xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 709395f8)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
424 
425     if (secure) {
426         assert(exc_is_banked(irq));
427         s->sec_vectors[irq].prio = prio;
428     } else {
429         s->vectors[irq].prio = prio;
430     }
431 
432     trace_nvic_set_prio(irq, secure, prio);
433 }
434 
435 /* Return the current raw priority register value.
436  * secure indicates the bank to use for banked exceptions (we assert if
437  * we are passed secure=true for a non-banked exception).
438  */
439 static int get_prio(NVICState *s, unsigned irq, bool secure)
440 {
441     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442     assert(irq < s->num_irq);
443 
444     if (secure) {
445         assert(exc_is_banked(irq));
446         return s->sec_vectors[irq].prio;
447     } else {
448         return s->vectors[irq].prio;
449     }
450 }
451 
452 /* Recompute state and assert irq line accordingly.
453  * Must be called after changes to:
454  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
455  *  prigroup
456  */
457 static void nvic_irq_update(NVICState *s)
458 {
459     int lvl;
460     int pend_prio;
461 
462     nvic_recompute_state(s);
463     pend_prio = nvic_pending_prio(s);
464 
465     /* Raise NVIC output if this IRQ would be taken, except that we
466      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468      * to those CPU registers don't cause us to recalculate the NVIC
469      * pending info.
470      */
471     lvl = (pend_prio < s->exception_prio);
472     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473     qemu_set_irq(s->excpout, lvl);
474 }
475 
476 /**
477  * armv7m_nvic_clear_pending: mark the specified exception as not pending
478  * @opaque: the NVIC
479  * @irq: the exception number to mark as not pending
480  * @secure: false for non-banked exceptions or for the nonsecure
481  * version of a banked exception, true for the secure version of a banked
482  * exception.
483  *
484  * Marks the specified exception as not pending. Note that we will assert()
485  * if @secure is true and @irq does not specify one of the fixed set
486  * of architecturally banked exceptions.
487  */
488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
489 {
490     NVICState *s = (NVICState *)opaque;
491     VecInfo *vec;
492 
493     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
494 
495     if (secure) {
496         assert(exc_is_banked(irq));
497         vec = &s->sec_vectors[irq];
498     } else {
499         vec = &s->vectors[irq];
500     }
501     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
502     if (vec->pending) {
503         vec->pending = 0;
504         nvic_irq_update(s);
505     }
506 }
507 
508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509                                        bool derived)
510 {
511     /* Pend an exception, including possibly escalating it to HardFault.
512      *
513      * This function handles both "normal" pending of interrupts and
514      * exceptions, and also derived exceptions (ones which occur as
515      * a result of trying to take some other exception).
516      *
517      * If derived == true, the caller guarantees that we are part way through
518      * trying to take an exception (but have not yet called
519      * armv7m_nvic_acknowledge_irq() to make it active), and so:
520      *  - s->vectpending is the "original exception" we were trying to take
521      *  - irq is the "derived exception"
522      *  - nvic_exec_prio(s) gives the priority before exception entry
523      * Here we handle the prioritization logic which the pseudocode puts
524      * in the DerivedLateArrival() function.
525      */
526 
527     NVICState *s = (NVICState *)opaque;
528     bool banked = exc_is_banked(irq);
529     VecInfo *vec;
530     bool targets_secure;
531 
532     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
533     assert(!secure || banked);
534 
535     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
536 
537     targets_secure = banked ? secure : exc_targets_secure(s, irq);
538 
539     trace_nvic_set_pending(irq, secure, targets_secure,
540                            derived, vec->enabled, vec->prio);
541 
542     if (derived) {
543         /* Derived exceptions are always synchronous. */
544         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
545 
546         if (irq == ARMV7M_EXCP_DEBUG &&
547             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548             /* DebugMonitorFault, but its priority is lower than the
549              * preempted exception priority: just ignore it.
550              */
551             return;
552         }
553 
554         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555             /* If this is a terminal exception (one which means we cannot
556              * take the original exception, like a failure to read its
557              * vector table entry), then we must take the derived exception.
558              * If the derived exception can't take priority over the
559              * original exception, then we go into Lockup.
560              *
561              * For QEMU, we rely on the fact that a derived exception is
562              * terminal if and only if it's reported to us as HardFault,
563              * which saves having to have an extra argument is_terminal
564              * that we'd only use in one place.
565              */
566             cpu_abort(&s->cpu->parent_obj,
567                       "Lockup: can't take terminal derived exception "
568                       "(original exception priority %d)\n",
569                       s->vectpending_prio);
570         }
571         /* We now continue with the same code as for a normal pending
572          * exception, which will cause us to pend the derived exception.
573          * We'll then take either the original or the derived exception
574          * based on which is higher priority by the usual mechanism
575          * for selecting the highest priority pending interrupt.
576          */
577     }
578 
579     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580         /* If a synchronous exception is pending then it may be
581          * escalated to HardFault if:
582          *  * it is equal or lower priority to current execution
583          *  * it is disabled
584          * (ie we need to take it immediately but we can't do so).
585          * Asynchronous exceptions (and interrupts) simply remain pending.
586          *
587          * For QEMU, we don't have any imprecise (asynchronous) faults,
588          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589          * synchronous.
590          * Debug exceptions are awkward because only Debug exceptions
591          * resulting from the BKPT instruction should be escalated,
592          * but we don't currently implement any Debug exceptions other
593          * than those that result from BKPT, so we treat all debug exceptions
594          * as needing escalation.
595          *
596          * This all means we can identify whether to escalate based only on
597          * the exception number and don't (yet) need the caller to explicitly
598          * tell us whether this exception is synchronous or not.
599          */
600         int running = nvic_exec_prio(s);
601         bool escalate = false;
602 
603         if (exc_group_prio(s, vec->prio, secure) >= running) {
604             trace_nvic_escalate_prio(irq, vec->prio, running);
605             escalate = true;
606         } else if (!vec->enabled) {
607             trace_nvic_escalate_disabled(irq);
608             escalate = true;
609         }
610 
611         if (escalate) {
612 
613             /* We need to escalate this exception to a synchronous HardFault.
614              * If BFHFNMINS is set then we escalate to the banked HF for
615              * the target security state of the original exception; otherwise
616              * we take a Secure HardFault.
617              */
618             irq = ARMV7M_EXCP_HARD;
619             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
620                 (targets_secure ||
621                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622                 vec = &s->sec_vectors[irq];
623             } else {
624                 vec = &s->vectors[irq];
625             }
626             if (running <= vec->prio) {
627                 /* We want to escalate to HardFault but we can't take the
628                  * synchronous HardFault at this point either. This is a
629                  * Lockup condition due to a guest bug. We don't model
630                  * Lockup, so report via cpu_abort() instead.
631                  */
632                 cpu_abort(&s->cpu->parent_obj,
633                           "Lockup: can't escalate %d to HardFault "
634                           "(current priority %d)\n", irq, running);
635             }
636 
637             /* HF may be banked but there is only one shared HFSR */
638             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
639         }
640     }
641 
642     if (!vec->pending) {
643         vec->pending = 1;
644         nvic_irq_update(s);
645     }
646 }
647 
648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
649 {
650     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
651 }
652 
653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
654 {
655     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
656 }
657 
658 /* Make pending IRQ active.  */
659 void armv7m_nvic_acknowledge_irq(void *opaque)
660 {
661     NVICState *s = (NVICState *)opaque;
662     CPUARMState *env = &s->cpu->env;
663     const int pending = s->vectpending;
664     const int running = nvic_exec_prio(s);
665     VecInfo *vec;
666 
667     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
668 
669     if (s->vectpending_is_s_banked) {
670         vec = &s->sec_vectors[pending];
671     } else {
672         vec = &s->vectors[pending];
673     }
674 
675     assert(vec->enabled);
676     assert(vec->pending);
677 
678     assert(s->vectpending_prio < running);
679 
680     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
681 
682     vec->active = 1;
683     vec->pending = 0;
684 
685     write_v7m_exception(env, s->vectpending);
686 
687     nvic_irq_update(s);
688 }
689 
690 void armv7m_nvic_get_pending_irq_info(void *opaque,
691                                       int *pirq, bool *ptargets_secure)
692 {
693     NVICState *s = (NVICState *)opaque;
694     const int pending = s->vectpending;
695     bool targets_secure;
696 
697     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
698 
699     if (s->vectpending_is_s_banked) {
700         targets_secure = true;
701     } else {
702         targets_secure = !exc_is_banked(pending) &&
703             exc_targets_secure(s, pending);
704     }
705 
706     trace_nvic_get_pending_irq_info(pending, targets_secure);
707 
708     *ptargets_secure = targets_secure;
709     *pirq = pending;
710 }
711 
712 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
713 {
714     NVICState *s = (NVICState *)opaque;
715     VecInfo *vec;
716     int ret;
717 
718     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
719 
720     if (secure && exc_is_banked(irq)) {
721         vec = &s->sec_vectors[irq];
722     } else {
723         vec = &s->vectors[irq];
724     }
725 
726     trace_nvic_complete_irq(irq, secure);
727 
728     if (!vec->active) {
729         /* Tell the caller this was an illegal exception return */
730         return -1;
731     }
732 
733     ret = nvic_rettobase(s);
734 
735     vec->active = 0;
736     if (vec->level) {
737         /* Re-pend the exception if it's still held high; only
738          * happens for extenal IRQs
739          */
740         assert(irq >= NVIC_FIRST_IRQ);
741         vec->pending = 1;
742     }
743 
744     nvic_irq_update(s);
745 
746     return ret;
747 }
748 
749 /* callback when external interrupt line is changed */
750 static void set_irq_level(void *opaque, int n, int level)
751 {
752     NVICState *s = opaque;
753     VecInfo *vec;
754 
755     n += NVIC_FIRST_IRQ;
756 
757     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
758 
759     trace_nvic_set_irq_level(n, level);
760 
761     /* The pending status of an external interrupt is
762      * latched on rising edge and exception handler return.
763      *
764      * Pulsing the IRQ will always run the handler
765      * once, and the handler will re-run until the
766      * level is low when the handler completes.
767      */
768     vec = &s->vectors[n];
769     if (level != vec->level) {
770         vec->level = level;
771         if (level) {
772             armv7m_nvic_set_pending(s, n, false);
773         }
774     }
775 }
776 
777 /* callback when external NMI line is changed */
778 static void nvic_nmi_trigger(void *opaque, int n, int level)
779 {
780     NVICState *s = opaque;
781 
782     trace_nvic_set_nmi_level(level);
783 
784     /*
785      * The architecture doesn't specify whether NMI should share
786      * the normal-interrupt behaviour of being resampled on
787      * exception handler return. We choose not to, so just
788      * set NMI pending here and don't track the current level.
789      */
790     if (level) {
791         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
792     }
793 }
794 
795 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
796 {
797     ARMCPU *cpu = s->cpu;
798     uint32_t val;
799 
800     switch (offset) {
801     case 4: /* Interrupt Control Type.  */
802         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
803             goto bad_offset;
804         }
805         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
806     case 0xc: /* CPPWR */
807         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
808             goto bad_offset;
809         }
810         /* We make the IMPDEF choice that nothing can ever go into a
811          * non-retentive power state, which allows us to RAZ/WI this.
812          */
813         return 0;
814     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
815     {
816         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
817         int i;
818 
819         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
820             goto bad_offset;
821         }
822         if (!attrs.secure) {
823             return 0;
824         }
825         val = 0;
826         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
827             if (s->itns[startvec + i]) {
828                 val |= (1 << i);
829             }
830         }
831         return val;
832     }
833     case 0xd00: /* CPUID Base.  */
834         return cpu->midr;
835     case 0xd04: /* Interrupt Control State (ICSR) */
836         /* VECTACTIVE */
837         val = cpu->env.v7m.exception;
838         /* VECTPENDING */
839         val |= (s->vectpending & 0xff) << 12;
840         /* ISRPENDING - set if any external IRQ is pending */
841         if (nvic_isrpending(s)) {
842             val |= (1 << 22);
843         }
844         /* RETTOBASE - set if only one handler is active */
845         if (nvic_rettobase(s)) {
846             val |= (1 << 11);
847         }
848         if (attrs.secure) {
849             /* PENDSTSET */
850             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
851                 val |= (1 << 26);
852             }
853             /* PENDSVSET */
854             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
855                 val |= (1 << 28);
856             }
857         } else {
858             /* PENDSTSET */
859             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
860                 val |= (1 << 26);
861             }
862             /* PENDSVSET */
863             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
864                 val |= (1 << 28);
865             }
866         }
867         /* NMIPENDSET */
868         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
869             && s->vectors[ARMV7M_EXCP_NMI].pending) {
870             val |= (1 << 31);
871         }
872         /* ISRPREEMPT: RES0 when halting debug not implemented */
873         /* STTNS: RES0 for the Main Extension */
874         return val;
875     case 0xd08: /* Vector Table Offset.  */
876         return cpu->env.v7m.vecbase[attrs.secure];
877     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
878         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
879         if (attrs.secure) {
880             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
881             val |= cpu->env.v7m.aircr;
882         } else {
883             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
884                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
885                  * security isn't supported then BFHFNMINS is RAO (and
886                  * the bit in env.v7m.aircr is always set).
887                  */
888                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
889             }
890         }
891         return val;
892     case 0xd10: /* System Control.  */
893         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
894             goto bad_offset;
895         }
896         return cpu->env.v7m.scr[attrs.secure];
897     case 0xd14: /* Configuration Control.  */
898         /* The BFHFNMIGN bit is the only non-banked bit; we
899          * keep it in the non-secure copy of the register.
900          */
901         val = cpu->env.v7m.ccr[attrs.secure];
902         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
903         return val;
904     case 0xd24: /* System Handler Control and State (SHCSR) */
905         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
906             goto bad_offset;
907         }
908         val = 0;
909         if (attrs.secure) {
910             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
911                 val |= (1 << 0);
912             }
913             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
914                 val |= (1 << 2);
915             }
916             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
917                 val |= (1 << 3);
918             }
919             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
920                 val |= (1 << 7);
921             }
922             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
923                 val |= (1 << 10);
924             }
925             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
926                 val |= (1 << 11);
927             }
928             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
929                 val |= (1 << 12);
930             }
931             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
932                 val |= (1 << 13);
933             }
934             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
935                 val |= (1 << 15);
936             }
937             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
938                 val |= (1 << 16);
939             }
940             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
941                 val |= (1 << 18);
942             }
943             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
944                 val |= (1 << 21);
945             }
946             /* SecureFault is not banked but is always RAZ/WI to NS */
947             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
948                 val |= (1 << 4);
949             }
950             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
951                 val |= (1 << 19);
952             }
953             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
954                 val |= (1 << 20);
955             }
956         } else {
957             if (s->vectors[ARMV7M_EXCP_MEM].active) {
958                 val |= (1 << 0);
959             }
960             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
961                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
962                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
963                     val |= (1 << 2);
964                 }
965                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
966                     val |= (1 << 21);
967                 }
968             }
969             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
970                 val |= (1 << 3);
971             }
972             if (s->vectors[ARMV7M_EXCP_SVC].active) {
973                 val |= (1 << 7);
974             }
975             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
976                 val |= (1 << 10);
977             }
978             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
979                 val |= (1 << 11);
980             }
981             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
982                 val |= (1 << 12);
983             }
984             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
985                 val |= (1 << 13);
986             }
987             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
988                 val |= (1 << 15);
989             }
990             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
991                 val |= (1 << 16);
992             }
993             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
994                 val |= (1 << 18);
995             }
996         }
997         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
998             if (s->vectors[ARMV7M_EXCP_BUS].active) {
999                 val |= (1 << 1);
1000             }
1001             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1002                 val |= (1 << 14);
1003             }
1004             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1005                 val |= (1 << 17);
1006             }
1007             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1008                 s->vectors[ARMV7M_EXCP_NMI].active) {
1009                 /* NMIACT is not present in v7M */
1010                 val |= (1 << 5);
1011             }
1012         }
1013 
1014         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1015         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1016             val |= (1 << 8);
1017         }
1018         return val;
1019     case 0xd2c: /* Hard Fault Status.  */
1020         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1021             goto bad_offset;
1022         }
1023         return cpu->env.v7m.hfsr;
1024     case 0xd30: /* Debug Fault Status.  */
1025         return cpu->env.v7m.dfsr;
1026     case 0xd34: /* MMFAR MemManage Fault Address */
1027         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1028             goto bad_offset;
1029         }
1030         return cpu->env.v7m.mmfar[attrs.secure];
1031     case 0xd38: /* Bus Fault Address.  */
1032         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1033             goto bad_offset;
1034         }
1035         return cpu->env.v7m.bfar;
1036     case 0xd3c: /* Aux Fault Status.  */
1037         /* TODO: Implement fault status registers.  */
1038         qemu_log_mask(LOG_UNIMP,
1039                       "Aux Fault status registers unimplemented\n");
1040         return 0;
1041     case 0xd40: /* PFR0.  */
1042         return cpu->id_pfr0;
1043     case 0xd44: /* PFR1.  */
1044         return cpu->id_pfr1;
1045     case 0xd48: /* DFR0.  */
1046         return cpu->id_dfr0;
1047     case 0xd4c: /* AFR0.  */
1048         return cpu->id_afr0;
1049     case 0xd50: /* MMFR0.  */
1050         return cpu->id_mmfr0;
1051     case 0xd54: /* MMFR1.  */
1052         return cpu->id_mmfr1;
1053     case 0xd58: /* MMFR2.  */
1054         return cpu->id_mmfr2;
1055     case 0xd5c: /* MMFR3.  */
1056         return cpu->id_mmfr3;
1057     case 0xd60: /* ISAR0.  */
1058         return cpu->isar.id_isar0;
1059     case 0xd64: /* ISAR1.  */
1060         return cpu->isar.id_isar1;
1061     case 0xd68: /* ISAR2.  */
1062         return cpu->isar.id_isar2;
1063     case 0xd6c: /* ISAR3.  */
1064         return cpu->isar.id_isar3;
1065     case 0xd70: /* ISAR4.  */
1066         return cpu->isar.id_isar4;
1067     case 0xd74: /* ISAR5.  */
1068         return cpu->isar.id_isar5;
1069     case 0xd78: /* CLIDR */
1070         return cpu->clidr;
1071     case 0xd7c: /* CTR */
1072         return cpu->ctr;
1073     case 0xd80: /* CSSIDR */
1074     {
1075         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1076         return cpu->ccsidr[idx];
1077     }
1078     case 0xd84: /* CSSELR */
1079         return cpu->env.v7m.csselr[attrs.secure];
1080     /* TODO: Implement debug registers.  */
1081     case 0xd90: /* MPU_TYPE */
1082         /* Unified MPU; if the MPU is not present this value is zero */
1083         return cpu->pmsav7_dregion << 8;
1084         break;
1085     case 0xd94: /* MPU_CTRL */
1086         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1087     case 0xd98: /* MPU_RNR */
1088         return cpu->env.pmsav7.rnr[attrs.secure];
1089     case 0xd9c: /* MPU_RBAR */
1090     case 0xda4: /* MPU_RBAR_A1 */
1091     case 0xdac: /* MPU_RBAR_A2 */
1092     case 0xdb4: /* MPU_RBAR_A3 */
1093     {
1094         int region = cpu->env.pmsav7.rnr[attrs.secure];
1095 
1096         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1097             /* PMSAv8M handling of the aliases is different from v7M:
1098              * aliases A1, A2, A3 override the low two bits of the region
1099              * number in MPU_RNR, and there is no 'region' field in the
1100              * RBAR register.
1101              */
1102             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1103             if (aliasno) {
1104                 region = deposit32(region, 0, 2, aliasno);
1105             }
1106             if (region >= cpu->pmsav7_dregion) {
1107                 return 0;
1108             }
1109             return cpu->env.pmsav8.rbar[attrs.secure][region];
1110         }
1111 
1112         if (region >= cpu->pmsav7_dregion) {
1113             return 0;
1114         }
1115         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1116     }
1117     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1118     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1119     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1120     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1121     {
1122         int region = cpu->env.pmsav7.rnr[attrs.secure];
1123 
1124         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1125             /* PMSAv8M handling of the aliases is different from v7M:
1126              * aliases A1, A2, A3 override the low two bits of the region
1127              * number in MPU_RNR.
1128              */
1129             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1130             if (aliasno) {
1131                 region = deposit32(region, 0, 2, aliasno);
1132             }
1133             if (region >= cpu->pmsav7_dregion) {
1134                 return 0;
1135             }
1136             return cpu->env.pmsav8.rlar[attrs.secure][region];
1137         }
1138 
1139         if (region >= cpu->pmsav7_dregion) {
1140             return 0;
1141         }
1142         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1143             (cpu->env.pmsav7.drsr[region] & 0xffff);
1144     }
1145     case 0xdc0: /* MPU_MAIR0 */
1146         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147             goto bad_offset;
1148         }
1149         return cpu->env.pmsav8.mair0[attrs.secure];
1150     case 0xdc4: /* MPU_MAIR1 */
1151         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1152             goto bad_offset;
1153         }
1154         return cpu->env.pmsav8.mair1[attrs.secure];
1155     case 0xdd0: /* SAU_CTRL */
1156         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157             goto bad_offset;
1158         }
1159         if (!attrs.secure) {
1160             return 0;
1161         }
1162         return cpu->env.sau.ctrl;
1163     case 0xdd4: /* SAU_TYPE */
1164         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1165             goto bad_offset;
1166         }
1167         if (!attrs.secure) {
1168             return 0;
1169         }
1170         return cpu->sau_sregion;
1171     case 0xdd8: /* SAU_RNR */
1172         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173             goto bad_offset;
1174         }
1175         if (!attrs.secure) {
1176             return 0;
1177         }
1178         return cpu->env.sau.rnr;
1179     case 0xddc: /* SAU_RBAR */
1180     {
1181         int region = cpu->env.sau.rnr;
1182 
1183         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1184             goto bad_offset;
1185         }
1186         if (!attrs.secure) {
1187             return 0;
1188         }
1189         if (region >= cpu->sau_sregion) {
1190             return 0;
1191         }
1192         return cpu->env.sau.rbar[region];
1193     }
1194     case 0xde0: /* SAU_RLAR */
1195     {
1196         int region = cpu->env.sau.rnr;
1197 
1198         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1199             goto bad_offset;
1200         }
1201         if (!attrs.secure) {
1202             return 0;
1203         }
1204         if (region >= cpu->sau_sregion) {
1205             return 0;
1206         }
1207         return cpu->env.sau.rlar[region];
1208     }
1209     case 0xde4: /* SFSR */
1210         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1211             goto bad_offset;
1212         }
1213         if (!attrs.secure) {
1214             return 0;
1215         }
1216         return cpu->env.v7m.sfsr;
1217     case 0xde8: /* SFAR */
1218         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1219             goto bad_offset;
1220         }
1221         if (!attrs.secure) {
1222             return 0;
1223         }
1224         return cpu->env.v7m.sfar;
1225     default:
1226     bad_offset:
1227         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1228         return 0;
1229     }
1230 }
1231 
1232 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1233                         MemTxAttrs attrs)
1234 {
1235     ARMCPU *cpu = s->cpu;
1236 
1237     switch (offset) {
1238     case 0xc: /* CPPWR */
1239         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1240             goto bad_offset;
1241         }
1242         /* Make the IMPDEF choice to RAZ/WI this. */
1243         break;
1244     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1245     {
1246         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1247         int i;
1248 
1249         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1250             goto bad_offset;
1251         }
1252         if (!attrs.secure) {
1253             break;
1254         }
1255         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1256             s->itns[startvec + i] = (value >> i) & 1;
1257         }
1258         nvic_irq_update(s);
1259         break;
1260     }
1261     case 0xd04: /* Interrupt Control State (ICSR) */
1262         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1263             if (value & (1 << 31)) {
1264                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1265             } else if (value & (1 << 30) &&
1266                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1267                 /* PENDNMICLR didn't exist in v7M */
1268                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1269             }
1270         }
1271         if (value & (1 << 28)) {
1272             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1273         } else if (value & (1 << 27)) {
1274             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1275         }
1276         if (value & (1 << 26)) {
1277             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1278         } else if (value & (1 << 25)) {
1279             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1280         }
1281         break;
1282     case 0xd08: /* Vector Table Offset.  */
1283         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1284         break;
1285     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1286         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1287             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1288                 if (attrs.secure ||
1289                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1290                     qemu_irq_pulse(s->sysresetreq);
1291                 }
1292             }
1293             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1294                 qemu_log_mask(LOG_GUEST_ERROR,
1295                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1296                               "is UNPREDICTABLE\n");
1297             }
1298             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1299                 /* NB: this bit is RES0 in v8M */
1300                 qemu_log_mask(LOG_GUEST_ERROR,
1301                               "Setting VECTRESET when not in DEBUG mode "
1302                               "is UNPREDICTABLE\n");
1303             }
1304             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1305                 s->prigroup[attrs.secure] =
1306                     extract32(value,
1307                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1308                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1309             }
1310             if (attrs.secure) {
1311                 /* These bits are only writable by secure */
1312                 cpu->env.v7m.aircr = value &
1313                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1314                      R_V7M_AIRCR_BFHFNMINS_MASK |
1315                      R_V7M_AIRCR_PRIS_MASK);
1316                 /* BFHFNMINS changes the priority of Secure HardFault, and
1317                  * allows a pending Non-secure HardFault to preempt (which
1318                  * we implement by marking it enabled).
1319                  */
1320                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1321                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1322                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1323                 } else {
1324                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1325                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1326                 }
1327             }
1328             nvic_irq_update(s);
1329         }
1330         break;
1331     case 0xd10: /* System Control.  */
1332         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1333             goto bad_offset;
1334         }
1335         /* We don't implement deep-sleep so these bits are RAZ/WI.
1336          * The other bits in the register are banked.
1337          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1338          * is architecturally permitted.
1339          */
1340         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1341         cpu->env.v7m.scr[attrs.secure] = value;
1342         break;
1343     case 0xd14: /* Configuration Control.  */
1344         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1345             goto bad_offset;
1346         }
1347 
1348         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1349         value &= (R_V7M_CCR_STKALIGN_MASK |
1350                   R_V7M_CCR_BFHFNMIGN_MASK |
1351                   R_V7M_CCR_DIV_0_TRP_MASK |
1352                   R_V7M_CCR_UNALIGN_TRP_MASK |
1353                   R_V7M_CCR_USERSETMPEND_MASK |
1354                   R_V7M_CCR_NONBASETHRDENA_MASK);
1355 
1356         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1357             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1358             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1359                 | R_V7M_CCR_STKALIGN_MASK;
1360         }
1361         if (attrs.secure) {
1362             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1363             cpu->env.v7m.ccr[M_REG_NS] =
1364                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1365                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1366             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1367         }
1368 
1369         cpu->env.v7m.ccr[attrs.secure] = value;
1370         break;
1371     case 0xd24: /* System Handler Control and State (SHCSR) */
1372         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1373             goto bad_offset;
1374         }
1375         if (attrs.secure) {
1376             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1377             /* Secure HardFault active bit cannot be written */
1378             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1379             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1380             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1381                 (value & (1 << 10)) != 0;
1382             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1383                 (value & (1 << 11)) != 0;
1384             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1385                 (value & (1 << 12)) != 0;
1386             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1387             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1388             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1389             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1390             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1391                 (value & (1 << 18)) != 0;
1392             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1393             /* SecureFault not banked, but RAZ/WI to NS */
1394             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1395             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1396             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1397         } else {
1398             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1399             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1400                 /* HARDFAULTPENDED is not present in v7M */
1401                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1402             }
1403             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1404             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1405             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1406             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1407             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1408             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1409             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1410             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1411             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1412         }
1413         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1414             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1415             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1416             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1417         }
1418         /* NMIACT can only be written if the write is of a zero, with
1419          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1420          */
1421         if (!attrs.secure && cpu->env.v7m.secure &&
1422             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1423             (value & (1 << 5)) == 0) {
1424             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1425         }
1426         /* HARDFAULTACT can only be written if the write is of a zero
1427          * to the non-secure HardFault state by the CPU in secure state.
1428          * The only case where we can be targeting the non-secure HF state
1429          * when in secure state is if this is a write via the NS alias
1430          * and BFHFNMINS is 1.
1431          */
1432         if (!attrs.secure && cpu->env.v7m.secure &&
1433             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1434             (value & (1 << 2)) == 0) {
1435             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1436         }
1437 
1438         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1439         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1440         nvic_irq_update(s);
1441         break;
1442     case 0xd2c: /* Hard Fault Status.  */
1443         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1444             goto bad_offset;
1445         }
1446         cpu->env.v7m.hfsr &= ~value; /* W1C */
1447         break;
1448     case 0xd30: /* Debug Fault Status.  */
1449         cpu->env.v7m.dfsr &= ~value; /* W1C */
1450         break;
1451     case 0xd34: /* Mem Manage Address.  */
1452         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1453             goto bad_offset;
1454         }
1455         cpu->env.v7m.mmfar[attrs.secure] = value;
1456         return;
1457     case 0xd38: /* Bus Fault Address.  */
1458         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1459             goto bad_offset;
1460         }
1461         cpu->env.v7m.bfar = value;
1462         return;
1463     case 0xd3c: /* Aux Fault Status.  */
1464         qemu_log_mask(LOG_UNIMP,
1465                       "NVIC: Aux fault status registers unimplemented\n");
1466         break;
1467     case 0xd84: /* CSSELR */
1468         if (!arm_v7m_csselr_razwi(cpu)) {
1469             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1470         }
1471         break;
1472     case 0xd90: /* MPU_TYPE */
1473         return; /* RO */
1474     case 0xd94: /* MPU_CTRL */
1475         if ((value &
1476              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1477             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1478             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1479                           "UNPREDICTABLE\n");
1480         }
1481         cpu->env.v7m.mpu_ctrl[attrs.secure]
1482             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1483                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1484                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1485         tlb_flush(CPU(cpu));
1486         break;
1487     case 0xd98: /* MPU_RNR */
1488         if (value >= cpu->pmsav7_dregion) {
1489             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1490                           PRIu32 "/%" PRIu32 "\n",
1491                           value, cpu->pmsav7_dregion);
1492         } else {
1493             cpu->env.pmsav7.rnr[attrs.secure] = value;
1494         }
1495         break;
1496     case 0xd9c: /* MPU_RBAR */
1497     case 0xda4: /* MPU_RBAR_A1 */
1498     case 0xdac: /* MPU_RBAR_A2 */
1499     case 0xdb4: /* MPU_RBAR_A3 */
1500     {
1501         int region;
1502 
1503         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1504             /* PMSAv8M handling of the aliases is different from v7M:
1505              * aliases A1, A2, A3 override the low two bits of the region
1506              * number in MPU_RNR, and there is no 'region' field in the
1507              * RBAR register.
1508              */
1509             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1510 
1511             region = cpu->env.pmsav7.rnr[attrs.secure];
1512             if (aliasno) {
1513                 region = deposit32(region, 0, 2, aliasno);
1514             }
1515             if (region >= cpu->pmsav7_dregion) {
1516                 return;
1517             }
1518             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1519             tlb_flush(CPU(cpu));
1520             return;
1521         }
1522 
1523         if (value & (1 << 4)) {
1524             /* VALID bit means use the region number specified in this
1525              * value and also update MPU_RNR.REGION with that value.
1526              */
1527             region = extract32(value, 0, 4);
1528             if (region >= cpu->pmsav7_dregion) {
1529                 qemu_log_mask(LOG_GUEST_ERROR,
1530                               "MPU region out of range %u/%" PRIu32 "\n",
1531                               region, cpu->pmsav7_dregion);
1532                 return;
1533             }
1534             cpu->env.pmsav7.rnr[attrs.secure] = region;
1535         } else {
1536             region = cpu->env.pmsav7.rnr[attrs.secure];
1537         }
1538 
1539         if (region >= cpu->pmsav7_dregion) {
1540             return;
1541         }
1542 
1543         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1544         tlb_flush(CPU(cpu));
1545         break;
1546     }
1547     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1548     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1549     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1550     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1551     {
1552         int region = cpu->env.pmsav7.rnr[attrs.secure];
1553 
1554         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1555             /* PMSAv8M handling of the aliases is different from v7M:
1556              * aliases A1, A2, A3 override the low two bits of the region
1557              * number in MPU_RNR.
1558              */
1559             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1560 
1561             region = cpu->env.pmsav7.rnr[attrs.secure];
1562             if (aliasno) {
1563                 region = deposit32(region, 0, 2, aliasno);
1564             }
1565             if (region >= cpu->pmsav7_dregion) {
1566                 return;
1567             }
1568             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1569             tlb_flush(CPU(cpu));
1570             return;
1571         }
1572 
1573         if (region >= cpu->pmsav7_dregion) {
1574             return;
1575         }
1576 
1577         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1578         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1579         tlb_flush(CPU(cpu));
1580         break;
1581     }
1582     case 0xdc0: /* MPU_MAIR0 */
1583         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1584             goto bad_offset;
1585         }
1586         if (cpu->pmsav7_dregion) {
1587             /* Register is RES0 if no MPU regions are implemented */
1588             cpu->env.pmsav8.mair0[attrs.secure] = value;
1589         }
1590         /* We don't need to do anything else because memory attributes
1591          * only affect cacheability, and we don't implement caching.
1592          */
1593         break;
1594     case 0xdc4: /* MPU_MAIR1 */
1595         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1596             goto bad_offset;
1597         }
1598         if (cpu->pmsav7_dregion) {
1599             /* Register is RES0 if no MPU regions are implemented */
1600             cpu->env.pmsav8.mair1[attrs.secure] = value;
1601         }
1602         /* We don't need to do anything else because memory attributes
1603          * only affect cacheability, and we don't implement caching.
1604          */
1605         break;
1606     case 0xdd0: /* SAU_CTRL */
1607         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1608             goto bad_offset;
1609         }
1610         if (!attrs.secure) {
1611             return;
1612         }
1613         cpu->env.sau.ctrl = value & 3;
1614         break;
1615     case 0xdd4: /* SAU_TYPE */
1616         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1617             goto bad_offset;
1618         }
1619         break;
1620     case 0xdd8: /* SAU_RNR */
1621         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1622             goto bad_offset;
1623         }
1624         if (!attrs.secure) {
1625             return;
1626         }
1627         if (value >= cpu->sau_sregion) {
1628             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1629                           PRIu32 "/%" PRIu32 "\n",
1630                           value, cpu->sau_sregion);
1631         } else {
1632             cpu->env.sau.rnr = value;
1633         }
1634         break;
1635     case 0xddc: /* SAU_RBAR */
1636     {
1637         int region = cpu->env.sau.rnr;
1638 
1639         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1640             goto bad_offset;
1641         }
1642         if (!attrs.secure) {
1643             return;
1644         }
1645         if (region >= cpu->sau_sregion) {
1646             return;
1647         }
1648         cpu->env.sau.rbar[region] = value & ~0x1f;
1649         tlb_flush(CPU(cpu));
1650         break;
1651     }
1652     case 0xde0: /* SAU_RLAR */
1653     {
1654         int region = cpu->env.sau.rnr;
1655 
1656         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1657             goto bad_offset;
1658         }
1659         if (!attrs.secure) {
1660             return;
1661         }
1662         if (region >= cpu->sau_sregion) {
1663             return;
1664         }
1665         cpu->env.sau.rlar[region] = value & ~0x1c;
1666         tlb_flush(CPU(cpu));
1667         break;
1668     }
1669     case 0xde4: /* SFSR */
1670         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1671             goto bad_offset;
1672         }
1673         if (!attrs.secure) {
1674             return;
1675         }
1676         cpu->env.v7m.sfsr &= ~value; /* W1C */
1677         break;
1678     case 0xde8: /* SFAR */
1679         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1680             goto bad_offset;
1681         }
1682         if (!attrs.secure) {
1683             return;
1684         }
1685         cpu->env.v7m.sfsr = value;
1686         break;
1687     case 0xf00: /* Software Triggered Interrupt Register */
1688     {
1689         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1690 
1691         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1692             goto bad_offset;
1693         }
1694 
1695         if (excnum < s->num_irq) {
1696             armv7m_nvic_set_pending(s, excnum, false);
1697         }
1698         break;
1699     }
1700     case 0xf50: /* ICIALLU */
1701     case 0xf58: /* ICIMVAU */
1702     case 0xf5c: /* DCIMVAC */
1703     case 0xf60: /* DCISW */
1704     case 0xf64: /* DCCMVAU */
1705     case 0xf68: /* DCCMVAC */
1706     case 0xf6c: /* DCCSW */
1707     case 0xf70: /* DCCIMVAC */
1708     case 0xf74: /* DCCISW */
1709     case 0xf78: /* BPIALL */
1710         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1711         break;
1712     default:
1713     bad_offset:
1714         qemu_log_mask(LOG_GUEST_ERROR,
1715                       "NVIC: Bad write offset 0x%x\n", offset);
1716     }
1717 }
1718 
1719 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1720 {
1721     /* Return true if unprivileged access to this register is permitted. */
1722     switch (offset) {
1723     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1724         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1725          * controls access even though the CPU is in Secure state (I_QDKX).
1726          */
1727         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1728     default:
1729         /* All other user accesses cause a BusFault unconditionally */
1730         return false;
1731     }
1732 }
1733 
1734 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1735 {
1736     /* Behaviour for the SHPR register field for this exception:
1737      * return M_REG_NS to use the nonsecure vector (including for
1738      * non-banked exceptions), M_REG_S for the secure version of
1739      * a banked exception, and -1 if this field should RAZ/WI.
1740      */
1741     switch (exc) {
1742     case ARMV7M_EXCP_MEM:
1743     case ARMV7M_EXCP_USAGE:
1744     case ARMV7M_EXCP_SVC:
1745     case ARMV7M_EXCP_PENDSV:
1746     case ARMV7M_EXCP_SYSTICK:
1747         /* Banked exceptions */
1748         return attrs.secure;
1749     case ARMV7M_EXCP_BUS:
1750         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1751         if (!attrs.secure &&
1752             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1753             return -1;
1754         }
1755         return M_REG_NS;
1756     case ARMV7M_EXCP_SECURE:
1757         /* Not banked, RAZ/WI from nonsecure */
1758         if (!attrs.secure) {
1759             return -1;
1760         }
1761         return M_REG_NS;
1762     case ARMV7M_EXCP_DEBUG:
1763         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1764         return M_REG_NS;
1765     case 8 ... 10:
1766     case 13:
1767         /* RES0 */
1768         return -1;
1769     default:
1770         /* Not reachable due to decode of SHPR register addresses */
1771         g_assert_not_reached();
1772     }
1773 }
1774 
1775 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1776                                     uint64_t *data, unsigned size,
1777                                     MemTxAttrs attrs)
1778 {
1779     NVICState *s = (NVICState *)opaque;
1780     uint32_t offset = addr;
1781     unsigned i, startvec, end;
1782     uint32_t val;
1783 
1784     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1785         /* Generate BusFault for unprivileged accesses */
1786         return MEMTX_ERROR;
1787     }
1788 
1789     switch (offset) {
1790     /* reads of set and clear both return the status */
1791     case 0x100 ... 0x13f: /* NVIC Set enable */
1792         offset += 0x80;
1793         /* fall through */
1794     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1795         val = 0;
1796         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1797 
1798         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1799             if (s->vectors[startvec + i].enabled &&
1800                 (attrs.secure || s->itns[startvec + i])) {
1801                 val |= (1 << i);
1802             }
1803         }
1804         break;
1805     case 0x200 ... 0x23f: /* NVIC Set pend */
1806         offset += 0x80;
1807         /* fall through */
1808     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1809         val = 0;
1810         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1811         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1812             if (s->vectors[startvec + i].pending &&
1813                 (attrs.secure || s->itns[startvec + i])) {
1814                 val |= (1 << i);
1815             }
1816         }
1817         break;
1818     case 0x300 ... 0x33f: /* NVIC Active */
1819         val = 0;
1820 
1821         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1822             break;
1823         }
1824 
1825         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1826 
1827         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1828             if (s->vectors[startvec + i].active &&
1829                 (attrs.secure || s->itns[startvec + i])) {
1830                 val |= (1 << i);
1831             }
1832         }
1833         break;
1834     case 0x400 ... 0x5ef: /* NVIC Priority */
1835         val = 0;
1836         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1837 
1838         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1839             if (attrs.secure || s->itns[startvec + i]) {
1840                 val |= s->vectors[startvec + i].prio << (8 * i);
1841             }
1842         }
1843         break;
1844     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
1845         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1846             val = 0;
1847             break;
1848         }
1849         /* fall through */
1850     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1851         val = 0;
1852         for (i = 0; i < size; i++) {
1853             unsigned hdlidx = (offset - 0xd14) + i;
1854             int sbank = shpr_bank(s, hdlidx, attrs);
1855 
1856             if (sbank < 0) {
1857                 continue;
1858             }
1859             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1860         }
1861         break;
1862     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1863         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1864             val = 0;
1865             break;
1866         };
1867         /* The BFSR bits [15:8] are shared between security states
1868          * and we store them in the NS copy
1869          */
1870         val = s->cpu->env.v7m.cfsr[attrs.secure];
1871         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1872         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1873         break;
1874     case 0xfe0 ... 0xfff: /* ID.  */
1875         if (offset & 3) {
1876             val = 0;
1877         } else {
1878             val = nvic_id[(offset - 0xfe0) >> 2];
1879         }
1880         break;
1881     default:
1882         if (size == 4) {
1883             val = nvic_readl(s, offset, attrs);
1884         } else {
1885             qemu_log_mask(LOG_GUEST_ERROR,
1886                           "NVIC: Bad read of size %d at offset 0x%x\n",
1887                           size, offset);
1888             val = 0;
1889         }
1890     }
1891 
1892     trace_nvic_sysreg_read(addr, val, size);
1893     *data = val;
1894     return MEMTX_OK;
1895 }
1896 
1897 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1898                                      uint64_t value, unsigned size,
1899                                      MemTxAttrs attrs)
1900 {
1901     NVICState *s = (NVICState *)opaque;
1902     uint32_t offset = addr;
1903     unsigned i, startvec, end;
1904     unsigned setval = 0;
1905 
1906     trace_nvic_sysreg_write(addr, value, size);
1907 
1908     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1909         /* Generate BusFault for unprivileged accesses */
1910         return MEMTX_ERROR;
1911     }
1912 
1913     switch (offset) {
1914     case 0x100 ... 0x13f: /* NVIC Set enable */
1915         offset += 0x80;
1916         setval = 1;
1917         /* fall through */
1918     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1919         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1920 
1921         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1922             if (value & (1 << i) &&
1923                 (attrs.secure || s->itns[startvec + i])) {
1924                 s->vectors[startvec + i].enabled = setval;
1925             }
1926         }
1927         nvic_irq_update(s);
1928         return MEMTX_OK;
1929     case 0x200 ... 0x23f: /* NVIC Set pend */
1930         /* the special logic in armv7m_nvic_set_pending()
1931          * is not needed since IRQs are never escalated
1932          */
1933         offset += 0x80;
1934         setval = 1;
1935         /* fall through */
1936     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1937         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1938 
1939         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1940             if (value & (1 << i) &&
1941                 (attrs.secure || s->itns[startvec + i])) {
1942                 s->vectors[startvec + i].pending = setval;
1943             }
1944         }
1945         nvic_irq_update(s);
1946         return MEMTX_OK;
1947     case 0x300 ... 0x33f: /* NVIC Active */
1948         return MEMTX_OK; /* R/O */
1949     case 0x400 ... 0x5ef: /* NVIC Priority */
1950         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1951 
1952         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1953             if (attrs.secure || s->itns[startvec + i]) {
1954                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1955             }
1956         }
1957         nvic_irq_update(s);
1958         return MEMTX_OK;
1959     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
1960         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1961             return MEMTX_OK;
1962         }
1963         /* fall through */
1964     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1965         for (i = 0; i < size; i++) {
1966             unsigned hdlidx = (offset - 0xd14) + i;
1967             int newprio = extract32(value, i * 8, 8);
1968             int sbank = shpr_bank(s, hdlidx, attrs);
1969 
1970             if (sbank < 0) {
1971                 continue;
1972             }
1973             set_prio(s, hdlidx, sbank, newprio);
1974         }
1975         nvic_irq_update(s);
1976         return MEMTX_OK;
1977     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1978         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1979             return MEMTX_OK;
1980         }
1981         /* All bits are W1C, so construct 32 bit value with 0s in
1982          * the parts not written by the access size
1983          */
1984         value <<= ((offset - 0xd28) * 8);
1985 
1986         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1987         if (attrs.secure) {
1988             /* The BFSR bits [15:8] are shared between security states
1989              * and we store them in the NS copy.
1990              */
1991             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1992         }
1993         return MEMTX_OK;
1994     }
1995     if (size == 4) {
1996         nvic_writel(s, offset, value, attrs);
1997         return MEMTX_OK;
1998     }
1999     qemu_log_mask(LOG_GUEST_ERROR,
2000                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2001     /* This is UNPREDICTABLE; treat as RAZ/WI */
2002     return MEMTX_OK;
2003 }
2004 
2005 static const MemoryRegionOps nvic_sysreg_ops = {
2006     .read_with_attrs = nvic_sysreg_read,
2007     .write_with_attrs = nvic_sysreg_write,
2008     .endianness = DEVICE_NATIVE_ENDIAN,
2009 };
2010 
2011 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2012                                         uint64_t value, unsigned size,
2013                                         MemTxAttrs attrs)
2014 {
2015     MemoryRegion *mr = opaque;
2016 
2017     if (attrs.secure) {
2018         /* S accesses to the alias act like NS accesses to the real region */
2019         attrs.secure = 0;
2020         return memory_region_dispatch_write(mr, addr, value, size, attrs);
2021     } else {
2022         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2023         if (attrs.user) {
2024             return MEMTX_ERROR;
2025         }
2026         return MEMTX_OK;
2027     }
2028 }
2029 
2030 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2031                                        uint64_t *data, unsigned size,
2032                                        MemTxAttrs attrs)
2033 {
2034     MemoryRegion *mr = opaque;
2035 
2036     if (attrs.secure) {
2037         /* S accesses to the alias act like NS accesses to the real region */
2038         attrs.secure = 0;
2039         return memory_region_dispatch_read(mr, addr, data, size, attrs);
2040     } else {
2041         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2042         if (attrs.user) {
2043             return MEMTX_ERROR;
2044         }
2045         *data = 0;
2046         return MEMTX_OK;
2047     }
2048 }
2049 
2050 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2051     .read_with_attrs = nvic_sysreg_ns_read,
2052     .write_with_attrs = nvic_sysreg_ns_write,
2053     .endianness = DEVICE_NATIVE_ENDIAN,
2054 };
2055 
2056 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2057                                       uint64_t value, unsigned size,
2058                                       MemTxAttrs attrs)
2059 {
2060     NVICState *s = opaque;
2061     MemoryRegion *mr;
2062 
2063     /* Direct the access to the correct systick */
2064     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2065     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2066 }
2067 
2068 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2069                                      uint64_t *data, unsigned size,
2070                                      MemTxAttrs attrs)
2071 {
2072     NVICState *s = opaque;
2073     MemoryRegion *mr;
2074 
2075     /* Direct the access to the correct systick */
2076     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2077     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2078 }
2079 
2080 static const MemoryRegionOps nvic_systick_ops = {
2081     .read_with_attrs = nvic_systick_read,
2082     .write_with_attrs = nvic_systick_write,
2083     .endianness = DEVICE_NATIVE_ENDIAN,
2084 };
2085 
2086 static int nvic_post_load(void *opaque, int version_id)
2087 {
2088     NVICState *s = opaque;
2089     unsigned i;
2090     int resetprio;
2091 
2092     /* Check for out of range priority settings */
2093     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2094 
2095     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2096         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2097         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2098         return 1;
2099     }
2100     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2101         if (s->vectors[i].prio & ~0xff) {
2102             return 1;
2103         }
2104     }
2105 
2106     nvic_recompute_state(s);
2107 
2108     return 0;
2109 }
2110 
2111 static const VMStateDescription vmstate_VecInfo = {
2112     .name = "armv7m_nvic_info",
2113     .version_id = 1,
2114     .minimum_version_id = 1,
2115     .fields = (VMStateField[]) {
2116         VMSTATE_INT16(prio, VecInfo),
2117         VMSTATE_UINT8(enabled, VecInfo),
2118         VMSTATE_UINT8(pending, VecInfo),
2119         VMSTATE_UINT8(active, VecInfo),
2120         VMSTATE_UINT8(level, VecInfo),
2121         VMSTATE_END_OF_LIST()
2122     }
2123 };
2124 
2125 static bool nvic_security_needed(void *opaque)
2126 {
2127     NVICState *s = opaque;
2128 
2129     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2130 }
2131 
2132 static int nvic_security_post_load(void *opaque, int version_id)
2133 {
2134     NVICState *s = opaque;
2135     int i;
2136 
2137     /* Check for out of range priority settings */
2138     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2139         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2140         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2141          * if the CPU state has been migrated yet; a mismatch won't
2142          * cause the emulation to blow up, though.
2143          */
2144         return 1;
2145     }
2146     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2147         if (s->sec_vectors[i].prio & ~0xff) {
2148             return 1;
2149         }
2150     }
2151     return 0;
2152 }
2153 
2154 static const VMStateDescription vmstate_nvic_security = {
2155     .name = "armv7m_nvic/m-security",
2156     .version_id = 1,
2157     .minimum_version_id = 1,
2158     .needed = nvic_security_needed,
2159     .post_load = &nvic_security_post_load,
2160     .fields = (VMStateField[]) {
2161         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2162                              vmstate_VecInfo, VecInfo),
2163         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2164         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2165         VMSTATE_END_OF_LIST()
2166     }
2167 };
2168 
2169 static const VMStateDescription vmstate_nvic = {
2170     .name = "armv7m_nvic",
2171     .version_id = 4,
2172     .minimum_version_id = 4,
2173     .post_load = &nvic_post_load,
2174     .fields = (VMStateField[]) {
2175         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2176                              vmstate_VecInfo, VecInfo),
2177         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2178         VMSTATE_END_OF_LIST()
2179     },
2180     .subsections = (const VMStateDescription*[]) {
2181         &vmstate_nvic_security,
2182         NULL
2183     }
2184 };
2185 
2186 static Property props_nvic[] = {
2187     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2188     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2189     DEFINE_PROP_END_OF_LIST()
2190 };
2191 
2192 static void armv7m_nvic_reset(DeviceState *dev)
2193 {
2194     int resetprio;
2195     NVICState *s = NVIC(dev);
2196 
2197     memset(s->vectors, 0, sizeof(s->vectors));
2198     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2199     s->prigroup[M_REG_NS] = 0;
2200     s->prigroup[M_REG_S] = 0;
2201 
2202     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2203     /* MEM, BUS, and USAGE are enabled through
2204      * the System Handler Control register
2205      */
2206     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2207     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2208     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2209     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2210 
2211     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2212     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2213     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2214     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2215 
2216     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2217         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2218         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2219         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2220         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2221 
2222         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2223         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2224         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2225         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2226     } else {
2227         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2228     }
2229 
2230     /* Strictly speaking the reset handler should be enabled.
2231      * However, we don't simulate soft resets through the NVIC,
2232      * and the reset vector should never be pended.
2233      * So we leave it disabled to catch logic errors.
2234      */
2235 
2236     s->exception_prio = NVIC_NOEXC_PRIO;
2237     s->vectpending = 0;
2238     s->vectpending_is_s_banked = false;
2239     s->vectpending_prio = NVIC_NOEXC_PRIO;
2240 
2241     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2242         memset(s->itns, 0, sizeof(s->itns));
2243     } else {
2244         /* This state is constant and not guest accessible in a non-security
2245          * NVIC; we set the bits to true to avoid having to do a feature
2246          * bit check in the NVIC enable/pend/etc register accessors.
2247          */
2248         int i;
2249 
2250         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2251             s->itns[i] = true;
2252         }
2253     }
2254 }
2255 
2256 static void nvic_systick_trigger(void *opaque, int n, int level)
2257 {
2258     NVICState *s = opaque;
2259 
2260     if (level) {
2261         /* SysTick just asked us to pend its exception.
2262          * (This is different from an external interrupt line's
2263          * behaviour.)
2264          * n == 0 : NonSecure systick
2265          * n == 1 : Secure systick
2266          */
2267         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2268     }
2269 }
2270 
2271 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2272 {
2273     NVICState *s = NVIC(dev);
2274     Error *err = NULL;
2275     int regionlen;
2276 
2277     /* The armv7m container object will have set our CPU pointer */
2278     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2279         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2280         return;
2281     }
2282 
2283     if (s->num_irq > NVIC_MAX_IRQ) {
2284         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2285         return;
2286     }
2287 
2288     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2289 
2290     /* include space for internal exception vectors */
2291     s->num_irq += NVIC_FIRST_IRQ;
2292 
2293     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2294 
2295     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2296                              "realized", &err);
2297     if (err != NULL) {
2298         error_propagate(errp, err);
2299         return;
2300     }
2301     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2302                        qdev_get_gpio_in_named(dev, "systick-trigger",
2303                                               M_REG_NS));
2304 
2305     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2306         /* We couldn't init the secure systick device in instance_init
2307          * as we didn't know then if the CPU had the security extensions;
2308          * so we have to do it here.
2309          */
2310         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2311                           TYPE_SYSTICK);
2312         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2313 
2314         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2315                                  "realized", &err);
2316         if (err != NULL) {
2317             error_propagate(errp, err);
2318             return;
2319         }
2320         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2321                            qdev_get_gpio_in_named(dev, "systick-trigger",
2322                                                   M_REG_S));
2323     }
2324 
2325     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2326      * and looks like this:
2327      *  0x004 - ICTR
2328      *  0x010 - 0xff - systick
2329      *  0x100..0x7ec - NVIC
2330      *  0x7f0..0xcff - Reserved
2331      *  0xd00..0xd3c - SCS registers
2332      *  0xd40..0xeff - Reserved or Not implemented
2333      *  0xf00 - STIR
2334      *
2335      * Some registers within this space are banked between security states.
2336      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2337      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2338      * to the main SCS range, and non-secure accesses (including when
2339      * the security extension is not implemented) are RAZ/WI.
2340      * Note that both the main SCS range and the alias range are defined
2341      * to be exempt from memory attribution (R_BLJT) and so the memory
2342      * transaction attribute always matches the current CPU security
2343      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2344      * wrappers we change attrs.secure to indicate the NS access; so
2345      * generally code determining which banked register to use should
2346      * use attrs.secure; code determining actual behaviour of the system
2347      * should use env->v7m.secure.
2348      */
2349     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2350     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2351     /* The system register region goes at the bottom of the priority
2352      * stack as it covers the whole page.
2353      */
2354     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2355                           "nvic_sysregs", 0x1000);
2356     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2357 
2358     memory_region_init_io(&s->systickmem, OBJECT(s),
2359                           &nvic_systick_ops, s,
2360                           "nvic_systick", 0xe0);
2361 
2362     memory_region_add_subregion_overlap(&s->container, 0x10,
2363                                         &s->systickmem, 1);
2364 
2365     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2366         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2367                               &nvic_sysreg_ns_ops, &s->sysregmem,
2368                               "nvic_sysregs_ns", 0x1000);
2369         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2370         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2371                               &nvic_sysreg_ns_ops, &s->systickmem,
2372                               "nvic_systick_ns", 0xe0);
2373         memory_region_add_subregion_overlap(&s->container, 0x20010,
2374                                             &s->systick_ns_mem, 1);
2375     }
2376 
2377     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2378 }
2379 
2380 static void armv7m_nvic_instance_init(Object *obj)
2381 {
2382     /* We have a different default value for the num-irq property
2383      * than our superclass. This function runs after qdev init
2384      * has set the defaults from the Property array and before
2385      * any user-specified property setting, so just modify the
2386      * value in the GICState struct.
2387      */
2388     DeviceState *dev = DEVICE(obj);
2389     NVICState *nvic = NVIC(obj);
2390     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2391 
2392     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2393                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2394     /* We can't initialize the secure systick here, as we don't know
2395      * yet if we need it.
2396      */
2397 
2398     sysbus_init_irq(sbd, &nvic->excpout);
2399     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2400     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2401                             M_REG_NUM_BANKS);
2402     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2403 }
2404 
2405 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2406 {
2407     DeviceClass *dc = DEVICE_CLASS(klass);
2408 
2409     dc->vmsd  = &vmstate_nvic;
2410     dc->props = props_nvic;
2411     dc->reset = armv7m_nvic_reset;
2412     dc->realize = armv7m_nvic_realize;
2413 }
2414 
2415 static const TypeInfo armv7m_nvic_info = {
2416     .name          = TYPE_NVIC,
2417     .parent        = TYPE_SYS_BUS_DEVICE,
2418     .instance_init = armv7m_nvic_instance_init,
2419     .instance_size = sizeof(NVICState),
2420     .class_init    = armv7m_nvic_class_init,
2421     .class_size    = sizeof(SysBusDeviceClass),
2422 };
2423 
2424 static void armv7m_nvic_register_types(void)
2425 {
2426     type_register_static(&armv7m_nvic_info);
2427 }
2428 
2429 type_init(armv7m_nvic_register_types)
2430