 1771 case 0xd34: /* Mem Manage Address. */ 1772 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1773 goto bad_offset; 1774 } 1775 cpu->env.v7m.mmfar[attrs.secure] = value; 1776 return; 1777 case 0xd38: /* Bus Fault Address. */ 1778 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1779 goto bad_offset; 1780 } 1781 if (!attrs.secure && 1782 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1783 return; 1784 } 1785 cpu->env.v7m.bfar = value; 1786 return; 1787 case 0xd3c: /* Aux Fault Status. */ 1788 qemu_log_mask(LOG_UNIMP, 1789 "NVIC: Aux fault status registers unimplemented\n"); 1790 break; 1791 case 0xd84: /* CSSELR */ 1792 if (!arm_v7m_csselr_razwi(cpu)) { 1793 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1794 } 1795 break; 1796 case 0xd88: /* CPACR */ 1797 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1798 /* We implement only the Floating Point extension's CP10/CP11 */ 1799 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1800 } 1801 break; 1802 case 0xd8c: /* NSACR */ 1803 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1804 /* We implement only the Floating Point extension's CP10/CP11 */ 1805 cpu->env.v7m.nsacr = value & (3 << 10); 1806 } 1807 break; 1808 case 0xd90: /* MPU_TYPE */ 1809 return; /* RO */ 1810 case 0xd94: /* MPU_CTRL */ 1811 if ((value & 1812 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1813 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1814 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1815 "UNPREDICTABLE\n"); 1816 } 1817 cpu->env.v7m.mpu_ctrl[attrs.secure] 1818 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1819 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1820 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1821 tlb_flush(CPU(cpu)); 1822 break; 1823 case 0xd98: /* MPU_RNR */ 1824 if (value >= cpu->pmsav7_dregion) { 1825 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1826 PRIu32 "/%" PRIu32 "\n", 1827 value, cpu->pmsav7_dregion); 1828 } else { 1829 cpu->env.pmsav7.rnr[attrs.secure] = value; 1830 } 1831 break; 1832 case 0xd9c: /* MPU_RBAR */ 1833 case 0xda4: /* MPU_RBAR_A1 */ 1834 case 0xdac: /* MPU_RBAR_A2 */ 1835 case 0xdb4: /* MPU_RBAR_A3 */ 1836 { 1837 int region; 1838 1839 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1840 /* PMSAv8M handling of the aliases is different from v7M: 1841 * aliases A1, A2, A3 override the low two bits of the region 1842 * number in MPU_RNR, and there is no 'region' field in the 1843 * RBAR register. 1844 */ 1845 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1846 1847 region = cpu->env.pmsav7.rnr[attrs.secure]; 1848 if (aliasno) { 1849 region = deposit32(region, 0, 2, aliasno); 1850 } 1851 if (region >= cpu->pmsav7_dregion) { 1852 return; 1853 } 1854 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1855 tlb_flush(CPU(cpu)); 1856 return; 1857 } 1858 1859 if (value & (1 << 4)) { 1860 /* VALID bit means use the region number specified in this 1861 * value and also update MPU_RNR.REGION with that value. 1862 */ 1863 region = extract32(value, 0, 4); 1864 if (region >= cpu->pmsav7_dregion) { 1865 qemu_log_mask(LOG_GUEST_ERROR, 1866 "MPU region out of range %u/%" PRIu32 "\n", 1867 region, cpu->pmsav7_dregion); 1868 return; 1869 } 1870 cpu->env.pmsav7.rnr[attrs.secure] = region; 1871 } else { 1872 region = cpu->env.pmsav7.rnr[attrs.secure]; 1873 } 1874 1875 if (region >= cpu->pmsav7_dregion) { 1876 return; 1877 } 1878 1879 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1880 tlb_flush(CPU(cpu)); 1881 break; 1882 } 1883 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1884 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1885 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1886 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1887 { 1888 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1889 1890 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1891 /* PMSAv8M handling of the aliases is different from v7M: 1892 * aliases A1, A2, A3 override the low two bits of the region 1893 * number in MPU_RNR. 1894 */ 1895 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1896 1897 region = cpu->env.pmsav7.rnr[attrs.secure]; 1898 if (aliasno) { 1899 region = deposit32(region, 0, 2, aliasno); 1900 } 1901 if (region >= cpu->pmsav7_dregion) { 1902 return; 1903 } 1904 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1905 tlb_flush(CPU(cpu)); 1906 return; 1907 } 1908 1909 if (region >= cpu->pmsav7_dregion) { 1910 return; 1911 } 1912 1913 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1914 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1915 tlb_flush(CPU(cpu)); 1916 break; 1917 } 1918 case 0xdc0: /* MPU_MAIR0 */ 1919 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1920 goto bad_offset; 1921 } 1922 if (cpu->pmsav7_dregion) { 1923 /* Register is RES0 if no MPU regions are implemented */ 1924 cpu->env.pmsav8.mair0[attrs.secure] = value; 1925 } 1926 /* We don't need to do anything else because memory attributes 1927 * only affect cacheability, and we don't implement caching. 1928 */ 1929 break; 1930 case 0xdc4: /* MPU_MAIR1 */ 1931 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1932 goto bad_offset; 1933 } 1934 if (cpu->pmsav7_dregion) { 1935 /* Register is RES0 if no MPU regions are implemented */ 1936 cpu->env.pmsav8.mair1[attrs.secure] = value; 1937 } 1938 /* We don't need to do anything else because memory attributes 1939 * only affect cacheability, and we don't implement caching. 1940 */ 1941 break; 1942 case 0xdd0: /* SAU_CTRL */ 1943 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1944 goto bad_offset; 1945 } 1946 if (!attrs.secure) { 1947 return; 1948 } 1949 cpu->env.sau.ctrl = value & 3; 1950 break; 1951 case 0xdd4: /* SAU_TYPE */ 1952 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1953 goto bad_offset; 1954 } 1955 break; 1956 case 0xdd8: /* SAU_RNR */ 1957 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1958 goto bad_offset; 1959 } 1960 if (!attrs.secure) { 1961 return; 1962 } 1963 if (value >= cpu->sau_sregion) { 1964 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1965 PRIu32 "/%" PRIu32 "\n", 1966 value, cpu->sau_sregion); 1967 } else { 1968 cpu->env.sau.rnr = value; 1969 } 1970 break; 1971 case 0xddc: /* SAU_RBAR */ 1972 { 1973 int region = cpu->env.sau.rnr; 1974 1975 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1976 goto bad_offset; 1977 } 1978 if (!attrs.secure) { 1979 return; 1980 } 1981 if (region >= cpu->sau_sregion) { 1982 return; 1983 } 1984 cpu->env.sau.rbar[region] = value & ~0x1f; 1985 tlb_flush(CPU(cpu)); 1986 break; 1987 } 1988 case 0xde0: /* SAU_RLAR */ 1989 { 1990 int region = cpu->env.sau.rnr; 1991 1992 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1993 goto bad_offset; 1994 } 1995 if (!attrs.secure) { 1996 return; 1997 } 1998 if (region >= cpu->sau_sregion) { 1999 return; 2000 } 2001 cpu->env.sau.rlar[region] = value & ~0x1c; 2002 tlb_flush(CPU(cpu)); 2003 break; 2004 } 2005 case 0xde4: /* SFSR */ 2006 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2007 goto bad_offset; 2008 } 2009 if (!attrs.secure) { 2010 return; 2011 } 2012 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2013 break; 2014 case 0xde8: /* SFAR */ 2015 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2016 goto bad_offset; 2017 } 2018 if (!attrs.secure) { 2019 return; 2020 } 2021 cpu->env.v7m.sfsr = value; 2022 break; 2023 case 0xf00: /* Software Triggered Interrupt Register */ 2024 { 2025 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2026 2027 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2028 goto bad_offset; 2029 } 2030 2031 if (excnum < s->num_irq) { 2032 armv7m_nvic_set_pending(s, excnum, false); 2033 } 2034 break; 2035 } 2036 case 0xf04: /* RFSR */ 2037 if (!cpu_isar_feature(aa32_ras, cpu)) { 2038 goto bad_offset; 2039 } 2040 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2041 break; 2042 case 0xf34: /* FPCCR */ 2043 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2044 /* Not all bits here are banked. */ 2045 uint32_t fpccr_s; 2046 2047 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2048 /* Don't allow setting of bits not present in v7M */ 2049 value &= (R_V7M_FPCCR_LSPACT_MASK | 2050 R_V7M_FPCCR_USER_MASK | 2051 R_V7M_FPCCR_THREAD_MASK | 2052 R_V7M_FPCCR_HFRDY_MASK | 2053 R_V7M_FPCCR_MMRDY_MASK | 2054 R_V7M_FPCCR_BFRDY_MASK | 2055 R_V7M_FPCCR_MONRDY_MASK | 2056 R_V7M_FPCCR_LSPEN_MASK | 2057 R_V7M_FPCCR_ASPEN_MASK); 2058 } 2059 value &= ~R_V7M_FPCCR_RES0_MASK; 2060 2061 if (!attrs.secure) { 2062 /* Some non-banked bits are configurably writable by NS */ 2063 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2064 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2065 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2066 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2067 } 2068 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2069 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2070 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2071 } 2072 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2073 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2074 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2075 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2076 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2077 } 2078 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2079 { 2080 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2081 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2082 } 2083 2084 /* 2085 * All other non-banked bits are RAZ/WI from NS; write 2086 * just the banked bits to fpccr[M_REG_NS]. 2087 */ 2088 value &= R_V7M_FPCCR_BANKED_MASK; 2089 cpu->env.v7m.fpccr[M_REG_NS] = value; 2090 } else { 2091 fpccr_s = value; 2092 } 2093 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2094 } 2095 break; 2096 case 0xf38: /* FPCAR */ 2097 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2098 value &= ~7; 2099 cpu->env.v7m.fpcar[attrs.secure] = value; 2100 } 2101 break; 2102 case 0xf3c: /* FPDSCR */ 2103 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2104 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2105 if (cpu_isar_feature(any_fp16, cpu)) { 2106 mask |= FPCR_FZ16; 2107 } 2108 value &= mask; 2109 if (cpu_isar_feature(aa32_lob, cpu)) { 2110 value |= 4 << FPCR_LTPSIZE_SHIFT; 2111 } 2112 cpu->env.v7m.fpdscr[attrs.secure] = value; 2113 } 2114 break; 2115 case 0xf50: /* ICIALLU */ 2116 case 0xf58: /* ICIMVAU */ 2117 case 0xf5c: /* DCIMVAC */ 2118 case 0xf60: /* DCISW */ 2119 case 0xf64: /* DCCMVAU */ 2120 case 0xf68: /* DCCMVAC */ 2121 case 0xf6c: /* DCCSW */ 2122 case 0xf70: /* DCCIMVAC */ 2123 case 0xf74: /* DCCISW */ 2124 case 0xf78: /* BPIALL */ 2125 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2126 break; 2127 default: 2128 bad_offset: 2129 qemu_log_mask(LOG_GUEST_ERROR, 2130 "NVIC: Bad write offset 0x%x\n", offset); 2131 } 2132 } 2133 2134 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2135 { 2136 /* Return true if unprivileged access to this register is permitted. */ 2137 switch (offset) { 2138 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2139 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2140 * controls access even though the CPU is in Secure state (I_QDKX). 2141 */ 2142 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2143 default: 2144 /* All other user accesses cause a BusFault unconditionally */ 2145 return false; 2146 } 2147 } 2148 2149 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2150 { 2151 /* Behaviour for the SHPR register field for this exception: 2152 * return M_REG_NS to use the nonsecure vector (including for 2153 * non-banked exceptions), M_REG_S for the secure version of 2154 * a banked exception, and -1 if this field should RAZ/WI. 2155 */ 2156 switch (exc) { 2157 case ARMV7M_EXCP_MEM: 2158 case ARMV7M_EXCP_USAGE: 2159 case ARMV7M_EXCP_SVC: 2160 case ARMV7M_EXCP_PENDSV: 2161 case ARMV7M_EXCP_SYSTICK: 2162 /* Banked exceptions */ 2163 return attrs.secure; 2164 case ARMV7M_EXCP_BUS: 2165 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2166 if (!attrs.secure && 2167 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2168 return -1; 2169 } 2170 return M_REG_NS; 2171 case ARMV7M_EXCP_SECURE: 2172 /* Not banked, RAZ/WI from nonsecure */ 2173 if (!attrs.secure) { 2174 return -1; 2175 } 2176 return M_REG_NS; 2177 case ARMV7M_EXCP_DEBUG: 2178 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2179 return M_REG_NS; 2180 case 8 ... 10: 2181 case 13: 2182 /* RES0 */ 2183 return -1; 2184 default: 2185 /* Not reachable due to decode of SHPR register addresses */ 2186 g_assert_not_reached(); 2187 } 2188 } 2189 2190 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2191 uint64_t *data, unsigned size, 2192 MemTxAttrs attrs) 2193 { 2194 NVICState *s = (NVICState *)opaque; 2195 uint32_t offset = addr; 2196 unsigned i, startvec, end; 2197 uint32_t val; 2198 2199 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2200 /* Generate BusFault for unprivileged accesses */ 2201 return MEMTX_ERROR; 2202 } 2203 2204 switch (offset) { 2205 /* reads of set and clear both return the status */ 2206 case 0x100 ... 0x13f: /* NVIC Set enable */ 2207 offset += 0x80; 2208 /* fall through */ 2209 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2210 val = 0; 2211 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2212 2213 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2214 if (s->vectors[startvec + i].enabled && 2215 (attrs.secure || s->itns[startvec + i])) { 2216 val |= (1 << i); 2217 } 2218 } 2219 break; 2220 case 0x200 ... 0x23f: /* NVIC Set pend */ 2221 offset += 0x80; 2222 /* fall through */ 2223 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2224 val = 0; 2225 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2226 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2227 if (s->vectors[startvec + i].pending && 2228 (attrs.secure || s->itns[startvec + i])) { 2229 val |= (1 << i); 2230 } 2231 } 2232 break; 2233 case 0x300 ... 0x33f: /* NVIC Active */ 2234 val = 0; 2235 2236 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2237 break; 2238 } 2239 2240 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2241 2242 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2243 if (s->vectors[startvec + i].active && 2244 (attrs.secure || s->itns[startvec + i])) { 2245 val |= (1 << i); 2246 } 2247 } 2248 break; 2249 case 0x400 ... 0x5ef: /* NVIC Priority */ 2250 val = 0; 2251 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2252 2253 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2254 if (attrs.secure || s->itns[startvec + i]) { 2255 val |= s->vectors[startvec + i].prio << (8 * i); 2256 } 2257 } 2258 break; 2259 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2260 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2261 val = 0; 2262 break; 2263 } 2264 /* fall through */ 2265 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2266 val = 0; 2267 for (i = 0; i < size; i++) { 2268 unsigned hdlidx = (offset - 0xd14) + i; 2269 int sbank = shpr_bank(s, hdlidx, attrs); 2270 2271 if (sbank < 0) { 2272 continue; 2273 } 2274 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2275 } 2276 break; 2277 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2278 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2279 val = 0; 2280 break; 2281 }; 2282 /* 2283 * The BFSR bits [15:8] are shared between security states 2284 * and we store them in the NS copy. They are RAZ/WI for 2285 * NS code if AIRCR.BFHFNMINS is 0. 2286 */ 2287 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2288 if (!attrs.secure && 2289 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2290 val &= ~R_V7M_CFSR_BFSR_MASK; 2291 } else { 2292 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2293 } 2294 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2295 break; 2296 case 0xfe0 ... 0xfff: /* ID. */ 2297 if (offset & 3) { 2298 val = 0; 2299 } else { 2300 val = nvic_id[(offset - 0xfe0) >> 2]; 2301 } 2302 break; 2303 default: 2304 if (size == 4) { 2305 val = nvic_readl(s, offset, attrs); 2306 } else { 2307 qemu_log_mask(LOG_GUEST_ERROR, 2308 "NVIC: Bad read of size %d at offset 0x%x\n", 2309 size, offset); 2310 val = 0; 2311 } 2312 } 2313 2314 trace_nvic_sysreg_read(addr, val, size); 2315 *data = val; 2316 return MEMTX_OK; 2317 } 2318 2319 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2320 uint64_t value, unsigned size, 2321 MemTxAttrs attrs) 2322 { 2323 NVICState *s = (NVICState *)opaque; 2324 uint32_t offset = addr; 2325 unsigned i, startvec, end; 2326 unsigned setval = 0; 2327 2328 trace_nvic_sysreg_write(addr, value, size); 2329 2330 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2331 /* Generate BusFault for unprivileged accesses */ 2332 return MEMTX_ERROR; 2333 } 2334 2335 switch (offset) { 2336 case 0x100 ... 0x13f: /* NVIC Set enable */ 2337 offset += 0x80; 2338 setval = 1; 2339 /* fall through */ 2340 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2341 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2342 2343 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2344 if (value & (1 << i) && 2345 (attrs.secure || s->itns[startvec + i])) { 2346 s->vectors[startvec + i].enabled = setval; 2347 } 2348 } 2349 nvic_irq_update(s); 2350 goto exit_ok; 2351 case 0x200 ... 0x23f: /* NVIC Set pend */ 2352 /* the special logic in armv7m_nvic_set_pending() 2353 * is not needed since IRQs are never escalated 2354 */ 2355 offset += 0x80; 2356 setval = 1; 2357 /* fall through */ 2358 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2359 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2360 2361 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2362 if (value & (1 << i) && 2363 (attrs.secure || s->itns[startvec + i])) { 2364 s->vectors[startvec + i].pending = setval; 2365 } 2366 } 2367 nvic_irq_update(s); 2368 goto exit_ok; 2369 case 0x300 ... 0x33f: /* NVIC Active */ 2370 goto exit_ok; /* R/O */ 2371 case 0x400 ... 0x5ef: /* NVIC Priority */ 2372 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2373 2374 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2375 if (attrs.secure || s->itns[startvec + i]) { 2376 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2377 } 2378 } 2379 nvic_irq_update(s); 2380 goto exit_ok; 2381 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2382 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2383 goto exit_ok; 2384 } 2385 /* fall through */ 2386 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2387 for (i = 0; i < size; i++) { 2388 unsigned hdlidx = (offset - 0xd14) + i; 2389 int newprio = extract32(value, i * 8, 8); 2390 int sbank = shpr_bank(s, hdlidx, attrs); 2391 2392 if (sbank < 0) { 2393 continue; 2394 } 2395 set_prio(s, hdlidx, sbank, newprio); 2396 } 2397 nvic_irq_update(s); 2398 goto exit_ok; 2399 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2400 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2401 goto exit_ok; 2402 } 2403 /* All bits are W1C, so construct 32 bit value with 0s in 2404 * the parts not written by the access size 2405 */ 2406 value <<= ((offset - 0xd28) * 8); 2407 2408 if (!attrs.secure && 2409 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2410 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2411 value &= ~R_V7M_CFSR_BFSR_MASK; 2412 } 2413 2414 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2415 if (attrs.secure) { 2416 /* The BFSR bits [15:8] are shared between security states 2417 * and we store them in the NS copy. 2418 */ 2419 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2420 } 2421 goto exit_ok; 2422 } 2423 if (size == 4) { 2424 nvic_writel(s, offset, value, attrs); 2425 goto exit_ok; 2426 } 2427 qemu_log_mask(LOG_GUEST_ERROR, 2428 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2429 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2430 2431 exit_ok: 2432 /* Ensure any changes made are reflected in the cached hflags. */ 2433 arm_rebuild_hflags(&s->cpu->env); 2434 return MEMTX_OK; 2435 } 2436 2437 static const MemoryRegionOps nvic_sysreg_ops = { 2438 .read_with_attrs = nvic_sysreg_read, 2439 .write_with_attrs = nvic_sysreg_write, 2440 .endianness = DEVICE_NATIVE_ENDIAN, 2441 }; 2442 2443 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2444 uint64_t value, unsigned size, 2445 MemTxAttrs attrs) 2446 { 2447 MemoryRegion *mr = opaque; 2448 2449 if (attrs.secure) { 2450 /* S accesses to the alias act like NS accesses to the real region */ 2451 attrs.secure = 0; 2452 return memory_region_dispatch_write(mr, addr, value, 2453 size_memop(size) | MO_TE, attrs); 2454 } else { 2455 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2456 if (attrs.user) { 2457 return MEMTX_ERROR; 2458 } 2459 return MEMTX_OK; 2460 } 2461 } 2462 2463 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2464 uint64_t *data, unsigned size, 2465 MemTxAttrs attrs) 2466 { 2467 MemoryRegion *mr = opaque; 2468 2469 if (attrs.secure) { 2470 /* S accesses to the alias act like NS accesses to the real region */ 2471 attrs.secure = 0; 2472 return memory_region_dispatch_read(mr, addr, data, 2473 size_memop(size) | MO_TE, attrs); 2474 } else { 2475 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2476 if (attrs.user) { 2477 return MEMTX_ERROR; 2478 } 2479 *data = 0; 2480 return MEMTX_OK; 2481 } 2482 } 2483 2484 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2485 .read_with_attrs = nvic_sysreg_ns_read, 2486 .write_with_attrs = nvic_sysreg_ns_write, 2487 .endianness = DEVICE_NATIVE_ENDIAN, 2488 }; 2489 2490 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2491 uint64_t value, unsigned size, 2492 MemTxAttrs attrs) 2493 { 2494 NVICState *s = opaque; 2495 MemoryRegion *mr; 2496 2497 /* Direct the access to the correct systick */ 2498 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2499 return memory_region_dispatch_write(mr, addr, value, 2500 size_memop(size) | MO_TE, attrs); 2501 } 2502 2503 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2504 uint64_t *data, unsigned size, 2505 MemTxAttrs attrs) 2506 { 2507 NVICState *s = opaque; 2508 MemoryRegion *mr; 2509 2510 /* Direct the access to the correct systick */ 2511 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2512 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2513 attrs); 2514 } 2515 2516 static const MemoryRegionOps nvic_systick_ops = { 2517 .read_with_attrs = nvic_systick_read, 2518 .write_with_attrs = nvic_systick_write, 2519 .endianness = DEVICE_NATIVE_ENDIAN, 2520 }; 2521 2522 2523 static MemTxResult ras_read(void *opaque, hwaddr addr, 2524 uint64_t *data, unsigned size, 2525 MemTxAttrs attrs) 2526 { 2527 if (attrs.user) { 2528 return MEMTX_ERROR; 2529 } 2530 2531 switch (addr) { 2532 case 0xe10: /* ERRIIDR */ 2533 /* architect field = Arm; product/variant/revision 0 */ 2534 *data = 0x43b; 2535 break; 2536 case 0xfc8: /* ERRDEVID */ 2537 /* Minimal RAS: we implement 0 error record indexes */ 2538 *data = 0; 2539 break; 2540 default: 2541 qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n", 2542 (uint32_t)addr); 2543 *data = 0; 2544 break; 2545 } 2546 return MEMTX_OK; 2547 } 2548 2549 static MemTxResult ras_write(void *opaque, hwaddr addr, 2550 uint64_t value, unsigned size, 2551 MemTxAttrs attrs) 2552 { 2553 if (attrs.user) { 2554 return MEMTX_ERROR; 2555 } 2556 2557 switch (addr) { 2558 default: 2559 qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n", 2560 (uint32_t)addr); 2561 break; 2562 } 2563 return MEMTX_OK; 2564 } 2565 2566 static const MemoryRegionOps ras_ops = { 2567 .read_with_attrs = ras_read, 2568 .write_with_attrs = ras_write, 2569 .endianness = DEVICE_NATIVE_ENDIAN, 2570 }; 2571 2572 /* 2573 * Unassigned portions of the PPB space are RAZ/WI for privileged 2574 * accesses, and fault for non-privileged accesses. 2575 */ 2576 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 2577 uint64_t *data, unsigned size, 2578 MemTxAttrs attrs) 2579 { 2580 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 2581 (uint32_t)addr); 2582 if (attrs.user) { 2583 return MEMTX_ERROR; 2584 } 2585 *data = 0; 2586 return MEMTX_OK; 2587 } 2588 2589 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 2590 uint64_t value, unsigned size, 2591 MemTxAttrs attrs) 2592 { 2593 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 2594 (uint32_t)addr); 2595 if (attrs.user) { 2596 return MEMTX_ERROR; 2597 } 2598 return MEMTX_OK; 2599 } 2600 2601 static const MemoryRegionOps ppb_default_ops = { 2602 .read_with_attrs = ppb_default_read, 2603 .write_with_attrs = ppb_default_write, 2604 .endianness = DEVICE_NATIVE_ENDIAN, 2605 .valid.min_access_size = 1, 2606 .valid.max_access_size = 8, 2607 }; 2608 2609 static int nvic_post_load(void *opaque, int version_id) 2610 { 2611 NVICState *s = opaque; 2612 unsigned i; 2613 int resetprio; 2614 2615 /* Check for out of range priority settings */ 2616 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2617 2618 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2619 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2620 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2621 return 1; 2622 } 2623 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2624 if (s->vectors[i].prio & ~0xff) { 2625 return 1; 2626 } 2627 } 2628 2629 nvic_recompute_state(s); 2630 2631 return 0; 2632 } 2633 2634 static const VMStateDescription vmstate_VecInfo = { 2635 .name = "armv7m_nvic_info", 2636 .version_id = 1, 2637 .minimum_version_id = 1, 2638 .fields = (VMStateField[]) { 2639 VMSTATE_INT16(prio, VecInfo), 2640 VMSTATE_UINT8(enabled, VecInfo), 2641 VMSTATE_UINT8(pending, VecInfo), 2642 VMSTATE_UINT8(active, VecInfo), 2643 VMSTATE_UINT8(level, VecInfo), 2644 VMSTATE_END_OF_LIST() 2645 } 2646 }; 2647 2648 static bool nvic_security_needed(void *opaque) 2649 { 2650 NVICState *s = opaque; 2651 2652 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2653 } 2654 2655 static int nvic_security_post_load(void *opaque, int version_id) 2656 { 2657 NVICState *s = opaque; 2658 int i; 2659 2660 /* Check for out of range priority settings */ 2661 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2662 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2663 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2664 * if the CPU state has been migrated yet; a mismatch won't 2665 * cause the emulation to blow up, though. 2666 */ 2667 return 1; 2668 } 2669 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2670 if (s->sec_vectors[i].prio & ~0xff) { 2671 return 1; 2672 } 2673 } 2674 return 0; 2675 } 2676 2677 static const VMStateDescription vmstate_nvic_security = { 2678 .name = "armv7m_nvic/m-security", 2679 .version_id = 1, 2680 .minimum_version_id = 1, 2681 .needed = nvic_security_needed, 2682 .post_load = &nvic_security_post_load, 2683 .fields = (VMStateField[]) { 2684 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2685 vmstate_VecInfo, VecInfo), 2686 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2687 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2688 VMSTATE_END_OF_LIST() 2689 } 2690 }; 2691 2692 static const VMStateDescription vmstate_nvic = { 2693 .name = "armv7m_nvic", 2694 .version_id = 4, 2695 .minimum_version_id = 4, 2696 .post_load = &nvic_post_load, 2697 .fields = (VMStateField[]) { 2698 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2699 vmstate_VecInfo, VecInfo), 2700 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2701 VMSTATE_END_OF_LIST() 2702 }, 2703 .subsections = (const VMStateDescription*[]) { 2704 &vmstate_nvic_security, 2705 NULL 2706 } 2707 }; 2708 2709 static Property props_nvic[] = { 2710 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2711 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2712 DEFINE_PROP_END_OF_LIST() 2713 }; 2714 2715 static void armv7m_nvic_reset(DeviceState *dev) 2716 { 2717 int resetprio; 2718 NVICState *s = NVIC(dev); 2719 2720 memset(s->vectors, 0, sizeof(s->vectors)); 2721 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2722 s->prigroup[M_REG_NS] = 0; 2723 s->prigroup[M_REG_S] = 0; 2724 2725 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2726 /* MEM, BUS, and USAGE are enabled through 2727 * the System Handler Control register 2728 */ 2729 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2730 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2731 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2732 2733 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2734 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2735 2736 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2737 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2738 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2739 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2740 2741 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2742 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2743 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2744 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2745 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2746 2747 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2748 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2749 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2750 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2751 } else { 2752 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2753 } 2754 2755 /* Strictly speaking the reset handler should be enabled. 2756 * However, we don't simulate soft resets through the NVIC, 2757 * and the reset vector should never be pended. 2758 * So we leave it disabled to catch logic errors. 2759 */ 2760 2761 s->exception_prio = NVIC_NOEXC_PRIO; 2762 s->vectpending = 0; 2763 s->vectpending_is_s_banked = false; 2764 s->vectpending_prio = NVIC_NOEXC_PRIO; 2765 2766 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2767 memset(s->itns, 0, sizeof(s->itns)); 2768 } else { 2769 /* This state is constant and not guest accessible in a non-security 2770 * NVIC; we set the bits to true to avoid having to do a feature 2771 * bit check in the NVIC enable/pend/etc register accessors. 2772 */ 2773 int i; 2774 2775 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2776 s->itns[i] = true; 2777 } 2778 } 2779 2780 /* 2781 * We updated state that affects the CPU's MMUidx and thus its hflags; 2782 * and we can't guarantee that we run before the CPU reset function. 2783 */ 2784 arm_rebuild_hflags(&s->cpu->env); 2785 } 2786 2787 static void nvic_systick_trigger(void *opaque, int n, int level) 2788 { 2789 NVICState *s = opaque; 2790 2791 if (level) { 2792 /* SysTick just asked us to pend its exception. 2793 * (This is different from an external interrupt line's 2794 * behaviour.) 2795 * n == 0 : NonSecure systick 2796 * n == 1 : Secure systick 2797 */ 2798 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2799 } 2800 } 2801 2802 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2803 { 2804 NVICState *s = NVIC(dev); 2805 2806 /* The armv7m container object will have set our CPU pointer */ 2807 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2808 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2809 return; 2810 } 2811 2812 if (s->num_irq > NVIC_MAX_IRQ) { 2813 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2814 return; 2815 } 2816 2817 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2818 2819 /* include space for internal exception vectors */ 2820 s->num_irq += NVIC_FIRST_IRQ; 2821 2822 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2823 2824 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2825 return; 2826 } 2827 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2828 qdev_get_gpio_in_named(dev, "systick-trigger", 2829 M_REG_NS)); 2830 2831 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2832 /* We couldn't init the secure systick device in instance_init 2833 * as we didn't know then if the CPU had the security extensions; 2834 * so we have to do it here. 2835 */ 2836 object_initialize_child(OBJECT(dev), "systick-reg-s", 2837 &s->systick[M_REG_S], TYPE_SYSTICK); 2838 2839 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2840 return; 2841 } 2842 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2843 qdev_get_gpio_in_named(dev, "systick-trigger", 2844 M_REG_S)); 2845 } 2846 2847 /* 2848 * This device provides a single sysbus memory region which 2849 * represents the whole of the "System PPB" space. This is the 2850 * range from 0xe0000000 to 0xe00fffff and includes the NVIC, 2851 * the System Control Space (system registers), the systick timer, 2852 * and for CPUs with the Security extension an NS banked version 2853 * of all of these. 2854 * 2855 * The default behaviour for unimplemented registers/ranges 2856 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 2857 * is to RAZ/WI for privileged access and BusFault for non-privileged 2858 * access. 2859 * 2860 * The NVIC and System Control Space (SCS) starts at 0xe000e000 2861 * and looks like this: 2862 * 0x004 - ICTR 2863 * 0x010 - 0xff - systick 2864 * 0x100..0x7ec - NVIC 2865 * 0x7f0..0xcff - Reserved 2866 * 0xd00..0xd3c - SCS registers 2867 * 0xd40..0xeff - Reserved or Not implemented 2868 * 0xf00 - STIR 2869 * 2870 * Some registers within this space are banked between security states. 2871 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2872 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2873 * to the main SCS range, and non-secure accesses (including when 2874 * the security extension is not implemented) are RAZ/WI. 2875 * Note that both the main SCS range and the alias range are defined 2876 * to be exempt from memory attribution (R_BLJT) and so the memory 2877 * transaction attribute always matches the current CPU security 2878 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2879 * wrappers we change attrs.secure to indicate the NS access; so 2880 * generally code determining which banked register to use should 2881 * use attrs.secure; code determining actual behaviour of the system 2882 * should use env->v7m.secure. 2883 * 2884 * The container covers the whole PPB space. Within it the priority 2885 * of overlapping regions is: 2886 * - default region (for RAZ/WI and BusFault) : -1 2887 * - system register regions : 0 2888 * - systick : 1 2889 * This is because the systick device is a small block of registers 2890 * in the middle of the other system control registers. 2891 */ 2892 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000); 2893 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 2894 "nvic-default", 0x100000); 2895 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1); 2896 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2897 "nvic_sysregs", 0x1000); 2898 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); 2899 2900 memory_region_init_io(&s->systickmem, OBJECT(s), 2901 &nvic_systick_ops, s, 2902 "nvic_systick", 0xe0); 2903 2904 memory_region_add_subregion_overlap(&s->container, 0xe010, 2905 &s->systickmem, 1); 2906 2907 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2908 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2909 &nvic_sysreg_ns_ops, &s->sysregmem, 2910 "nvic_sysregs_ns", 0x1000); 2911 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem); 2912 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2913 &nvic_sysreg_ns_ops, &s->systickmem, 2914 "nvic_systick_ns", 0xe0); 2915 memory_region_add_subregion_overlap(&s->container, 0x2e010, 2916 &s->systick_ns_mem, 1); 2917 } 2918 2919 if (cpu_isar_feature(aa32_ras, s->cpu)) { 2920 memory_region_init_io(&s->ras_mem, OBJECT(s), 2921 &ras_ops, s, "nvic_ras", 0x1000); 2922 memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem); 2923 } 2924 2925 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2926 } 2927 2928 static void armv7m_nvic_instance_init(Object *obj) 2929 { 2930 /* We have a different default value for the num-irq property 2931 * than our superclass. This function runs after qdev init 2932 * has set the defaults from the Property array and before 2933 * any user-specified property setting, so just modify the 2934 * value in the GICState struct. 2935 */ 2936 DeviceState *dev = DEVICE(obj); 2937 NVICState *nvic = NVIC(obj); 2938 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2939 2940 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2941 TYPE_SYSTICK); 2942 /* We can't initialize the secure systick here, as we don't know 2943 * yet if we need it. 2944 */ 2945 2946 sysbus_init_irq(sbd, &nvic->excpout); 2947 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2948 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2949 M_REG_NUM_BANKS); 2950 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2951 } 2952 2953 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2954 { 2955 DeviceClass *dc = DEVICE_CLASS(klass); 2956 2957 dc->vmsd = &vmstate_nvic; 2958 device_class_set_props(dc, props_nvic); 2959 dc->reset = armv7m_nvic_reset; 2960 dc->realize = armv7m_nvic_realize; 2961 } 2962 2963 static const TypeInfo armv7m_nvic_info = { 2964 .name = TYPE_NVIC, 2965 .parent = TYPE_SYS_BUS_DEVICE, 2966 .instance_init = armv7m_nvic_instance_init, 2967 .instance_size = sizeof(NVICState), 2968 .class_init = armv7m_nvic_class_init, 2969 .class_size = sizeof(SysBusDeviceClass), 2970 }; 2971 2972 static void armv7m_nvic_register_types(void) 2973 { 2974 type_register_static(&armv7m_nvic_info); 2975 } 2976 2977 type_init(armv7m_nvic_register_types) 2978