xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 7c9140afd594d7be73320ffaeb08210c59eaf168)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528     bool targets_secure;
529 
530     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
531     assert(!secure || banked);
532 
533     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
534 
535     targets_secure = banked ? secure : exc_targets_secure(s, irq);
536 
537     trace_nvic_set_pending(irq, secure, targets_secure,
538                            derived, vec->enabled, vec->prio);
539 
540     if (derived) {
541         /* Derived exceptions are always synchronous. */
542         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
543 
544         if (irq == ARMV7M_EXCP_DEBUG &&
545             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
546             /* DebugMonitorFault, but its priority is lower than the
547              * preempted exception priority: just ignore it.
548              */
549             return;
550         }
551 
552         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
553             /* If this is a terminal exception (one which means we cannot
554              * take the original exception, like a failure to read its
555              * vector table entry), then we must take the derived exception.
556              * If the derived exception can't take priority over the
557              * original exception, then we go into Lockup.
558              *
559              * For QEMU, we rely on the fact that a derived exception is
560              * terminal if and only if it's reported to us as HardFault,
561              * which saves having to have an extra argument is_terminal
562              * that we'd only use in one place.
563              */
564             cpu_abort(&s->cpu->parent_obj,
565                       "Lockup: can't take terminal derived exception "
566                       "(original exception priority %d)\n",
567                       s->vectpending_prio);
568         }
569         /* We now continue with the same code as for a normal pending
570          * exception, which will cause us to pend the derived exception.
571          * We'll then take either the original or the derived exception
572          * based on which is higher priority by the usual mechanism
573          * for selecting the highest priority pending interrupt.
574          */
575     }
576 
577     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
578         /* If a synchronous exception is pending then it may be
579          * escalated to HardFault if:
580          *  * it is equal or lower priority to current execution
581          *  * it is disabled
582          * (ie we need to take it immediately but we can't do so).
583          * Asynchronous exceptions (and interrupts) simply remain pending.
584          *
585          * For QEMU, we don't have any imprecise (asynchronous) faults,
586          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
587          * synchronous.
588          * Debug exceptions are awkward because only Debug exceptions
589          * resulting from the BKPT instruction should be escalated,
590          * but we don't currently implement any Debug exceptions other
591          * than those that result from BKPT, so we treat all debug exceptions
592          * as needing escalation.
593          *
594          * This all means we can identify whether to escalate based only on
595          * the exception number and don't (yet) need the caller to explicitly
596          * tell us whether this exception is synchronous or not.
597          */
598         int running = nvic_exec_prio(s);
599         bool escalate = false;
600 
601         if (exc_group_prio(s, vec->prio, secure) >= running) {
602             trace_nvic_escalate_prio(irq, vec->prio, running);
603             escalate = true;
604         } else if (!vec->enabled) {
605             trace_nvic_escalate_disabled(irq);
606             escalate = true;
607         }
608 
609         if (escalate) {
610 
611             /* We need to escalate this exception to a synchronous HardFault.
612              * If BFHFNMINS is set then we escalate to the banked HF for
613              * the target security state of the original exception; otherwise
614              * we take a Secure HardFault.
615              */
616             irq = ARMV7M_EXCP_HARD;
617             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
618                 (targets_secure ||
619                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
620                 vec = &s->sec_vectors[irq];
621             } else {
622                 vec = &s->vectors[irq];
623             }
624             if (running <= vec->prio) {
625                 /* We want to escalate to HardFault but we can't take the
626                  * synchronous HardFault at this point either. This is a
627                  * Lockup condition due to a guest bug. We don't model
628                  * Lockup, so report via cpu_abort() instead.
629                  */
630                 cpu_abort(&s->cpu->parent_obj,
631                           "Lockup: can't escalate %d to HardFault "
632                           "(current priority %d)\n", irq, running);
633             }
634 
635             /* HF may be banked but there is only one shared HFSR */
636             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
637         }
638     }
639 
640     if (!vec->pending) {
641         vec->pending = 1;
642         nvic_irq_update(s);
643     }
644 }
645 
646 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
647 {
648     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
649 }
650 
651 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
652 {
653     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
654 }
655 
656 /* Make pending IRQ active.  */
657 void armv7m_nvic_acknowledge_irq(void *opaque)
658 {
659     NVICState *s = (NVICState *)opaque;
660     CPUARMState *env = &s->cpu->env;
661     const int pending = s->vectpending;
662     const int running = nvic_exec_prio(s);
663     VecInfo *vec;
664 
665     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
666 
667     if (s->vectpending_is_s_banked) {
668         vec = &s->sec_vectors[pending];
669     } else {
670         vec = &s->vectors[pending];
671     }
672 
673     assert(vec->enabled);
674     assert(vec->pending);
675 
676     assert(s->vectpending_prio < running);
677 
678     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
679 
680     vec->active = 1;
681     vec->pending = 0;
682 
683     write_v7m_exception(env, s->vectpending);
684 
685     nvic_irq_update(s);
686 }
687 
688 void armv7m_nvic_get_pending_irq_info(void *opaque,
689                                       int *pirq, bool *ptargets_secure)
690 {
691     NVICState *s = (NVICState *)opaque;
692     const int pending = s->vectpending;
693     bool targets_secure;
694 
695     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
696 
697     if (s->vectpending_is_s_banked) {
698         targets_secure = true;
699     } else {
700         targets_secure = !exc_is_banked(pending) &&
701             exc_targets_secure(s, pending);
702     }
703 
704     trace_nvic_get_pending_irq_info(pending, targets_secure);
705 
706     *ptargets_secure = targets_secure;
707     *pirq = pending;
708 }
709 
710 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
711 {
712     NVICState *s = (NVICState *)opaque;
713     VecInfo *vec;
714     int ret;
715 
716     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
717 
718     if (secure && exc_is_banked(irq)) {
719         vec = &s->sec_vectors[irq];
720     } else {
721         vec = &s->vectors[irq];
722     }
723 
724     trace_nvic_complete_irq(irq, secure);
725 
726     if (!vec->active) {
727         /* Tell the caller this was an illegal exception return */
728         return -1;
729     }
730 
731     ret = nvic_rettobase(s);
732 
733     vec->active = 0;
734     if (vec->level) {
735         /* Re-pend the exception if it's still held high; only
736          * happens for extenal IRQs
737          */
738         assert(irq >= NVIC_FIRST_IRQ);
739         vec->pending = 1;
740     }
741 
742     nvic_irq_update(s);
743 
744     return ret;
745 }
746 
747 /* callback when external interrupt line is changed */
748 static void set_irq_level(void *opaque, int n, int level)
749 {
750     NVICState *s = opaque;
751     VecInfo *vec;
752 
753     n += NVIC_FIRST_IRQ;
754 
755     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
756 
757     trace_nvic_set_irq_level(n, level);
758 
759     /* The pending status of an external interrupt is
760      * latched on rising edge and exception handler return.
761      *
762      * Pulsing the IRQ will always run the handler
763      * once, and the handler will re-run until the
764      * level is low when the handler completes.
765      */
766     vec = &s->vectors[n];
767     if (level != vec->level) {
768         vec->level = level;
769         if (level) {
770             armv7m_nvic_set_pending(s, n, false);
771         }
772     }
773 }
774 
775 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
776 {
777     ARMCPU *cpu = s->cpu;
778     uint32_t val;
779 
780     switch (offset) {
781     case 4: /* Interrupt Control Type.  */
782         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
783     case 0xc: /* CPPWR */
784         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
785             goto bad_offset;
786         }
787         /* We make the IMPDEF choice that nothing can ever go into a
788          * non-retentive power state, which allows us to RAZ/WI this.
789          */
790         return 0;
791     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
792     {
793         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
794         int i;
795 
796         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
797             goto bad_offset;
798         }
799         if (!attrs.secure) {
800             return 0;
801         }
802         val = 0;
803         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
804             if (s->itns[startvec + i]) {
805                 val |= (1 << i);
806             }
807         }
808         return val;
809     }
810     case 0xd00: /* CPUID Base.  */
811         return cpu->midr;
812     case 0xd04: /* Interrupt Control State (ICSR) */
813         /* VECTACTIVE */
814         val = cpu->env.v7m.exception;
815         /* VECTPENDING */
816         val |= (s->vectpending & 0xff) << 12;
817         /* ISRPENDING - set if any external IRQ is pending */
818         if (nvic_isrpending(s)) {
819             val |= (1 << 22);
820         }
821         /* RETTOBASE - set if only one handler is active */
822         if (nvic_rettobase(s)) {
823             val |= (1 << 11);
824         }
825         if (attrs.secure) {
826             /* PENDSTSET */
827             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
828                 val |= (1 << 26);
829             }
830             /* PENDSVSET */
831             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
832                 val |= (1 << 28);
833             }
834         } else {
835             /* PENDSTSET */
836             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
837                 val |= (1 << 26);
838             }
839             /* PENDSVSET */
840             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
841                 val |= (1 << 28);
842             }
843         }
844         /* NMIPENDSET */
845         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
846             && s->vectors[ARMV7M_EXCP_NMI].pending) {
847             val |= (1 << 31);
848         }
849         /* ISRPREEMPT: RES0 when halting debug not implemented */
850         /* STTNS: RES0 for the Main Extension */
851         return val;
852     case 0xd08: /* Vector Table Offset.  */
853         return cpu->env.v7m.vecbase[attrs.secure];
854     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
855         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
856         if (attrs.secure) {
857             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
858             val |= cpu->env.v7m.aircr;
859         } else {
860             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
861                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
862                  * security isn't supported then BFHFNMINS is RAO (and
863                  * the bit in env.v7m.aircr is always set).
864                  */
865                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
866             }
867         }
868         return val;
869     case 0xd10: /* System Control.  */
870         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
871             goto bad_offset;
872         }
873         return cpu->env.v7m.scr[attrs.secure];
874     case 0xd14: /* Configuration Control.  */
875         /* The BFHFNMIGN bit is the only non-banked bit; we
876          * keep it in the non-secure copy of the register.
877          */
878         val = cpu->env.v7m.ccr[attrs.secure];
879         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
880         return val;
881     case 0xd24: /* System Handler Control and State (SHCSR) */
882         val = 0;
883         if (attrs.secure) {
884             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
885                 val |= (1 << 0);
886             }
887             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
888                 val |= (1 << 2);
889             }
890             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
891                 val |= (1 << 3);
892             }
893             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
894                 val |= (1 << 7);
895             }
896             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
897                 val |= (1 << 10);
898             }
899             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
900                 val |= (1 << 11);
901             }
902             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
903                 val |= (1 << 12);
904             }
905             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
906                 val |= (1 << 13);
907             }
908             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
909                 val |= (1 << 15);
910             }
911             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
912                 val |= (1 << 16);
913             }
914             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
915                 val |= (1 << 18);
916             }
917             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
918                 val |= (1 << 21);
919             }
920             /* SecureFault is not banked but is always RAZ/WI to NS */
921             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
922                 val |= (1 << 4);
923             }
924             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
925                 val |= (1 << 19);
926             }
927             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
928                 val |= (1 << 20);
929             }
930         } else {
931             if (s->vectors[ARMV7M_EXCP_MEM].active) {
932                 val |= (1 << 0);
933             }
934             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
935                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
936                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
937                     val |= (1 << 2);
938                 }
939                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
940                     val |= (1 << 21);
941                 }
942             }
943             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
944                 val |= (1 << 3);
945             }
946             if (s->vectors[ARMV7M_EXCP_SVC].active) {
947                 val |= (1 << 7);
948             }
949             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
950                 val |= (1 << 10);
951             }
952             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
953                 val |= (1 << 11);
954             }
955             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
956                 val |= (1 << 12);
957             }
958             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
959                 val |= (1 << 13);
960             }
961             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
962                 val |= (1 << 15);
963             }
964             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
965                 val |= (1 << 16);
966             }
967             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
968                 val |= (1 << 18);
969             }
970         }
971         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
972             if (s->vectors[ARMV7M_EXCP_BUS].active) {
973                 val |= (1 << 1);
974             }
975             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
976                 val |= (1 << 14);
977             }
978             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
979                 val |= (1 << 17);
980             }
981             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
982                 s->vectors[ARMV7M_EXCP_NMI].active) {
983                 /* NMIACT is not present in v7M */
984                 val |= (1 << 5);
985             }
986         }
987 
988         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
989         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
990             val |= (1 << 8);
991         }
992         return val;
993     case 0xd2c: /* Hard Fault Status.  */
994         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
995             goto bad_offset;
996         }
997         return cpu->env.v7m.hfsr;
998     case 0xd30: /* Debug Fault Status.  */
999         return cpu->env.v7m.dfsr;
1000     case 0xd34: /* MMFAR MemManage Fault Address */
1001         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1002             goto bad_offset;
1003         }
1004         return cpu->env.v7m.mmfar[attrs.secure];
1005     case 0xd38: /* Bus Fault Address.  */
1006         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1007             goto bad_offset;
1008         }
1009         return cpu->env.v7m.bfar;
1010     case 0xd3c: /* Aux Fault Status.  */
1011         /* TODO: Implement fault status registers.  */
1012         qemu_log_mask(LOG_UNIMP,
1013                       "Aux Fault status registers unimplemented\n");
1014         return 0;
1015     case 0xd40: /* PFR0.  */
1016         return cpu->id_pfr0;
1017     case 0xd44: /* PFR1.  */
1018         return cpu->id_pfr1;
1019     case 0xd48: /* DFR0.  */
1020         return cpu->id_dfr0;
1021     case 0xd4c: /* AFR0.  */
1022         return cpu->id_afr0;
1023     case 0xd50: /* MMFR0.  */
1024         return cpu->id_mmfr0;
1025     case 0xd54: /* MMFR1.  */
1026         return cpu->id_mmfr1;
1027     case 0xd58: /* MMFR2.  */
1028         return cpu->id_mmfr2;
1029     case 0xd5c: /* MMFR3.  */
1030         return cpu->id_mmfr3;
1031     case 0xd60: /* ISAR0.  */
1032         return cpu->id_isar0;
1033     case 0xd64: /* ISAR1.  */
1034         return cpu->id_isar1;
1035     case 0xd68: /* ISAR2.  */
1036         return cpu->id_isar2;
1037     case 0xd6c: /* ISAR3.  */
1038         return cpu->id_isar3;
1039     case 0xd70: /* ISAR4.  */
1040         return cpu->id_isar4;
1041     case 0xd74: /* ISAR5.  */
1042         return cpu->id_isar5;
1043     case 0xd78: /* CLIDR */
1044         return cpu->clidr;
1045     case 0xd7c: /* CTR */
1046         return cpu->ctr;
1047     case 0xd80: /* CSSIDR */
1048     {
1049         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1050         return cpu->ccsidr[idx];
1051     }
1052     case 0xd84: /* CSSELR */
1053         return cpu->env.v7m.csselr[attrs.secure];
1054     /* TODO: Implement debug registers.  */
1055     case 0xd90: /* MPU_TYPE */
1056         /* Unified MPU; if the MPU is not present this value is zero */
1057         return cpu->pmsav7_dregion << 8;
1058         break;
1059     case 0xd94: /* MPU_CTRL */
1060         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1061     case 0xd98: /* MPU_RNR */
1062         return cpu->env.pmsav7.rnr[attrs.secure];
1063     case 0xd9c: /* MPU_RBAR */
1064     case 0xda4: /* MPU_RBAR_A1 */
1065     case 0xdac: /* MPU_RBAR_A2 */
1066     case 0xdb4: /* MPU_RBAR_A3 */
1067     {
1068         int region = cpu->env.pmsav7.rnr[attrs.secure];
1069 
1070         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1071             /* PMSAv8M handling of the aliases is different from v7M:
1072              * aliases A1, A2, A3 override the low two bits of the region
1073              * number in MPU_RNR, and there is no 'region' field in the
1074              * RBAR register.
1075              */
1076             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1077             if (aliasno) {
1078                 region = deposit32(region, 0, 2, aliasno);
1079             }
1080             if (region >= cpu->pmsav7_dregion) {
1081                 return 0;
1082             }
1083             return cpu->env.pmsav8.rbar[attrs.secure][region];
1084         }
1085 
1086         if (region >= cpu->pmsav7_dregion) {
1087             return 0;
1088         }
1089         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1090     }
1091     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1092     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1093     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1094     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1095     {
1096         int region = cpu->env.pmsav7.rnr[attrs.secure];
1097 
1098         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1099             /* PMSAv8M handling of the aliases is different from v7M:
1100              * aliases A1, A2, A3 override the low two bits of the region
1101              * number in MPU_RNR.
1102              */
1103             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1104             if (aliasno) {
1105                 region = deposit32(region, 0, 2, aliasno);
1106             }
1107             if (region >= cpu->pmsav7_dregion) {
1108                 return 0;
1109             }
1110             return cpu->env.pmsav8.rlar[attrs.secure][region];
1111         }
1112 
1113         if (region >= cpu->pmsav7_dregion) {
1114             return 0;
1115         }
1116         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1117             (cpu->env.pmsav7.drsr[region] & 0xffff);
1118     }
1119     case 0xdc0: /* MPU_MAIR0 */
1120         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1121             goto bad_offset;
1122         }
1123         return cpu->env.pmsav8.mair0[attrs.secure];
1124     case 0xdc4: /* MPU_MAIR1 */
1125         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1126             goto bad_offset;
1127         }
1128         return cpu->env.pmsav8.mair1[attrs.secure];
1129     case 0xdd0: /* SAU_CTRL */
1130         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1131             goto bad_offset;
1132         }
1133         if (!attrs.secure) {
1134             return 0;
1135         }
1136         return cpu->env.sau.ctrl;
1137     case 0xdd4: /* SAU_TYPE */
1138         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139             goto bad_offset;
1140         }
1141         if (!attrs.secure) {
1142             return 0;
1143         }
1144         return cpu->sau_sregion;
1145     case 0xdd8: /* SAU_RNR */
1146         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147             goto bad_offset;
1148         }
1149         if (!attrs.secure) {
1150             return 0;
1151         }
1152         return cpu->env.sau.rnr;
1153     case 0xddc: /* SAU_RBAR */
1154     {
1155         int region = cpu->env.sau.rnr;
1156 
1157         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1158             goto bad_offset;
1159         }
1160         if (!attrs.secure) {
1161             return 0;
1162         }
1163         if (region >= cpu->sau_sregion) {
1164             return 0;
1165         }
1166         return cpu->env.sau.rbar[region];
1167     }
1168     case 0xde0: /* SAU_RLAR */
1169     {
1170         int region = cpu->env.sau.rnr;
1171 
1172         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173             goto bad_offset;
1174         }
1175         if (!attrs.secure) {
1176             return 0;
1177         }
1178         if (region >= cpu->sau_sregion) {
1179             return 0;
1180         }
1181         return cpu->env.sau.rlar[region];
1182     }
1183     case 0xde4: /* SFSR */
1184         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1185             goto bad_offset;
1186         }
1187         if (!attrs.secure) {
1188             return 0;
1189         }
1190         return cpu->env.v7m.sfsr;
1191     case 0xde8: /* SFAR */
1192         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1193             goto bad_offset;
1194         }
1195         if (!attrs.secure) {
1196             return 0;
1197         }
1198         return cpu->env.v7m.sfar;
1199     default:
1200     bad_offset:
1201         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1202         return 0;
1203     }
1204 }
1205 
1206 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1207                         MemTxAttrs attrs)
1208 {
1209     ARMCPU *cpu = s->cpu;
1210 
1211     switch (offset) {
1212     case 0xc: /* CPPWR */
1213         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1214             goto bad_offset;
1215         }
1216         /* Make the IMPDEF choice to RAZ/WI this. */
1217         break;
1218     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1219     {
1220         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1221         int i;
1222 
1223         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1224             goto bad_offset;
1225         }
1226         if (!attrs.secure) {
1227             break;
1228         }
1229         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1230             s->itns[startvec + i] = (value >> i) & 1;
1231         }
1232         nvic_irq_update(s);
1233         break;
1234     }
1235     case 0xd04: /* Interrupt Control State (ICSR) */
1236         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1237             if (value & (1 << 31)) {
1238                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1239             } else if (value & (1 << 30) &&
1240                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1241                 /* PENDNMICLR didn't exist in v7M */
1242                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1243             }
1244         }
1245         if (value & (1 << 28)) {
1246             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1247         } else if (value & (1 << 27)) {
1248             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1249         }
1250         if (value & (1 << 26)) {
1251             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1252         } else if (value & (1 << 25)) {
1253             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1254         }
1255         break;
1256     case 0xd08: /* Vector Table Offset.  */
1257         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1258         break;
1259     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1260         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1261             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1262                 if (attrs.secure ||
1263                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1264                     qemu_irq_pulse(s->sysresetreq);
1265                 }
1266             }
1267             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1268                 qemu_log_mask(LOG_GUEST_ERROR,
1269                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1270                               "is UNPREDICTABLE\n");
1271             }
1272             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1273                 /* NB: this bit is RES0 in v8M */
1274                 qemu_log_mask(LOG_GUEST_ERROR,
1275                               "Setting VECTRESET when not in DEBUG mode "
1276                               "is UNPREDICTABLE\n");
1277             }
1278             s->prigroup[attrs.secure] = extract32(value,
1279                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1280                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1281             if (attrs.secure) {
1282                 /* These bits are only writable by secure */
1283                 cpu->env.v7m.aircr = value &
1284                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1285                      R_V7M_AIRCR_BFHFNMINS_MASK |
1286                      R_V7M_AIRCR_PRIS_MASK);
1287                 /* BFHFNMINS changes the priority of Secure HardFault, and
1288                  * allows a pending Non-secure HardFault to preempt (which
1289                  * we implement by marking it enabled).
1290                  */
1291                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1292                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1293                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1294                 } else {
1295                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1296                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1297                 }
1298             }
1299             nvic_irq_update(s);
1300         }
1301         break;
1302     case 0xd10: /* System Control.  */
1303         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1304             goto bad_offset;
1305         }
1306         /* We don't implement deep-sleep so these bits are RAZ/WI.
1307          * The other bits in the register are banked.
1308          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1309          * is architecturally permitted.
1310          */
1311         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1312         cpu->env.v7m.scr[attrs.secure] = value;
1313         break;
1314     case 0xd14: /* Configuration Control.  */
1315         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1316         value &= (R_V7M_CCR_STKALIGN_MASK |
1317                   R_V7M_CCR_BFHFNMIGN_MASK |
1318                   R_V7M_CCR_DIV_0_TRP_MASK |
1319                   R_V7M_CCR_UNALIGN_TRP_MASK |
1320                   R_V7M_CCR_USERSETMPEND_MASK |
1321                   R_V7M_CCR_NONBASETHRDENA_MASK);
1322 
1323         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1324             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1325             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1326                 | R_V7M_CCR_STKALIGN_MASK;
1327         }
1328         if (attrs.secure) {
1329             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1330             cpu->env.v7m.ccr[M_REG_NS] =
1331                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1332                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1333             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1334         }
1335 
1336         cpu->env.v7m.ccr[attrs.secure] = value;
1337         break;
1338     case 0xd24: /* System Handler Control and State (SHCSR) */
1339         if (attrs.secure) {
1340             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1341             /* Secure HardFault active bit cannot be written */
1342             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1343             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1344             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1345                 (value & (1 << 10)) != 0;
1346             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1347                 (value & (1 << 11)) != 0;
1348             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1349                 (value & (1 << 12)) != 0;
1350             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1351             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1352             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1353             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1354             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1355                 (value & (1 << 18)) != 0;
1356             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1357             /* SecureFault not banked, but RAZ/WI to NS */
1358             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1359             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1360             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1361         } else {
1362             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1363             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1364                 /* HARDFAULTPENDED is not present in v7M */
1365                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1366             }
1367             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1368             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1369             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1370             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1371             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1372             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1373             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1374             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1375             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1376         }
1377         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1378             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1379             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1380             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1381         }
1382         /* NMIACT can only be written if the write is of a zero, with
1383          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1384          */
1385         if (!attrs.secure && cpu->env.v7m.secure &&
1386             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1387             (value & (1 << 5)) == 0) {
1388             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1389         }
1390         /* HARDFAULTACT can only be written if the write is of a zero
1391          * to the non-secure HardFault state by the CPU in secure state.
1392          * The only case where we can be targeting the non-secure HF state
1393          * when in secure state is if this is a write via the NS alias
1394          * and BFHFNMINS is 1.
1395          */
1396         if (!attrs.secure && cpu->env.v7m.secure &&
1397             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1398             (value & (1 << 2)) == 0) {
1399             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1400         }
1401 
1402         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1403         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1404         nvic_irq_update(s);
1405         break;
1406     case 0xd2c: /* Hard Fault Status.  */
1407         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1408             goto bad_offset;
1409         }
1410         cpu->env.v7m.hfsr &= ~value; /* W1C */
1411         break;
1412     case 0xd30: /* Debug Fault Status.  */
1413         cpu->env.v7m.dfsr &= ~value; /* W1C */
1414         break;
1415     case 0xd34: /* Mem Manage Address.  */
1416         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1417             goto bad_offset;
1418         }
1419         cpu->env.v7m.mmfar[attrs.secure] = value;
1420         return;
1421     case 0xd38: /* Bus Fault Address.  */
1422         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1423             goto bad_offset;
1424         }
1425         cpu->env.v7m.bfar = value;
1426         return;
1427     case 0xd3c: /* Aux Fault Status.  */
1428         qemu_log_mask(LOG_UNIMP,
1429                       "NVIC: Aux fault status registers unimplemented\n");
1430         break;
1431     case 0xd84: /* CSSELR */
1432         if (!arm_v7m_csselr_razwi(cpu)) {
1433             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1434         }
1435         break;
1436     case 0xd90: /* MPU_TYPE */
1437         return; /* RO */
1438     case 0xd94: /* MPU_CTRL */
1439         if ((value &
1440              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1441             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1442             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1443                           "UNPREDICTABLE\n");
1444         }
1445         cpu->env.v7m.mpu_ctrl[attrs.secure]
1446             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1447                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1448                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1449         tlb_flush(CPU(cpu));
1450         break;
1451     case 0xd98: /* MPU_RNR */
1452         if (value >= cpu->pmsav7_dregion) {
1453             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1454                           PRIu32 "/%" PRIu32 "\n",
1455                           value, cpu->pmsav7_dregion);
1456         } else {
1457             cpu->env.pmsav7.rnr[attrs.secure] = value;
1458         }
1459         break;
1460     case 0xd9c: /* MPU_RBAR */
1461     case 0xda4: /* MPU_RBAR_A1 */
1462     case 0xdac: /* MPU_RBAR_A2 */
1463     case 0xdb4: /* MPU_RBAR_A3 */
1464     {
1465         int region;
1466 
1467         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1468             /* PMSAv8M handling of the aliases is different from v7M:
1469              * aliases A1, A2, A3 override the low two bits of the region
1470              * number in MPU_RNR, and there is no 'region' field in the
1471              * RBAR register.
1472              */
1473             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1474 
1475             region = cpu->env.pmsav7.rnr[attrs.secure];
1476             if (aliasno) {
1477                 region = deposit32(region, 0, 2, aliasno);
1478             }
1479             if (region >= cpu->pmsav7_dregion) {
1480                 return;
1481             }
1482             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1483             tlb_flush(CPU(cpu));
1484             return;
1485         }
1486 
1487         if (value & (1 << 4)) {
1488             /* VALID bit means use the region number specified in this
1489              * value and also update MPU_RNR.REGION with that value.
1490              */
1491             region = extract32(value, 0, 4);
1492             if (region >= cpu->pmsav7_dregion) {
1493                 qemu_log_mask(LOG_GUEST_ERROR,
1494                               "MPU region out of range %u/%" PRIu32 "\n",
1495                               region, cpu->pmsav7_dregion);
1496                 return;
1497             }
1498             cpu->env.pmsav7.rnr[attrs.secure] = region;
1499         } else {
1500             region = cpu->env.pmsav7.rnr[attrs.secure];
1501         }
1502 
1503         if (region >= cpu->pmsav7_dregion) {
1504             return;
1505         }
1506 
1507         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1508         tlb_flush(CPU(cpu));
1509         break;
1510     }
1511     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1512     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1513     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1514     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1515     {
1516         int region = cpu->env.pmsav7.rnr[attrs.secure];
1517 
1518         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1519             /* PMSAv8M handling of the aliases is different from v7M:
1520              * aliases A1, A2, A3 override the low two bits of the region
1521              * number in MPU_RNR.
1522              */
1523             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1524 
1525             region = cpu->env.pmsav7.rnr[attrs.secure];
1526             if (aliasno) {
1527                 region = deposit32(region, 0, 2, aliasno);
1528             }
1529             if (region >= cpu->pmsav7_dregion) {
1530                 return;
1531             }
1532             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1533             tlb_flush(CPU(cpu));
1534             return;
1535         }
1536 
1537         if (region >= cpu->pmsav7_dregion) {
1538             return;
1539         }
1540 
1541         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1542         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1543         tlb_flush(CPU(cpu));
1544         break;
1545     }
1546     case 0xdc0: /* MPU_MAIR0 */
1547         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1548             goto bad_offset;
1549         }
1550         if (cpu->pmsav7_dregion) {
1551             /* Register is RES0 if no MPU regions are implemented */
1552             cpu->env.pmsav8.mair0[attrs.secure] = value;
1553         }
1554         /* We don't need to do anything else because memory attributes
1555          * only affect cacheability, and we don't implement caching.
1556          */
1557         break;
1558     case 0xdc4: /* MPU_MAIR1 */
1559         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1560             goto bad_offset;
1561         }
1562         if (cpu->pmsav7_dregion) {
1563             /* Register is RES0 if no MPU regions are implemented */
1564             cpu->env.pmsav8.mair1[attrs.secure] = value;
1565         }
1566         /* We don't need to do anything else because memory attributes
1567          * only affect cacheability, and we don't implement caching.
1568          */
1569         break;
1570     case 0xdd0: /* SAU_CTRL */
1571         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1572             goto bad_offset;
1573         }
1574         if (!attrs.secure) {
1575             return;
1576         }
1577         cpu->env.sau.ctrl = value & 3;
1578         break;
1579     case 0xdd4: /* SAU_TYPE */
1580         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1581             goto bad_offset;
1582         }
1583         break;
1584     case 0xdd8: /* SAU_RNR */
1585         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1586             goto bad_offset;
1587         }
1588         if (!attrs.secure) {
1589             return;
1590         }
1591         if (value >= cpu->sau_sregion) {
1592             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1593                           PRIu32 "/%" PRIu32 "\n",
1594                           value, cpu->sau_sregion);
1595         } else {
1596             cpu->env.sau.rnr = value;
1597         }
1598         break;
1599     case 0xddc: /* SAU_RBAR */
1600     {
1601         int region = cpu->env.sau.rnr;
1602 
1603         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1604             goto bad_offset;
1605         }
1606         if (!attrs.secure) {
1607             return;
1608         }
1609         if (region >= cpu->sau_sregion) {
1610             return;
1611         }
1612         cpu->env.sau.rbar[region] = value & ~0x1f;
1613         tlb_flush(CPU(cpu));
1614         break;
1615     }
1616     case 0xde0: /* SAU_RLAR */
1617     {
1618         int region = cpu->env.sau.rnr;
1619 
1620         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1621             goto bad_offset;
1622         }
1623         if (!attrs.secure) {
1624             return;
1625         }
1626         if (region >= cpu->sau_sregion) {
1627             return;
1628         }
1629         cpu->env.sau.rlar[region] = value & ~0x1c;
1630         tlb_flush(CPU(cpu));
1631         break;
1632     }
1633     case 0xde4: /* SFSR */
1634         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1635             goto bad_offset;
1636         }
1637         if (!attrs.secure) {
1638             return;
1639         }
1640         cpu->env.v7m.sfsr &= ~value; /* W1C */
1641         break;
1642     case 0xde8: /* SFAR */
1643         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1644             goto bad_offset;
1645         }
1646         if (!attrs.secure) {
1647             return;
1648         }
1649         cpu->env.v7m.sfsr = value;
1650         break;
1651     case 0xf00: /* Software Triggered Interrupt Register */
1652     {
1653         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1654 
1655         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1656             goto bad_offset;
1657         }
1658 
1659         if (excnum < s->num_irq) {
1660             armv7m_nvic_set_pending(s, excnum, false);
1661         }
1662         break;
1663     }
1664     case 0xf50: /* ICIALLU */
1665     case 0xf58: /* ICIMVAU */
1666     case 0xf5c: /* DCIMVAC */
1667     case 0xf60: /* DCISW */
1668     case 0xf64: /* DCCMVAU */
1669     case 0xf68: /* DCCMVAC */
1670     case 0xf6c: /* DCCSW */
1671     case 0xf70: /* DCCIMVAC */
1672     case 0xf74: /* DCCISW */
1673     case 0xf78: /* BPIALL */
1674         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1675         break;
1676     default:
1677     bad_offset:
1678         qemu_log_mask(LOG_GUEST_ERROR,
1679                       "NVIC: Bad write offset 0x%x\n", offset);
1680     }
1681 }
1682 
1683 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1684 {
1685     /* Return true if unprivileged access to this register is permitted. */
1686     switch (offset) {
1687     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1688         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1689          * controls access even though the CPU is in Secure state (I_QDKX).
1690          */
1691         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1692     default:
1693         /* All other user accesses cause a BusFault unconditionally */
1694         return false;
1695     }
1696 }
1697 
1698 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1699 {
1700     /* Behaviour for the SHPR register field for this exception:
1701      * return M_REG_NS to use the nonsecure vector (including for
1702      * non-banked exceptions), M_REG_S for the secure version of
1703      * a banked exception, and -1 if this field should RAZ/WI.
1704      */
1705     switch (exc) {
1706     case ARMV7M_EXCP_MEM:
1707     case ARMV7M_EXCP_USAGE:
1708     case ARMV7M_EXCP_SVC:
1709     case ARMV7M_EXCP_PENDSV:
1710     case ARMV7M_EXCP_SYSTICK:
1711         /* Banked exceptions */
1712         return attrs.secure;
1713     case ARMV7M_EXCP_BUS:
1714         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1715         if (!attrs.secure &&
1716             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1717             return -1;
1718         }
1719         return M_REG_NS;
1720     case ARMV7M_EXCP_SECURE:
1721         /* Not banked, RAZ/WI from nonsecure */
1722         if (!attrs.secure) {
1723             return -1;
1724         }
1725         return M_REG_NS;
1726     case ARMV7M_EXCP_DEBUG:
1727         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1728         return M_REG_NS;
1729     case 8 ... 10:
1730     case 13:
1731         /* RES0 */
1732         return -1;
1733     default:
1734         /* Not reachable due to decode of SHPR register addresses */
1735         g_assert_not_reached();
1736     }
1737 }
1738 
1739 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1740                                     uint64_t *data, unsigned size,
1741                                     MemTxAttrs attrs)
1742 {
1743     NVICState *s = (NVICState *)opaque;
1744     uint32_t offset = addr;
1745     unsigned i, startvec, end;
1746     uint32_t val;
1747 
1748     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1749         /* Generate BusFault for unprivileged accesses */
1750         return MEMTX_ERROR;
1751     }
1752 
1753     switch (offset) {
1754     /* reads of set and clear both return the status */
1755     case 0x100 ... 0x13f: /* NVIC Set enable */
1756         offset += 0x80;
1757         /* fall through */
1758     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1759         val = 0;
1760         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1761 
1762         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1763             if (s->vectors[startvec + i].enabled &&
1764                 (attrs.secure || s->itns[startvec + i])) {
1765                 val |= (1 << i);
1766             }
1767         }
1768         break;
1769     case 0x200 ... 0x23f: /* NVIC Set pend */
1770         offset += 0x80;
1771         /* fall through */
1772     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1773         val = 0;
1774         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1775         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1776             if (s->vectors[startvec + i].pending &&
1777                 (attrs.secure || s->itns[startvec + i])) {
1778                 val |= (1 << i);
1779             }
1780         }
1781         break;
1782     case 0x300 ... 0x33f: /* NVIC Active */
1783         val = 0;
1784         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1785 
1786         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1787             if (s->vectors[startvec + i].active &&
1788                 (attrs.secure || s->itns[startvec + i])) {
1789                 val |= (1 << i);
1790             }
1791         }
1792         break;
1793     case 0x400 ... 0x5ef: /* NVIC Priority */
1794         val = 0;
1795         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1796 
1797         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1798             if (attrs.secure || s->itns[startvec + i]) {
1799                 val |= s->vectors[startvec + i].prio << (8 * i);
1800             }
1801         }
1802         break;
1803     case 0xd18: /* System Handler Priority (SHPR1) */
1804         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1805             val = 0;
1806             break;
1807         }
1808         /* fall through */
1809     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1810         val = 0;
1811         for (i = 0; i < size; i++) {
1812             unsigned hdlidx = (offset - 0xd14) + i;
1813             int sbank = shpr_bank(s, hdlidx, attrs);
1814 
1815             if (sbank < 0) {
1816                 continue;
1817             }
1818             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1819         }
1820         break;
1821     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1822         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1823             val = 0;
1824             break;
1825         };
1826         /* The BFSR bits [15:8] are shared between security states
1827          * and we store them in the NS copy
1828          */
1829         val = s->cpu->env.v7m.cfsr[attrs.secure];
1830         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1831         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1832         break;
1833     case 0xfe0 ... 0xfff: /* ID.  */
1834         if (offset & 3) {
1835             val = 0;
1836         } else {
1837             val = nvic_id[(offset - 0xfe0) >> 2];
1838         }
1839         break;
1840     default:
1841         if (size == 4) {
1842             val = nvic_readl(s, offset, attrs);
1843         } else {
1844             qemu_log_mask(LOG_GUEST_ERROR,
1845                           "NVIC: Bad read of size %d at offset 0x%x\n",
1846                           size, offset);
1847             val = 0;
1848         }
1849     }
1850 
1851     trace_nvic_sysreg_read(addr, val, size);
1852     *data = val;
1853     return MEMTX_OK;
1854 }
1855 
1856 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1857                                      uint64_t value, unsigned size,
1858                                      MemTxAttrs attrs)
1859 {
1860     NVICState *s = (NVICState *)opaque;
1861     uint32_t offset = addr;
1862     unsigned i, startvec, end;
1863     unsigned setval = 0;
1864 
1865     trace_nvic_sysreg_write(addr, value, size);
1866 
1867     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1868         /* Generate BusFault for unprivileged accesses */
1869         return MEMTX_ERROR;
1870     }
1871 
1872     switch (offset) {
1873     case 0x100 ... 0x13f: /* NVIC Set enable */
1874         offset += 0x80;
1875         setval = 1;
1876         /* fall through */
1877     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1878         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1879 
1880         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1881             if (value & (1 << i) &&
1882                 (attrs.secure || s->itns[startvec + i])) {
1883                 s->vectors[startvec + i].enabled = setval;
1884             }
1885         }
1886         nvic_irq_update(s);
1887         return MEMTX_OK;
1888     case 0x200 ... 0x23f: /* NVIC Set pend */
1889         /* the special logic in armv7m_nvic_set_pending()
1890          * is not needed since IRQs are never escalated
1891          */
1892         offset += 0x80;
1893         setval = 1;
1894         /* fall through */
1895     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1896         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1897 
1898         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1899             if (value & (1 << i) &&
1900                 (attrs.secure || s->itns[startvec + i])) {
1901                 s->vectors[startvec + i].pending = setval;
1902             }
1903         }
1904         nvic_irq_update(s);
1905         return MEMTX_OK;
1906     case 0x300 ... 0x33f: /* NVIC Active */
1907         return MEMTX_OK; /* R/O */
1908     case 0x400 ... 0x5ef: /* NVIC Priority */
1909         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1910 
1911         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1912             if (attrs.secure || s->itns[startvec + i]) {
1913                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1914             }
1915         }
1916         nvic_irq_update(s);
1917         return MEMTX_OK;
1918     case 0xd18: /* System Handler Priority (SHPR1) */
1919         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1920             return MEMTX_OK;
1921         }
1922         /* fall through */
1923     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1924         for (i = 0; i < size; i++) {
1925             unsigned hdlidx = (offset - 0xd14) + i;
1926             int newprio = extract32(value, i * 8, 8);
1927             int sbank = shpr_bank(s, hdlidx, attrs);
1928 
1929             if (sbank < 0) {
1930                 continue;
1931             }
1932             set_prio(s, hdlidx, sbank, newprio);
1933         }
1934         nvic_irq_update(s);
1935         return MEMTX_OK;
1936     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1937         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1938             return MEMTX_OK;
1939         }
1940         /* All bits are W1C, so construct 32 bit value with 0s in
1941          * the parts not written by the access size
1942          */
1943         value <<= ((offset - 0xd28) * 8);
1944 
1945         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1946         if (attrs.secure) {
1947             /* The BFSR bits [15:8] are shared between security states
1948              * and we store them in the NS copy.
1949              */
1950             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1951         }
1952         return MEMTX_OK;
1953     }
1954     if (size == 4) {
1955         nvic_writel(s, offset, value, attrs);
1956         return MEMTX_OK;
1957     }
1958     qemu_log_mask(LOG_GUEST_ERROR,
1959                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1960     /* This is UNPREDICTABLE; treat as RAZ/WI */
1961     return MEMTX_OK;
1962 }
1963 
1964 static const MemoryRegionOps nvic_sysreg_ops = {
1965     .read_with_attrs = nvic_sysreg_read,
1966     .write_with_attrs = nvic_sysreg_write,
1967     .endianness = DEVICE_NATIVE_ENDIAN,
1968 };
1969 
1970 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1971                                         uint64_t value, unsigned size,
1972                                         MemTxAttrs attrs)
1973 {
1974     MemoryRegion *mr = opaque;
1975 
1976     if (attrs.secure) {
1977         /* S accesses to the alias act like NS accesses to the real region */
1978         attrs.secure = 0;
1979         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1980     } else {
1981         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1982         if (attrs.user) {
1983             return MEMTX_ERROR;
1984         }
1985         return MEMTX_OK;
1986     }
1987 }
1988 
1989 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1990                                        uint64_t *data, unsigned size,
1991                                        MemTxAttrs attrs)
1992 {
1993     MemoryRegion *mr = opaque;
1994 
1995     if (attrs.secure) {
1996         /* S accesses to the alias act like NS accesses to the real region */
1997         attrs.secure = 0;
1998         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1999     } else {
2000         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2001         if (attrs.user) {
2002             return MEMTX_ERROR;
2003         }
2004         *data = 0;
2005         return MEMTX_OK;
2006     }
2007 }
2008 
2009 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2010     .read_with_attrs = nvic_sysreg_ns_read,
2011     .write_with_attrs = nvic_sysreg_ns_write,
2012     .endianness = DEVICE_NATIVE_ENDIAN,
2013 };
2014 
2015 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2016                                       uint64_t value, unsigned size,
2017                                       MemTxAttrs attrs)
2018 {
2019     NVICState *s = opaque;
2020     MemoryRegion *mr;
2021 
2022     /* Direct the access to the correct systick */
2023     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2024     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2025 }
2026 
2027 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2028                                      uint64_t *data, unsigned size,
2029                                      MemTxAttrs attrs)
2030 {
2031     NVICState *s = opaque;
2032     MemoryRegion *mr;
2033 
2034     /* Direct the access to the correct systick */
2035     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2036     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2037 }
2038 
2039 static const MemoryRegionOps nvic_systick_ops = {
2040     .read_with_attrs = nvic_systick_read,
2041     .write_with_attrs = nvic_systick_write,
2042     .endianness = DEVICE_NATIVE_ENDIAN,
2043 };
2044 
2045 static int nvic_post_load(void *opaque, int version_id)
2046 {
2047     NVICState *s = opaque;
2048     unsigned i;
2049     int resetprio;
2050 
2051     /* Check for out of range priority settings */
2052     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2053 
2054     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2055         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2056         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2057         return 1;
2058     }
2059     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2060         if (s->vectors[i].prio & ~0xff) {
2061             return 1;
2062         }
2063     }
2064 
2065     nvic_recompute_state(s);
2066 
2067     return 0;
2068 }
2069 
2070 static const VMStateDescription vmstate_VecInfo = {
2071     .name = "armv7m_nvic_info",
2072     .version_id = 1,
2073     .minimum_version_id = 1,
2074     .fields = (VMStateField[]) {
2075         VMSTATE_INT16(prio, VecInfo),
2076         VMSTATE_UINT8(enabled, VecInfo),
2077         VMSTATE_UINT8(pending, VecInfo),
2078         VMSTATE_UINT8(active, VecInfo),
2079         VMSTATE_UINT8(level, VecInfo),
2080         VMSTATE_END_OF_LIST()
2081     }
2082 };
2083 
2084 static bool nvic_security_needed(void *opaque)
2085 {
2086     NVICState *s = opaque;
2087 
2088     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2089 }
2090 
2091 static int nvic_security_post_load(void *opaque, int version_id)
2092 {
2093     NVICState *s = opaque;
2094     int i;
2095 
2096     /* Check for out of range priority settings */
2097     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2098         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2099         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2100          * if the CPU state has been migrated yet; a mismatch won't
2101          * cause the emulation to blow up, though.
2102          */
2103         return 1;
2104     }
2105     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2106         if (s->sec_vectors[i].prio & ~0xff) {
2107             return 1;
2108         }
2109     }
2110     return 0;
2111 }
2112 
2113 static const VMStateDescription vmstate_nvic_security = {
2114     .name = "armv7m_nvic/m-security",
2115     .version_id = 1,
2116     .minimum_version_id = 1,
2117     .needed = nvic_security_needed,
2118     .post_load = &nvic_security_post_load,
2119     .fields = (VMStateField[]) {
2120         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2121                              vmstate_VecInfo, VecInfo),
2122         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2123         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2124         VMSTATE_END_OF_LIST()
2125     }
2126 };
2127 
2128 static const VMStateDescription vmstate_nvic = {
2129     .name = "armv7m_nvic",
2130     .version_id = 4,
2131     .minimum_version_id = 4,
2132     .post_load = &nvic_post_load,
2133     .fields = (VMStateField[]) {
2134         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2135                              vmstate_VecInfo, VecInfo),
2136         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2137         VMSTATE_END_OF_LIST()
2138     },
2139     .subsections = (const VMStateDescription*[]) {
2140         &vmstate_nvic_security,
2141         NULL
2142     }
2143 };
2144 
2145 static Property props_nvic[] = {
2146     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2147     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2148     DEFINE_PROP_END_OF_LIST()
2149 };
2150 
2151 static void armv7m_nvic_reset(DeviceState *dev)
2152 {
2153     int resetprio;
2154     NVICState *s = NVIC(dev);
2155 
2156     memset(s->vectors, 0, sizeof(s->vectors));
2157     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2158     s->prigroup[M_REG_NS] = 0;
2159     s->prigroup[M_REG_S] = 0;
2160 
2161     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2162     /* MEM, BUS, and USAGE are enabled through
2163      * the System Handler Control register
2164      */
2165     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2166     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2167     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2168     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2169 
2170     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2171     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2172     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2173     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2174 
2175     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2176         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2177         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2178         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2179         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2180 
2181         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2182         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2183         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2184         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2185     } else {
2186         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2187     }
2188 
2189     /* Strictly speaking the reset handler should be enabled.
2190      * However, we don't simulate soft resets through the NVIC,
2191      * and the reset vector should never be pended.
2192      * So we leave it disabled to catch logic errors.
2193      */
2194 
2195     s->exception_prio = NVIC_NOEXC_PRIO;
2196     s->vectpending = 0;
2197     s->vectpending_is_s_banked = false;
2198     s->vectpending_prio = NVIC_NOEXC_PRIO;
2199 
2200     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2201         memset(s->itns, 0, sizeof(s->itns));
2202     } else {
2203         /* This state is constant and not guest accessible in a non-security
2204          * NVIC; we set the bits to true to avoid having to do a feature
2205          * bit check in the NVIC enable/pend/etc register accessors.
2206          */
2207         int i;
2208 
2209         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2210             s->itns[i] = true;
2211         }
2212     }
2213 }
2214 
2215 static void nvic_systick_trigger(void *opaque, int n, int level)
2216 {
2217     NVICState *s = opaque;
2218 
2219     if (level) {
2220         /* SysTick just asked us to pend its exception.
2221          * (This is different from an external interrupt line's
2222          * behaviour.)
2223          * n == 0 : NonSecure systick
2224          * n == 1 : Secure systick
2225          */
2226         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2227     }
2228 }
2229 
2230 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2231 {
2232     NVICState *s = NVIC(dev);
2233     Error *err = NULL;
2234     int regionlen;
2235 
2236     s->cpu = ARM_CPU(qemu_get_cpu(0));
2237 
2238     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2239         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2240         return;
2241     }
2242 
2243     if (s->num_irq > NVIC_MAX_IRQ) {
2244         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2245         return;
2246     }
2247 
2248     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2249 
2250     /* include space for internal exception vectors */
2251     s->num_irq += NVIC_FIRST_IRQ;
2252 
2253     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2254                              "realized", &err);
2255     if (err != NULL) {
2256         error_propagate(errp, err);
2257         return;
2258     }
2259     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2260                        qdev_get_gpio_in_named(dev, "systick-trigger",
2261                                               M_REG_NS));
2262 
2263     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2264         /* We couldn't init the secure systick device in instance_init
2265          * as we didn't know then if the CPU had the security extensions;
2266          * so we have to do it here.
2267          */
2268         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2269                           TYPE_SYSTICK);
2270         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2271 
2272         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2273                                  "realized", &err);
2274         if (err != NULL) {
2275             error_propagate(errp, err);
2276             return;
2277         }
2278         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2279                            qdev_get_gpio_in_named(dev, "systick-trigger",
2280                                                   M_REG_S));
2281     }
2282 
2283     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2284      * and looks like this:
2285      *  0x004 - ICTR
2286      *  0x010 - 0xff - systick
2287      *  0x100..0x7ec - NVIC
2288      *  0x7f0..0xcff - Reserved
2289      *  0xd00..0xd3c - SCS registers
2290      *  0xd40..0xeff - Reserved or Not implemented
2291      *  0xf00 - STIR
2292      *
2293      * Some registers within this space are banked between security states.
2294      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2295      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2296      * to the main SCS range, and non-secure accesses (including when
2297      * the security extension is not implemented) are RAZ/WI.
2298      * Note that both the main SCS range and the alias range are defined
2299      * to be exempt from memory attribution (R_BLJT) and so the memory
2300      * transaction attribute always matches the current CPU security
2301      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2302      * wrappers we change attrs.secure to indicate the NS access; so
2303      * generally code determining which banked register to use should
2304      * use attrs.secure; code determining actual behaviour of the system
2305      * should use env->v7m.secure.
2306      */
2307     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2308     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2309     /* The system register region goes at the bottom of the priority
2310      * stack as it covers the whole page.
2311      */
2312     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2313                           "nvic_sysregs", 0x1000);
2314     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2315 
2316     memory_region_init_io(&s->systickmem, OBJECT(s),
2317                           &nvic_systick_ops, s,
2318                           "nvic_systick", 0xe0);
2319 
2320     memory_region_add_subregion_overlap(&s->container, 0x10,
2321                                         &s->systickmem, 1);
2322 
2323     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2324         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2325                               &nvic_sysreg_ns_ops, &s->sysregmem,
2326                               "nvic_sysregs_ns", 0x1000);
2327         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2328         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2329                               &nvic_sysreg_ns_ops, &s->systickmem,
2330                               "nvic_systick_ns", 0xe0);
2331         memory_region_add_subregion_overlap(&s->container, 0x20010,
2332                                             &s->systick_ns_mem, 1);
2333     }
2334 
2335     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2336 }
2337 
2338 static void armv7m_nvic_instance_init(Object *obj)
2339 {
2340     /* We have a different default value for the num-irq property
2341      * than our superclass. This function runs after qdev init
2342      * has set the defaults from the Property array and before
2343      * any user-specified property setting, so just modify the
2344      * value in the GICState struct.
2345      */
2346     DeviceState *dev = DEVICE(obj);
2347     NVICState *nvic = NVIC(obj);
2348     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2349 
2350     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2351                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2352     /* We can't initialize the secure systick here, as we don't know
2353      * yet if we need it.
2354      */
2355 
2356     sysbus_init_irq(sbd, &nvic->excpout);
2357     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2358     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2359                             M_REG_NUM_BANKS);
2360 }
2361 
2362 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2363 {
2364     DeviceClass *dc = DEVICE_CLASS(klass);
2365 
2366     dc->vmsd  = &vmstate_nvic;
2367     dc->props = props_nvic;
2368     dc->reset = armv7m_nvic_reset;
2369     dc->realize = armv7m_nvic_realize;
2370 }
2371 
2372 static const TypeInfo armv7m_nvic_info = {
2373     .name          = TYPE_NVIC,
2374     .parent        = TYPE_SYS_BUS_DEVICE,
2375     .instance_init = armv7m_nvic_instance_init,
2376     .instance_size = sizeof(NVICState),
2377     .class_init    = armv7m_nvic_class_init,
2378     .class_size    = sizeof(SysBusDeviceClass),
2379 };
2380 
2381 static void armv7m_nvic_register_types(void)
2382 {
2383     type_register_static(&armv7m_nvic_info);
2384 }
2385 
2386 type_init(armv7m_nvic_register_types)
2387