1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "hw/sysbus.h" 16 #include "migration/vmstate.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "hw/irq.h" 20 #include "hw/qdev-properties.h" 21 #include "sysemu/tcg.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "exec/exec-all.h" 25 #include "exec/memop.h" 26 #include "qemu/log.h" 27 #include "qemu/module.h" 28 #include "trace.h" 29 30 /* IRQ number counting: 31 * 32 * the num-irq property counts the number of external IRQ lines 33 * 34 * NVICState::num_irq counts the total number of exceptions 35 * (external IRQs, the 15 internal exceptions including reset, 36 * and one for the unused exception number 0). 37 * 38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 39 * 40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 41 * 42 * Iterating through all exceptions should typically be done with 43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 44 * 45 * The external qemu_irq lines are the NVIC's external IRQ lines, 46 * so line 0 is exception 16. 47 * 48 * In the terminology of the architecture manual, "interrupts" are 49 * a subcategory of exception referring to the external interrupts 50 * (which are exception numbers NVIC_FIRST_IRQ and upward). 51 * For historical reasons QEMU tends to use "interrupt" and 52 * "exception" more or less interchangeably. 53 */ 54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 56 57 /* Effective running priority of the CPU when no exception is active 58 * (higher than the highest possible priority value) 59 */ 60 #define NVIC_NOEXC_PRIO 0x100 61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 62 #define NVIC_NS_PRIO_LIMIT 0x80 63 64 static const uint8_t nvic_id[] = { 65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 66 }; 67 68 static void signal_sysresetreq(NVICState *s) 69 { 70 if (qemu_irq_is_connected(s->sysresetreq)) { 71 qemu_irq_pulse(s->sysresetreq); 72 } else { 73 /* 74 * Default behaviour if the SoC doesn't need to wire up 75 * SYSRESETREQ (eg to a system reset controller of some kind): 76 * perform a system reset via the usual QEMU API. 77 */ 78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 79 } 80 } 81 82 static int nvic_pending_prio(NVICState *s) 83 { 84 /* return the group priority of the current pending interrupt, 85 * or NVIC_NOEXC_PRIO if no interrupt is pending 86 */ 87 return s->vectpending_prio; 88 } 89 90 /* Return the value of the ISCR RETTOBASE bit: 91 * 1 if there is exactly one active exception 92 * 0 if there is more than one active exception 93 * UNKNOWN if there are no active exceptions (we choose 1, 94 * which matches the choice Cortex-M3 is documented as making). 95 * 96 * NB: some versions of the documentation talk about this 97 * counting "active exceptions other than the one shown by IPSR"; 98 * this is only different in the obscure corner case where guest 99 * code has manually deactivated an exception and is about 100 * to fail an exception-return integrity check. The definition 101 * above is the one from the v8M ARM ARM and is also in line 102 * with the behaviour documented for the Cortex-M3. 103 */ 104 static bool nvic_rettobase(NVICState *s) 105 { 106 int irq, nhand = 0; 107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 108 109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 110 if (s->vectors[irq].active || 111 (check_sec && irq < NVIC_INTERNAL_VECTORS && 112 s->sec_vectors[irq].active)) { 113 nhand++; 114 if (nhand == 2) { 115 return 0; 116 } 117 } 118 } 119 120 return 1; 121 } 122 123 /* Return the value of the ISCR ISRPENDING bit: 124 * 1 if an external interrupt is pending 125 * 0 if no external interrupt is pending 126 */ 127 static bool nvic_isrpending(NVICState *s) 128 { 129 int irq; 130 131 /* 132 * We can shortcut if the highest priority pending interrupt 133 * happens to be external; if not we need to check the whole 134 * vectors[] array. 135 */ 136 if (s->vectpending > NVIC_FIRST_IRQ) { 137 return true; 138 } 139 140 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 141 if (s->vectors[irq].pending) { 142 return true; 143 } 144 } 145 return false; 146 } 147 148 static bool exc_is_banked(int exc) 149 { 150 /* Return true if this is one of the limited set of exceptions which 151 * are banked (and thus have state in sec_vectors[]) 152 */ 153 return exc == ARMV7M_EXCP_HARD || 154 exc == ARMV7M_EXCP_MEM || 155 exc == ARMV7M_EXCP_USAGE || 156 exc == ARMV7M_EXCP_SVC || 157 exc == ARMV7M_EXCP_PENDSV || 158 exc == ARMV7M_EXCP_SYSTICK; 159 } 160 161 /* Return a mask word which clears the subpriority bits from 162 * a priority value for an M-profile exception, leaving only 163 * the group priority. 164 */ 165 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 166 { 167 return ~0U << (s->prigroup[secure] + 1); 168 } 169 170 static bool exc_targets_secure(NVICState *s, int exc) 171 { 172 /* Return true if this non-banked exception targets Secure state. */ 173 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 174 return false; 175 } 176 177 if (exc >= NVIC_FIRST_IRQ) { 178 return !s->itns[exc]; 179 } 180 181 /* Function shouldn't be called for banked exceptions. */ 182 assert(!exc_is_banked(exc)); 183 184 switch (exc) { 185 case ARMV7M_EXCP_NMI: 186 case ARMV7M_EXCP_BUS: 187 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 188 case ARMV7M_EXCP_SECURE: 189 return true; 190 case ARMV7M_EXCP_DEBUG: 191 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 192 return false; 193 default: 194 /* reset, and reserved (unused) low exception numbers. 195 * We'll get called by code that loops through all the exception 196 * numbers, but it doesn't matter what we return here as these 197 * non-existent exceptions will never be pended or active. 198 */ 199 return true; 200 } 201 } 202 203 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 204 { 205 /* Return the group priority for this exception, given its raw 206 * (group-and-subgroup) priority value and whether it is targeting 207 * secure state or not. 208 */ 209 if (rawprio < 0) { 210 return rawprio; 211 } 212 rawprio &= nvic_gprio_mask(s, targets_secure); 213 /* AIRCR.PRIS causes us to squash all NS priorities into the 214 * lower half of the total range 215 */ 216 if (!targets_secure && 217 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 218 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 219 } 220 return rawprio; 221 } 222 223 /* Recompute vectpending and exception_prio for a CPU which implements 224 * the Security extension 225 */ 226 static void nvic_recompute_state_secure(NVICState *s) 227 { 228 int i, bank; 229 int pend_prio = NVIC_NOEXC_PRIO; 230 int active_prio = NVIC_NOEXC_PRIO; 231 int pend_irq = 0; 232 bool pending_is_s_banked = false; 233 int pend_subprio = 0; 234 235 /* R_CQRV: precedence is by: 236 * - lowest group priority; if both the same then 237 * - lowest subpriority; if both the same then 238 * - lowest exception number; if both the same (ie banked) then 239 * - secure exception takes precedence 240 * Compare pseudocode RawExecutionPriority. 241 * Annoyingly, now we have two prigroup values (for S and NS) 242 * we can't do the loop comparison on raw priority values. 243 */ 244 for (i = 1; i < s->num_irq; i++) { 245 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 246 VecInfo *vec; 247 int prio, subprio; 248 bool targets_secure; 249 250 if (bank == M_REG_S) { 251 if (!exc_is_banked(i)) { 252 continue; 253 } 254 vec = &s->sec_vectors[i]; 255 targets_secure = true; 256 } else { 257 vec = &s->vectors[i]; 258 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 259 } 260 261 prio = exc_group_prio(s, vec->prio, targets_secure); 262 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 263 if (vec->enabled && vec->pending && 264 ((prio < pend_prio) || 265 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 266 pend_prio = prio; 267 pend_subprio = subprio; 268 pend_irq = i; 269 pending_is_s_banked = (bank == M_REG_S); 270 } 271 if (vec->active && prio < active_prio) { 272 active_prio = prio; 273 } 274 } 275 } 276 277 s->vectpending_is_s_banked = pending_is_s_banked; 278 s->vectpending = pend_irq; 279 s->vectpending_prio = pend_prio; 280 s->exception_prio = active_prio; 281 282 trace_nvic_recompute_state_secure(s->vectpending, 283 s->vectpending_is_s_banked, 284 s->vectpending_prio, 285 s->exception_prio); 286 } 287 288 /* Recompute vectpending and exception_prio */ 289 static void nvic_recompute_state(NVICState *s) 290 { 291 int i; 292 int pend_prio = NVIC_NOEXC_PRIO; 293 int active_prio = NVIC_NOEXC_PRIO; 294 int pend_irq = 0; 295 296 /* In theory we could write one function that handled both 297 * the "security extension present" and "not present"; however 298 * the security related changes significantly complicate the 299 * recomputation just by themselves and mixing both cases together 300 * would be even worse, so we retain a separate non-secure-only 301 * version for CPUs which don't implement the security extension. 302 */ 303 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 304 nvic_recompute_state_secure(s); 305 return; 306 } 307 308 for (i = 1; i < s->num_irq; i++) { 309 VecInfo *vec = &s->vectors[i]; 310 311 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 312 pend_prio = vec->prio; 313 pend_irq = i; 314 } 315 if (vec->active && vec->prio < active_prio) { 316 active_prio = vec->prio; 317 } 318 } 319 320 if (active_prio > 0) { 321 active_prio &= nvic_gprio_mask(s, false); 322 } 323 324 if (pend_prio > 0) { 325 pend_prio &= nvic_gprio_mask(s, false); 326 } 327 328 s->vectpending = pend_irq; 329 s->vectpending_prio = pend_prio; 330 s->exception_prio = active_prio; 331 332 trace_nvic_recompute_state(s->vectpending, 333 s->vectpending_prio, 334 s->exception_prio); 335 } 336 337 /* Return the current execution priority of the CPU 338 * (equivalent to the pseudocode ExecutionPriority function). 339 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 340 */ 341 static inline int nvic_exec_prio(NVICState *s) 342 { 343 CPUARMState *env = &s->cpu->env; 344 int running = NVIC_NOEXC_PRIO; 345 346 if (env->v7m.basepri[M_REG_NS] > 0) { 347 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 348 } 349 350 if (env->v7m.basepri[M_REG_S] > 0) { 351 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 352 if (running > basepri) { 353 running = basepri; 354 } 355 } 356 357 if (env->v7m.primask[M_REG_NS]) { 358 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 359 if (running > NVIC_NS_PRIO_LIMIT) { 360 running = NVIC_NS_PRIO_LIMIT; 361 } 362 } else { 363 running = 0; 364 } 365 } 366 367 if (env->v7m.primask[M_REG_S]) { 368 running = 0; 369 } 370 371 if (env->v7m.faultmask[M_REG_NS]) { 372 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 373 running = -1; 374 } else { 375 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 376 if (running > NVIC_NS_PRIO_LIMIT) { 377 running = NVIC_NS_PRIO_LIMIT; 378 } 379 } else { 380 running = 0; 381 } 382 } 383 } 384 385 if (env->v7m.faultmask[M_REG_S]) { 386 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 387 } 388 389 /* consider priority of active handler */ 390 return MIN(running, s->exception_prio); 391 } 392 393 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure) 394 { 395 /* Return true if the requested execution priority is negative 396 * for the specified security state, ie that security state 397 * has an active NMI or HardFault or has set its FAULTMASK. 398 * Note that this is not the same as whether the execution 399 * priority is actually negative (for instance AIRCR.PRIS may 400 * mean we don't allow FAULTMASK_NS to actually make the execution 401 * priority negative). Compare pseudocode IsReqExcPriNeg(). 402 */ 403 if (s->cpu->env.v7m.faultmask[secure]) { 404 return true; 405 } 406 407 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 408 s->vectors[ARMV7M_EXCP_HARD].active) { 409 return true; 410 } 411 412 if (s->vectors[ARMV7M_EXCP_NMI].active && 413 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 414 return true; 415 } 416 417 return false; 418 } 419 420 bool armv7m_nvic_can_take_pending_exception(NVICState *s) 421 { 422 return nvic_exec_prio(s) > nvic_pending_prio(s); 423 } 424 425 int armv7m_nvic_raw_execution_priority(NVICState *s) 426 { 427 return s->exception_prio; 428 } 429 430 /* caller must call nvic_irq_update() after this. 431 * secure indicates the bank to use for banked exceptions (we assert if 432 * we are passed secure=true for a non-banked exception). 433 */ 434 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 435 { 436 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 437 assert(irq < s->num_irq); 438 439 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 440 441 if (secure) { 442 assert(exc_is_banked(irq)); 443 s->sec_vectors[irq].prio = prio; 444 } else { 445 s->vectors[irq].prio = prio; 446 } 447 448 trace_nvic_set_prio(irq, secure, prio); 449 } 450 451 /* Return the current raw priority register value. 452 * secure indicates the bank to use for banked exceptions (we assert if 453 * we are passed secure=true for a non-banked exception). 454 */ 455 static int get_prio(NVICState *s, unsigned irq, bool secure) 456 { 457 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 458 assert(irq < s->num_irq); 459 460 if (secure) { 461 assert(exc_is_banked(irq)); 462 return s->sec_vectors[irq].prio; 463 } else { 464 return s->vectors[irq].prio; 465 } 466 } 467 468 /* Recompute state and assert irq line accordingly. 469 * Must be called after changes to: 470 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 471 * prigroup 472 */ 473 static void nvic_irq_update(NVICState *s) 474 { 475 int lvl; 476 int pend_prio; 477 478 nvic_recompute_state(s); 479 pend_prio = nvic_pending_prio(s); 480 481 /* Raise NVIC output if this IRQ would be taken, except that we 482 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 483 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 484 * to those CPU registers don't cause us to recalculate the NVIC 485 * pending info. 486 */ 487 lvl = (pend_prio < s->exception_prio); 488 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 489 qemu_set_irq(s->excpout, lvl); 490 } 491 492 /** 493 * armv7m_nvic_clear_pending: mark the specified exception as not pending 494 * @opaque: the NVIC 495 * @irq: the exception number to mark as not pending 496 * @secure: false for non-banked exceptions or for the nonsecure 497 * version of a banked exception, true for the secure version of a banked 498 * exception. 499 * 500 * Marks the specified exception as not pending. Note that we will assert() 501 * if @secure is true and @irq does not specify one of the fixed set 502 * of architecturally banked exceptions. 503 */ 504 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure) 505 { 506 VecInfo *vec; 507 508 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 509 510 if (secure) { 511 assert(exc_is_banked(irq)); 512 vec = &s->sec_vectors[irq]; 513 } else { 514 vec = &s->vectors[irq]; 515 } 516 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 517 if (vec->pending) { 518 vec->pending = 0; 519 nvic_irq_update(s); 520 } 521 } 522 523 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 524 bool derived) 525 { 526 /* Pend an exception, including possibly escalating it to HardFault. 527 * 528 * This function handles both "normal" pending of interrupts and 529 * exceptions, and also derived exceptions (ones which occur as 530 * a result of trying to take some other exception). 531 * 532 * If derived == true, the caller guarantees that we are part way through 533 * trying to take an exception (but have not yet called 534 * armv7m_nvic_acknowledge_irq() to make it active), and so: 535 * - s->vectpending is the "original exception" we were trying to take 536 * - irq is the "derived exception" 537 * - nvic_exec_prio(s) gives the priority before exception entry 538 * Here we handle the prioritization logic which the pseudocode puts 539 * in the DerivedLateArrival() function. 540 */ 541 542 NVICState *s = (NVICState *)opaque; 543 bool banked = exc_is_banked(irq); 544 VecInfo *vec; 545 bool targets_secure; 546 547 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 548 assert(!secure || banked); 549 550 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 551 552 targets_secure = banked ? secure : exc_targets_secure(s, irq); 553 554 trace_nvic_set_pending(irq, secure, targets_secure, 555 derived, vec->enabled, vec->prio); 556 557 if (derived) { 558 /* Derived exceptions are always synchronous. */ 559 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 560 561 if (irq == ARMV7M_EXCP_DEBUG && 562 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 563 /* DebugMonitorFault, but its priority is lower than the 564 * preempted exception priority: just ignore it. 565 */ 566 return; 567 } 568 569 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 570 /* If this is a terminal exception (one which means we cannot 571 * take the original exception, like a failure to read its 572 * vector table entry), then we must take the derived exception. 573 * If the derived exception can't take priority over the 574 * original exception, then we go into Lockup. 575 * 576 * For QEMU, we rely on the fact that a derived exception is 577 * terminal if and only if it's reported to us as HardFault, 578 * which saves having to have an extra argument is_terminal 579 * that we'd only use in one place. 580 */ 581 cpu_abort(&s->cpu->parent_obj, 582 "Lockup: can't take terminal derived exception " 583 "(original exception priority %d)\n", 584 s->vectpending_prio); 585 } 586 /* We now continue with the same code as for a normal pending 587 * exception, which will cause us to pend the derived exception. 588 * We'll then take either the original or the derived exception 589 * based on which is higher priority by the usual mechanism 590 * for selecting the highest priority pending interrupt. 591 */ 592 } 593 594 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 595 /* If a synchronous exception is pending then it may be 596 * escalated to HardFault if: 597 * * it is equal or lower priority to current execution 598 * * it is disabled 599 * (ie we need to take it immediately but we can't do so). 600 * Asynchronous exceptions (and interrupts) simply remain pending. 601 * 602 * For QEMU, we don't have any imprecise (asynchronous) faults, 603 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 604 * synchronous. 605 * Debug exceptions are awkward because only Debug exceptions 606 * resulting from the BKPT instruction should be escalated, 607 * but we don't currently implement any Debug exceptions other 608 * than those that result from BKPT, so we treat all debug exceptions 609 * as needing escalation. 610 * 611 * This all means we can identify whether to escalate based only on 612 * the exception number and don't (yet) need the caller to explicitly 613 * tell us whether this exception is synchronous or not. 614 */ 615 int running = nvic_exec_prio(s); 616 bool escalate = false; 617 618 if (exc_group_prio(s, vec->prio, secure) >= running) { 619 trace_nvic_escalate_prio(irq, vec->prio, running); 620 escalate = true; 621 } else if (!vec->enabled) { 622 trace_nvic_escalate_disabled(irq); 623 escalate = true; 624 } 625 626 if (escalate) { 627 628 /* We need to escalate this exception to a synchronous HardFault. 629 * If BFHFNMINS is set then we escalate to the banked HF for 630 * the target security state of the original exception; otherwise 631 * we take a Secure HardFault. 632 */ 633 irq = ARMV7M_EXCP_HARD; 634 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 635 (targets_secure || 636 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 637 vec = &s->sec_vectors[irq]; 638 } else { 639 vec = &s->vectors[irq]; 640 } 641 if (running <= vec->prio) { 642 /* We want to escalate to HardFault but we can't take the 643 * synchronous HardFault at this point either. This is a 644 * Lockup condition due to a guest bug. We don't model 645 * Lockup, so report via cpu_abort() instead. 646 */ 647 cpu_abort(&s->cpu->parent_obj, 648 "Lockup: can't escalate %d to HardFault " 649 "(current priority %d)\n", irq, running); 650 } 651 652 /* HF may be banked but there is only one shared HFSR */ 653 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 654 } 655 } 656 657 if (!vec->pending) { 658 vec->pending = 1; 659 nvic_irq_update(s); 660 } 661 } 662 663 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure) 664 { 665 do_armv7m_nvic_set_pending(s, irq, secure, false); 666 } 667 668 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure) 669 { 670 do_armv7m_nvic_set_pending(s, irq, secure, true); 671 } 672 673 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure) 674 { 675 /* 676 * Pend an exception during lazy FP stacking. This differs 677 * from the usual exception pending because the logic for 678 * whether we should escalate depends on the saved context 679 * in the FPCCR register, not on the current state of the CPU/NVIC. 680 */ 681 bool banked = exc_is_banked(irq); 682 VecInfo *vec; 683 bool targets_secure; 684 bool escalate = false; 685 /* 686 * We will only look at bits in fpccr if this is a banked exception 687 * (in which case 'secure' tells us whether it is the S or NS version). 688 * All the bits for the non-banked exceptions are in fpccr_s. 689 */ 690 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 691 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 692 693 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 694 assert(!secure || banked); 695 696 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 697 698 targets_secure = banked ? secure : exc_targets_secure(s, irq); 699 700 switch (irq) { 701 case ARMV7M_EXCP_DEBUG: 702 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 703 /* Ignore DebugMonitor exception */ 704 return; 705 } 706 break; 707 case ARMV7M_EXCP_MEM: 708 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 709 break; 710 case ARMV7M_EXCP_USAGE: 711 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 712 break; 713 case ARMV7M_EXCP_BUS: 714 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 715 break; 716 case ARMV7M_EXCP_SECURE: 717 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 718 break; 719 default: 720 g_assert_not_reached(); 721 } 722 723 if (escalate) { 724 /* 725 * Escalate to HardFault: faults that initially targeted Secure 726 * continue to do so, even if HF normally targets NonSecure. 727 */ 728 irq = ARMV7M_EXCP_HARD; 729 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 730 (targets_secure || 731 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 732 vec = &s->sec_vectors[irq]; 733 } else { 734 vec = &s->vectors[irq]; 735 } 736 } 737 738 if (!vec->enabled || 739 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 740 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 741 /* 742 * We want to escalate to HardFault but the context the 743 * FP state belongs to prevents the exception pre-empting. 744 */ 745 cpu_abort(&s->cpu->parent_obj, 746 "Lockup: can't escalate to HardFault during " 747 "lazy FP register stacking\n"); 748 } 749 } 750 751 if (escalate) { 752 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 753 } 754 if (!vec->pending) { 755 vec->pending = 1; 756 /* 757 * We do not call nvic_irq_update(), because we know our caller 758 * is going to handle causing us to take the exception by 759 * raising EXCP_LAZYFP, so raising the IRQ line would be 760 * pointless extra work. We just need to recompute the 761 * priorities so that armv7m_nvic_can_take_pending_exception() 762 * returns the right answer. 763 */ 764 nvic_recompute_state(s); 765 } 766 } 767 768 /* Make pending IRQ active. */ 769 void armv7m_nvic_acknowledge_irq(NVICState *s) 770 { 771 CPUARMState *env = &s->cpu->env; 772 const int pending = s->vectpending; 773 const int running = nvic_exec_prio(s); 774 VecInfo *vec; 775 776 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 777 778 if (s->vectpending_is_s_banked) { 779 vec = &s->sec_vectors[pending]; 780 } else { 781 vec = &s->vectors[pending]; 782 } 783 784 assert(vec->enabled); 785 assert(vec->pending); 786 787 assert(s->vectpending_prio < running); 788 789 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 790 791 vec->active = 1; 792 vec->pending = 0; 793 794 write_v7m_exception(env, s->vectpending); 795 796 nvic_irq_update(s); 797 } 798 799 static bool vectpending_targets_secure(NVICState *s) 800 { 801 /* Return true if s->vectpending targets Secure state */ 802 if (s->vectpending_is_s_banked) { 803 return true; 804 } 805 return !exc_is_banked(s->vectpending) && 806 exc_targets_secure(s, s->vectpending); 807 } 808 809 void armv7m_nvic_get_pending_irq_info(NVICState *s, 810 int *pirq, bool *ptargets_secure) 811 { 812 const int pending = s->vectpending; 813 bool targets_secure; 814 815 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 816 817 targets_secure = vectpending_targets_secure(s); 818 819 trace_nvic_get_pending_irq_info(pending, targets_secure); 820 821 *ptargets_secure = targets_secure; 822 *pirq = pending; 823 } 824 825 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure) 826 { 827 VecInfo *vec = NULL; 828 int ret = 0; 829 830 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 831 832 trace_nvic_complete_irq(irq, secure); 833 834 if (secure && exc_is_banked(irq)) { 835 vec = &s->sec_vectors[irq]; 836 } else { 837 vec = &s->vectors[irq]; 838 } 839 840 /* 841 * Identify illegal exception return cases. We can't immediately 842 * return at this point because we still need to deactivate 843 * (either this exception or NMI/HardFault) first. 844 */ 845 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 846 /* 847 * Return from a configurable exception targeting the opposite 848 * security state from the one we're trying to complete it for. 849 * Clear vec because it's not really the VecInfo for this 850 * (irq, secstate) so we mustn't deactivate it. 851 */ 852 ret = -1; 853 vec = NULL; 854 } else if (!vec->active) { 855 /* Return from an inactive interrupt */ 856 ret = -1; 857 } else { 858 /* Legal return, we will return the RETTOBASE bit value to the caller */ 859 ret = nvic_rettobase(s); 860 } 861 862 /* 863 * For negative priorities, v8M will forcibly deactivate the appropriate 864 * NMI or HardFault regardless of what interrupt we're being asked to 865 * deactivate (compare the DeActivate() pseudocode). This is a guard 866 * against software returning from NMI or HardFault with a corrupted 867 * IPSR and leaving the CPU in a negative-priority state. 868 * v7M does not do this, but simply deactivates the requested interrupt. 869 */ 870 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 871 switch (armv7m_nvic_raw_execution_priority(s)) { 872 case -1: 873 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 874 vec = &s->vectors[ARMV7M_EXCP_HARD]; 875 } else { 876 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 877 } 878 break; 879 case -2: 880 vec = &s->vectors[ARMV7M_EXCP_NMI]; 881 break; 882 case -3: 883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 884 break; 885 default: 886 break; 887 } 888 } 889 890 if (!vec) { 891 return ret; 892 } 893 894 vec->active = 0; 895 if (vec->level) { 896 /* Re-pend the exception if it's still held high; only 897 * happens for extenal IRQs 898 */ 899 assert(irq >= NVIC_FIRST_IRQ); 900 vec->pending = 1; 901 } 902 903 nvic_irq_update(s); 904 905 return ret; 906 } 907 908 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure) 909 { 910 /* 911 * Return whether an exception is "ready", i.e. it is enabled and is 912 * configured at a priority which would allow it to interrupt the 913 * current execution priority. 914 * 915 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 916 * for non-banked exceptions secure is always false; for banked exceptions 917 * it indicates which of the exceptions is required. 918 */ 919 bool banked = exc_is_banked(irq); 920 VecInfo *vec; 921 int running = nvic_exec_prio(s); 922 923 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 924 assert(!secure || banked); 925 926 /* 927 * HardFault is an odd special case: we always check against -1, 928 * even if we're secure and HardFault has priority -3; we never 929 * need to check for enabled state. 930 */ 931 if (irq == ARMV7M_EXCP_HARD) { 932 return running > -1; 933 } 934 935 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 936 937 return vec->enabled && 938 exc_group_prio(s, vec->prio, secure) < running; 939 } 940 941 /* callback when external interrupt line is changed */ 942 static void set_irq_level(void *opaque, int n, int level) 943 { 944 NVICState *s = opaque; 945 VecInfo *vec; 946 947 n += NVIC_FIRST_IRQ; 948 949 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 950 951 trace_nvic_set_irq_level(n, level); 952 953 /* The pending status of an external interrupt is 954 * latched on rising edge and exception handler return. 955 * 956 * Pulsing the IRQ will always run the handler 957 * once, and the handler will re-run until the 958 * level is low when the handler completes. 959 */ 960 vec = &s->vectors[n]; 961 if (level != vec->level) { 962 vec->level = level; 963 if (level) { 964 armv7m_nvic_set_pending(s, n, false); 965 } 966 } 967 } 968 969 /* callback when external NMI line is changed */ 970 static void nvic_nmi_trigger(void *opaque, int n, int level) 971 { 972 NVICState *s = opaque; 973 974 trace_nvic_set_nmi_level(level); 975 976 /* 977 * The architecture doesn't specify whether NMI should share 978 * the normal-interrupt behaviour of being resampled on 979 * exception handler return. We choose not to, so just 980 * set NMI pending here and don't track the current level. 981 */ 982 if (level) { 983 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 984 } 985 } 986 987 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 988 { 989 ARMCPU *cpu = s->cpu; 990 uint32_t val; 991 992 switch (offset) { 993 case 4: /* Interrupt Control Type. */ 994 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 995 goto bad_offset; 996 } 997 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 998 case 0xc: /* CPPWR */ 999 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1000 goto bad_offset; 1001 } 1002 /* We make the IMPDEF choice that nothing can ever go into a 1003 * non-retentive power state, which allows us to RAZ/WI this. 1004 */ 1005 return 0; 1006 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1007 { 1008 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1009 int i; 1010 1011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1012 goto bad_offset; 1013 } 1014 if (!attrs.secure) { 1015 return 0; 1016 } 1017 val = 0; 1018 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1019 if (s->itns[startvec + i]) { 1020 val |= (1 << i); 1021 } 1022 } 1023 return val; 1024 } 1025 case 0xcfc: 1026 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1027 goto bad_offset; 1028 } 1029 return cpu->revidr; 1030 case 0xd00: /* CPUID Base. */ 1031 return cpu->midr; 1032 case 0xd04: /* Interrupt Control State (ICSR) */ 1033 /* VECTACTIVE */ 1034 val = cpu->env.v7m.exception; 1035 /* VECTPENDING */ 1036 if (s->vectpending) { 1037 /* 1038 * From v8.1M VECTPENDING must read as 1 if accessed as 1039 * NonSecure and the highest priority pending and enabled 1040 * exception targets Secure. 1041 */ 1042 int vp = s->vectpending; 1043 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && 1044 vectpending_targets_secure(s)) { 1045 vp = 1; 1046 } 1047 val |= (vp & 0x1ff) << 12; 1048 } 1049 /* ISRPENDING - set if any external IRQ is pending */ 1050 if (nvic_isrpending(s)) { 1051 val |= (1 << 22); 1052 } 1053 /* RETTOBASE - set if only one handler is active */ 1054 if (nvic_rettobase(s)) { 1055 val |= (1 << 11); 1056 } 1057 if (attrs.secure) { 1058 /* PENDSTSET */ 1059 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1060 val |= (1 << 26); 1061 } 1062 /* PENDSVSET */ 1063 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1064 val |= (1 << 28); 1065 } 1066 } else { 1067 /* PENDSTSET */ 1068 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1069 val |= (1 << 26); 1070 } 1071 /* PENDSVSET */ 1072 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1073 val |= (1 << 28); 1074 } 1075 } 1076 /* NMIPENDSET */ 1077 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1078 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1079 val |= (1 << 31); 1080 } 1081 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1082 /* STTNS: RES0 for the Main Extension */ 1083 return val; 1084 case 0xd08: /* Vector Table Offset. */ 1085 return cpu->env.v7m.vecbase[attrs.secure]; 1086 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1087 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1088 if (attrs.secure) { 1089 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1090 val |= cpu->env.v7m.aircr; 1091 } else { 1092 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1093 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1094 * security isn't supported then BFHFNMINS is RAO (and 1095 * the bit in env.v7m.aircr is always set). 1096 */ 1097 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1098 } 1099 } 1100 return val; 1101 case 0xd10: /* System Control. */ 1102 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1103 goto bad_offset; 1104 } 1105 return cpu->env.v7m.scr[attrs.secure]; 1106 case 0xd14: /* Configuration Control. */ 1107 /* 1108 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1109 * and TRD (stored in the S copy of the register) 1110 */ 1111 val = cpu->env.v7m.ccr[attrs.secure]; 1112 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1113 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1114 if (!attrs.secure) { 1115 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1116 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1117 } 1118 } 1119 return val; 1120 case 0xd24: /* System Handler Control and State (SHCSR) */ 1121 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1122 goto bad_offset; 1123 } 1124 val = 0; 1125 if (attrs.secure) { 1126 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1127 val |= (1 << 0); 1128 } 1129 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1130 val |= (1 << 2); 1131 } 1132 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1133 val |= (1 << 3); 1134 } 1135 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1136 val |= (1 << 7); 1137 } 1138 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1139 val |= (1 << 10); 1140 } 1141 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1142 val |= (1 << 11); 1143 } 1144 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1145 val |= (1 << 12); 1146 } 1147 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1148 val |= (1 << 13); 1149 } 1150 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1151 val |= (1 << 15); 1152 } 1153 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1154 val |= (1 << 16); 1155 } 1156 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1157 val |= (1 << 18); 1158 } 1159 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1160 val |= (1 << 21); 1161 } 1162 /* SecureFault is not banked but is always RAZ/WI to NS */ 1163 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1164 val |= (1 << 4); 1165 } 1166 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1167 val |= (1 << 19); 1168 } 1169 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1170 val |= (1 << 20); 1171 } 1172 } else { 1173 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1174 val |= (1 << 0); 1175 } 1176 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1177 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1178 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1179 val |= (1 << 2); 1180 } 1181 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1182 val |= (1 << 21); 1183 } 1184 } 1185 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1186 val |= (1 << 3); 1187 } 1188 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1189 val |= (1 << 7); 1190 } 1191 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1192 val |= (1 << 10); 1193 } 1194 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1195 val |= (1 << 11); 1196 } 1197 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1198 val |= (1 << 12); 1199 } 1200 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1201 val |= (1 << 13); 1202 } 1203 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1204 val |= (1 << 15); 1205 } 1206 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1207 val |= (1 << 16); 1208 } 1209 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1210 val |= (1 << 18); 1211 } 1212 } 1213 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1214 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1215 val |= (1 << 1); 1216 } 1217 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1218 val |= (1 << 14); 1219 } 1220 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1221 val |= (1 << 17); 1222 } 1223 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1224 s->vectors[ARMV7M_EXCP_NMI].active) { 1225 /* NMIACT is not present in v7M */ 1226 val |= (1 << 5); 1227 } 1228 } 1229 1230 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1231 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1232 val |= (1 << 8); 1233 } 1234 return val; 1235 case 0xd2c: /* Hard Fault Status. */ 1236 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1237 goto bad_offset; 1238 } 1239 return cpu->env.v7m.hfsr; 1240 case 0xd30: /* Debug Fault Status. */ 1241 return cpu->env.v7m.dfsr; 1242 case 0xd34: /* MMFAR MemManage Fault Address */ 1243 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1244 goto bad_offset; 1245 } 1246 return cpu->env.v7m.mmfar[attrs.secure]; 1247 case 0xd38: /* Bus Fault Address. */ 1248 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1249 goto bad_offset; 1250 } 1251 if (!attrs.secure && 1252 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1253 return 0; 1254 } 1255 return cpu->env.v7m.bfar; 1256 case 0xd3c: /* Aux Fault Status. */ 1257 /* TODO: Implement fault status registers. */ 1258 qemu_log_mask(LOG_UNIMP, 1259 "Aux Fault status registers unimplemented\n"); 1260 return 0; 1261 case 0xd40: /* PFR0. */ 1262 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1263 goto bad_offset; 1264 } 1265 return cpu->isar.id_pfr0; 1266 case 0xd44: /* PFR1. */ 1267 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1268 goto bad_offset; 1269 } 1270 return cpu->isar.id_pfr1; 1271 case 0xd48: /* DFR0. */ 1272 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1273 goto bad_offset; 1274 } 1275 return cpu->isar.id_dfr0; 1276 case 0xd4c: /* AFR0. */ 1277 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1278 goto bad_offset; 1279 } 1280 return cpu->id_afr0; 1281 case 0xd50: /* MMFR0. */ 1282 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1283 goto bad_offset; 1284 } 1285 return cpu->isar.id_mmfr0; 1286 case 0xd54: /* MMFR1. */ 1287 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1288 goto bad_offset; 1289 } 1290 return cpu->isar.id_mmfr1; 1291 case 0xd58: /* MMFR2. */ 1292 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1293 goto bad_offset; 1294 } 1295 return cpu->isar.id_mmfr2; 1296 case 0xd5c: /* MMFR3. */ 1297 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1298 goto bad_offset; 1299 } 1300 return cpu->isar.id_mmfr3; 1301 case 0xd60: /* ISAR0. */ 1302 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1303 goto bad_offset; 1304 } 1305 return cpu->isar.id_isar0; 1306 case 0xd64: /* ISAR1. */ 1307 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1308 goto bad_offset; 1309 } 1310 return cpu->isar.id_isar1; 1311 case 0xd68: /* ISAR2. */ 1312 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1313 goto bad_offset; 1314 } 1315 return cpu->isar.id_isar2; 1316 case 0xd6c: /* ISAR3. */ 1317 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1318 goto bad_offset; 1319 } 1320 return cpu->isar.id_isar3; 1321 case 0xd70: /* ISAR4. */ 1322 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1323 goto bad_offset; 1324 } 1325 return cpu->isar.id_isar4; 1326 case 0xd74: /* ISAR5. */ 1327 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1328 goto bad_offset; 1329 } 1330 return cpu->isar.id_isar5; 1331 case 0xd78: /* CLIDR */ 1332 return cpu->clidr; 1333 case 0xd7c: /* CTR */ 1334 return cpu->ctr; 1335 case 0xd80: /* CSSIDR */ 1336 { 1337 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1338 return cpu->ccsidr[idx]; 1339 } 1340 case 0xd84: /* CSSELR */ 1341 return cpu->env.v7m.csselr[attrs.secure]; 1342 case 0xd88: /* CPACR */ 1343 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1344 return 0; 1345 } 1346 return cpu->env.v7m.cpacr[attrs.secure]; 1347 case 0xd8c: /* NSACR */ 1348 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1349 return 0; 1350 } 1351 return cpu->env.v7m.nsacr; 1352 /* TODO: Implement debug registers. */ 1353 case 0xd90: /* MPU_TYPE */ 1354 /* Unified MPU; if the MPU is not present this value is zero */ 1355 return cpu->pmsav7_dregion << 8; 1356 case 0xd94: /* MPU_CTRL */ 1357 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1358 case 0xd98: /* MPU_RNR */ 1359 return cpu->env.pmsav7.rnr[attrs.secure]; 1360 case 0xd9c: /* MPU_RBAR */ 1361 case 0xda4: /* MPU_RBAR_A1 */ 1362 case 0xdac: /* MPU_RBAR_A2 */ 1363 case 0xdb4: /* MPU_RBAR_A3 */ 1364 { 1365 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1366 1367 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1368 /* PMSAv8M handling of the aliases is different from v7M: 1369 * aliases A1, A2, A3 override the low two bits of the region 1370 * number in MPU_RNR, and there is no 'region' field in the 1371 * RBAR register. 1372 */ 1373 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1374 if (aliasno) { 1375 region = deposit32(region, 0, 2, aliasno); 1376 } 1377 if (region >= cpu->pmsav7_dregion) { 1378 return 0; 1379 } 1380 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1381 } 1382 1383 if (region >= cpu->pmsav7_dregion) { 1384 return 0; 1385 } 1386 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1387 } 1388 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1389 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1390 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1391 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1392 { 1393 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1394 1395 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1396 /* PMSAv8M handling of the aliases is different from v7M: 1397 * aliases A1, A2, A3 override the low two bits of the region 1398 * number in MPU_RNR. 1399 */ 1400 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1401 if (aliasno) { 1402 region = deposit32(region, 0, 2, aliasno); 1403 } 1404 if (region >= cpu->pmsav7_dregion) { 1405 return 0; 1406 } 1407 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1408 } 1409 1410 if (region >= cpu->pmsav7_dregion) { 1411 return 0; 1412 } 1413 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1414 (cpu->env.pmsav7.drsr[region] & 0xffff); 1415 } 1416 case 0xdc0: /* MPU_MAIR0 */ 1417 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1418 goto bad_offset; 1419 } 1420 return cpu->env.pmsav8.mair0[attrs.secure]; 1421 case 0xdc4: /* MPU_MAIR1 */ 1422 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1423 goto bad_offset; 1424 } 1425 return cpu->env.pmsav8.mair1[attrs.secure]; 1426 case 0xdd0: /* SAU_CTRL */ 1427 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1428 goto bad_offset; 1429 } 1430 if (!attrs.secure) { 1431 return 0; 1432 } 1433 return cpu->env.sau.ctrl; 1434 case 0xdd4: /* SAU_TYPE */ 1435 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1436 goto bad_offset; 1437 } 1438 if (!attrs.secure) { 1439 return 0; 1440 } 1441 return cpu->sau_sregion; 1442 case 0xdd8: /* SAU_RNR */ 1443 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1444 goto bad_offset; 1445 } 1446 if (!attrs.secure) { 1447 return 0; 1448 } 1449 return cpu->env.sau.rnr; 1450 case 0xddc: /* SAU_RBAR */ 1451 { 1452 int region = cpu->env.sau.rnr; 1453 1454 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1455 goto bad_offset; 1456 } 1457 if (!attrs.secure) { 1458 return 0; 1459 } 1460 if (region >= cpu->sau_sregion) { 1461 return 0; 1462 } 1463 return cpu->env.sau.rbar[region]; 1464 } 1465 case 0xde0: /* SAU_RLAR */ 1466 { 1467 int region = cpu->env.sau.rnr; 1468 1469 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1470 goto bad_offset; 1471 } 1472 if (!attrs.secure) { 1473 return 0; 1474 } 1475 if (region >= cpu->sau_sregion) { 1476 return 0; 1477 } 1478 return cpu->env.sau.rlar[region]; 1479 } 1480 case 0xde4: /* SFSR */ 1481 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1482 goto bad_offset; 1483 } 1484 if (!attrs.secure) { 1485 return 0; 1486 } 1487 return cpu->env.v7m.sfsr; 1488 case 0xde8: /* SFAR */ 1489 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1490 goto bad_offset; 1491 } 1492 if (!attrs.secure) { 1493 return 0; 1494 } 1495 return cpu->env.v7m.sfar; 1496 case 0xf04: /* RFSR */ 1497 if (!cpu_isar_feature(aa32_ras, cpu)) { 1498 goto bad_offset; 1499 } 1500 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1501 return 0; 1502 case 0xf34: /* FPCCR */ 1503 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1504 return 0; 1505 } 1506 if (attrs.secure) { 1507 return cpu->env.v7m.fpccr[M_REG_S]; 1508 } else { 1509 /* 1510 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1511 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1512 * other non-banked bits RAZ. 1513 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1514 */ 1515 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1516 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1517 R_V7M_FPCCR_CLRONRET_MASK | 1518 R_V7M_FPCCR_MONRDY_MASK; 1519 1520 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1521 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1522 } 1523 1524 value &= mask; 1525 1526 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1527 return value; 1528 } 1529 case 0xf38: /* FPCAR */ 1530 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1531 return 0; 1532 } 1533 return cpu->env.v7m.fpcar[attrs.secure]; 1534 case 0xf3c: /* FPDSCR */ 1535 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1536 return 0; 1537 } 1538 return cpu->env.v7m.fpdscr[attrs.secure]; 1539 case 0xf40: /* MVFR0 */ 1540 return cpu->isar.mvfr0; 1541 case 0xf44: /* MVFR1 */ 1542 return cpu->isar.mvfr1; 1543 case 0xf48: /* MVFR2 */ 1544 return cpu->isar.mvfr2; 1545 default: 1546 bad_offset: 1547 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1548 return 0; 1549 } 1550 } 1551 1552 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1553 MemTxAttrs attrs) 1554 { 1555 ARMCPU *cpu = s->cpu; 1556 1557 switch (offset) { 1558 case 0xc: /* CPPWR */ 1559 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1560 goto bad_offset; 1561 } 1562 /* Make the IMPDEF choice to RAZ/WI this. */ 1563 break; 1564 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1565 { 1566 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1567 int i; 1568 1569 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1570 goto bad_offset; 1571 } 1572 if (!attrs.secure) { 1573 break; 1574 } 1575 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1576 s->itns[startvec + i] = (value >> i) & 1; 1577 } 1578 nvic_irq_update(s); 1579 break; 1580 } 1581 case 0xd04: /* Interrupt Control State (ICSR) */ 1582 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1583 if (value & (1 << 31)) { 1584 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1585 } else if (value & (1 << 30) && 1586 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1587 /* PENDNMICLR didn't exist in v7M */ 1588 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1589 } 1590 } 1591 if (value & (1 << 28)) { 1592 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1593 } else if (value & (1 << 27)) { 1594 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1595 } 1596 if (value & (1 << 26)) { 1597 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1598 } else if (value & (1 << 25)) { 1599 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1600 } 1601 break; 1602 case 0xd08: /* Vector Table Offset. */ 1603 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1604 break; 1605 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1606 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1607 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1608 if (attrs.secure || 1609 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1610 signal_sysresetreq(s); 1611 } 1612 } 1613 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1614 qemu_log_mask(LOG_GUEST_ERROR, 1615 "Setting VECTCLRACTIVE when not in DEBUG mode " 1616 "is UNPREDICTABLE\n"); 1617 } 1618 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1619 /* NB: this bit is RES0 in v8M */ 1620 qemu_log_mask(LOG_GUEST_ERROR, 1621 "Setting VECTRESET when not in DEBUG mode " 1622 "is UNPREDICTABLE\n"); 1623 } 1624 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1625 s->prigroup[attrs.secure] = 1626 extract32(value, 1627 R_V7M_AIRCR_PRIGROUP_SHIFT, 1628 R_V7M_AIRCR_PRIGROUP_LENGTH); 1629 } 1630 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1631 if (attrs.secure) { 1632 /* These bits are only writable by secure */ 1633 cpu->env.v7m.aircr = value & 1634 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1635 R_V7M_AIRCR_BFHFNMINS_MASK | 1636 R_V7M_AIRCR_PRIS_MASK); 1637 /* BFHFNMINS changes the priority of Secure HardFault, and 1638 * allows a pending Non-secure HardFault to preempt (which 1639 * we implement by marking it enabled). 1640 */ 1641 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1642 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1643 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1644 } else { 1645 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1646 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1647 } 1648 } 1649 nvic_irq_update(s); 1650 } 1651 break; 1652 case 0xd10: /* System Control. */ 1653 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1654 goto bad_offset; 1655 } 1656 /* We don't implement deep-sleep so these bits are RAZ/WI. 1657 * The other bits in the register are banked. 1658 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1659 * is architecturally permitted. 1660 */ 1661 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1662 cpu->env.v7m.scr[attrs.secure] = value; 1663 break; 1664 case 0xd14: /* Configuration Control. */ 1665 { 1666 uint32_t mask; 1667 1668 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1669 goto bad_offset; 1670 } 1671 1672 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1673 mask = R_V7M_CCR_STKALIGN_MASK | 1674 R_V7M_CCR_BFHFNMIGN_MASK | 1675 R_V7M_CCR_DIV_0_TRP_MASK | 1676 R_V7M_CCR_UNALIGN_TRP_MASK | 1677 R_V7M_CCR_USERSETMPEND_MASK | 1678 R_V7M_CCR_NONBASETHRDENA_MASK; 1679 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1680 /* TRD is always RAZ/WI from NS */ 1681 mask |= R_V7M_CCR_TRD_MASK; 1682 } 1683 value &= mask; 1684 1685 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1686 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1687 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1688 | R_V7M_CCR_STKALIGN_MASK; 1689 } 1690 if (attrs.secure) { 1691 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1692 cpu->env.v7m.ccr[M_REG_NS] = 1693 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1694 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1695 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1696 } else { 1697 /* 1698 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1699 * preserve the state currently in the NS element of the array 1700 */ 1701 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1702 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1703 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1704 } 1705 } 1706 1707 cpu->env.v7m.ccr[attrs.secure] = value; 1708 break; 1709 } 1710 case 0xd24: /* System Handler Control and State (SHCSR) */ 1711 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1712 goto bad_offset; 1713 } 1714 if (attrs.secure) { 1715 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1716 /* Secure HardFault active bit cannot be written */ 1717 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1718 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1719 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1720 (value & (1 << 10)) != 0; 1721 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1722 (value & (1 << 11)) != 0; 1723 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1724 (value & (1 << 12)) != 0; 1725 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1726 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1727 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1728 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1729 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1730 (value & (1 << 18)) != 0; 1731 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1732 /* SecureFault not banked, but RAZ/WI to NS */ 1733 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1734 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1735 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1736 } else { 1737 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1738 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1739 /* HARDFAULTPENDED is not present in v7M */ 1740 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1741 } 1742 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1743 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1744 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1745 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1746 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1747 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1748 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1749 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1750 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1751 } 1752 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1753 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1754 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1755 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1756 } 1757 /* NMIACT can only be written if the write is of a zero, with 1758 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1759 */ 1760 if (!attrs.secure && cpu->env.v7m.secure && 1761 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1762 (value & (1 << 5)) == 0) { 1763 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1764 } 1765 /* HARDFAULTACT can only be written if the write is of a zero 1766 * to the non-secure HardFault state by the CPU in secure state. 1767 * The only case where we can be targeting the non-secure HF state 1768 * when in secure state is if this is a write via the NS alias 1769 * and BFHFNMINS is 1. 1770 */ 1771 if (!attrs.secure && cpu->env.v7m.secure && 1772 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1773 (value & (1 << 2)) == 0) { 1774 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1775 } 1776 1777 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1778 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1779 nvic_irq_update(s); 1780 break; 1781 case 0xd2c: /* Hard Fault Status. */ 1782 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1783 goto bad_offset; 1784 } 1785 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1786 break; 1787 case 0xd30: /* Debug Fault Status. */ 1788 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1789 break; 1790 case 0xd34: /* Mem Manage Address. */ 1791 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1792 goto bad_offset; 1793 } 1794 cpu->env.v7m.mmfar[attrs.secure] = value; 1795 return; 1796 case 0xd38: /* Bus Fault Address. */ 1797 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1798 goto bad_offset; 1799 } 1800 if (!attrs.secure && 1801 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1802 return; 1803 } 1804 cpu->env.v7m.bfar = value; 1805 return; 1806 case 0xd3c: /* Aux Fault Status. */ 1807 qemu_log_mask(LOG_UNIMP, 1808 "NVIC: Aux fault status registers unimplemented\n"); 1809 break; 1810 case 0xd84: /* CSSELR */ 1811 if (!arm_v7m_csselr_razwi(cpu)) { 1812 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1813 } 1814 break; 1815 case 0xd88: /* CPACR */ 1816 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1817 /* We implement only the Floating Point extension's CP10/CP11 */ 1818 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1819 } 1820 break; 1821 case 0xd8c: /* NSACR */ 1822 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1823 /* We implement only the Floating Point extension's CP10/CP11 */ 1824 cpu->env.v7m.nsacr = value & (3 << 10); 1825 } 1826 break; 1827 case 0xd90: /* MPU_TYPE */ 1828 return; /* RO */ 1829 case 0xd94: /* MPU_CTRL */ 1830 if ((value & 1831 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1832 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1833 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1834 "UNPREDICTABLE\n"); 1835 } 1836 cpu->env.v7m.mpu_ctrl[attrs.secure] 1837 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1838 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1839 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1840 tlb_flush(CPU(cpu)); 1841 break; 1842 case 0xd98: /* MPU_RNR */ 1843 if (value >= cpu->pmsav7_dregion) { 1844 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1845 PRIu32 "/%" PRIu32 "\n", 1846 value, cpu->pmsav7_dregion); 1847 } else { 1848 cpu->env.pmsav7.rnr[attrs.secure] = value; 1849 } 1850 break; 1851 case 0xd9c: /* MPU_RBAR */ 1852 case 0xda4: /* MPU_RBAR_A1 */ 1853 case 0xdac: /* MPU_RBAR_A2 */ 1854 case 0xdb4: /* MPU_RBAR_A3 */ 1855 { 1856 int region; 1857 1858 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1859 /* PMSAv8M handling of the aliases is different from v7M: 1860 * aliases A1, A2, A3 override the low two bits of the region 1861 * number in MPU_RNR, and there is no 'region' field in the 1862 * RBAR register. 1863 */ 1864 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1865 1866 region = cpu->env.pmsav7.rnr[attrs.secure]; 1867 if (aliasno) { 1868 region = deposit32(region, 0, 2, aliasno); 1869 } 1870 if (region >= cpu->pmsav7_dregion) { 1871 return; 1872 } 1873 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1874 tlb_flush(CPU(cpu)); 1875 return; 1876 } 1877 1878 if (value & (1 << 4)) { 1879 /* VALID bit means use the region number specified in this 1880 * value and also update MPU_RNR.REGION with that value. 1881 */ 1882 region = extract32(value, 0, 4); 1883 if (region >= cpu->pmsav7_dregion) { 1884 qemu_log_mask(LOG_GUEST_ERROR, 1885 "MPU region out of range %u/%" PRIu32 "\n", 1886 region, cpu->pmsav7_dregion); 1887 return; 1888 } 1889 cpu->env.pmsav7.rnr[attrs.secure] = region; 1890 } else { 1891 region = cpu->env.pmsav7.rnr[attrs.secure]; 1892 } 1893 1894 if (region >= cpu->pmsav7_dregion) { 1895 return; 1896 } 1897 1898 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1899 tlb_flush(CPU(cpu)); 1900 break; 1901 } 1902 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1903 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1904 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1905 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1906 { 1907 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1908 1909 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1910 /* PMSAv8M handling of the aliases is different from v7M: 1911 * aliases A1, A2, A3 override the low two bits of the region 1912 * number in MPU_RNR. 1913 */ 1914 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1915 1916 region = cpu->env.pmsav7.rnr[attrs.secure]; 1917 if (aliasno) { 1918 region = deposit32(region, 0, 2, aliasno); 1919 } 1920 if (region >= cpu->pmsav7_dregion) { 1921 return; 1922 } 1923 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1924 tlb_flush(CPU(cpu)); 1925 return; 1926 } 1927 1928 if (region >= cpu->pmsav7_dregion) { 1929 return; 1930 } 1931 1932 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1933 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1934 tlb_flush(CPU(cpu)); 1935 break; 1936 } 1937 case 0xdc0: /* MPU_MAIR0 */ 1938 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1939 goto bad_offset; 1940 } 1941 if (cpu->pmsav7_dregion) { 1942 /* Register is RES0 if no MPU regions are implemented */ 1943 cpu->env.pmsav8.mair0[attrs.secure] = value; 1944 } 1945 /* We don't need to do anything else because memory attributes 1946 * only affect cacheability, and we don't implement caching. 1947 */ 1948 break; 1949 case 0xdc4: /* MPU_MAIR1 */ 1950 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1951 goto bad_offset; 1952 } 1953 if (cpu->pmsav7_dregion) { 1954 /* Register is RES0 if no MPU regions are implemented */ 1955 cpu->env.pmsav8.mair1[attrs.secure] = value; 1956 } 1957 /* We don't need to do anything else because memory attributes 1958 * only affect cacheability, and we don't implement caching. 1959 */ 1960 break; 1961 case 0xdd0: /* SAU_CTRL */ 1962 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1963 goto bad_offset; 1964 } 1965 if (!attrs.secure) { 1966 return; 1967 } 1968 cpu->env.sau.ctrl = value & 3; 1969 break; 1970 case 0xdd4: /* SAU_TYPE */ 1971 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1972 goto bad_offset; 1973 } 1974 break; 1975 case 0xdd8: /* SAU_RNR */ 1976 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1977 goto bad_offset; 1978 } 1979 if (!attrs.secure) { 1980 return; 1981 } 1982 if (value >= cpu->sau_sregion) { 1983 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1984 PRIu32 "/%" PRIu32 "\n", 1985 value, cpu->sau_sregion); 1986 } else { 1987 cpu->env.sau.rnr = value; 1988 } 1989 break; 1990 case 0xddc: /* SAU_RBAR */ 1991 { 1992 int region = cpu->env.sau.rnr; 1993 1994 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1995 goto bad_offset; 1996 } 1997 if (!attrs.secure) { 1998 return; 1999 } 2000 if (region >= cpu->sau_sregion) { 2001 return; 2002 } 2003 cpu->env.sau.rbar[region] = value & ~0x1f; 2004 tlb_flush(CPU(cpu)); 2005 break; 2006 } 2007 case 0xde0: /* SAU_RLAR */ 2008 { 2009 int region = cpu->env.sau.rnr; 2010 2011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2012 goto bad_offset; 2013 } 2014 if (!attrs.secure) { 2015 return; 2016 } 2017 if (region >= cpu->sau_sregion) { 2018 return; 2019 } 2020 cpu->env.sau.rlar[region] = value & ~0x1c; 2021 tlb_flush(CPU(cpu)); 2022 break; 2023 } 2024 case 0xde4: /* SFSR */ 2025 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2026 goto bad_offset; 2027 } 2028 if (!attrs.secure) { 2029 return; 2030 } 2031 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2032 break; 2033 case 0xde8: /* SFAR */ 2034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2035 goto bad_offset; 2036 } 2037 if (!attrs.secure) { 2038 return; 2039 } 2040 cpu->env.v7m.sfsr = value; 2041 break; 2042 case 0xf00: /* Software Triggered Interrupt Register */ 2043 { 2044 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2045 2046 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2047 goto bad_offset; 2048 } 2049 2050 if (excnum < s->num_irq) { 2051 armv7m_nvic_set_pending(s, excnum, false); 2052 } 2053 break; 2054 } 2055 case 0xf04: /* RFSR */ 2056 if (!cpu_isar_feature(aa32_ras, cpu)) { 2057 goto bad_offset; 2058 } 2059 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2060 break; 2061 case 0xf34: /* FPCCR */ 2062 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2063 /* Not all bits here are banked. */ 2064 uint32_t fpccr_s; 2065 2066 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2067 /* Don't allow setting of bits not present in v7M */ 2068 value &= (R_V7M_FPCCR_LSPACT_MASK | 2069 R_V7M_FPCCR_USER_MASK | 2070 R_V7M_FPCCR_THREAD_MASK | 2071 R_V7M_FPCCR_HFRDY_MASK | 2072 R_V7M_FPCCR_MMRDY_MASK | 2073 R_V7M_FPCCR_BFRDY_MASK | 2074 R_V7M_FPCCR_MONRDY_MASK | 2075 R_V7M_FPCCR_LSPEN_MASK | 2076 R_V7M_FPCCR_ASPEN_MASK); 2077 } 2078 value &= ~R_V7M_FPCCR_RES0_MASK; 2079 2080 if (!attrs.secure) { 2081 /* Some non-banked bits are configurably writable by NS */ 2082 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2083 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2084 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2085 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2086 } 2087 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2088 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2089 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2090 } 2091 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2092 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2093 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2094 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2095 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2096 } 2097 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2098 { 2099 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2100 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2101 } 2102 2103 /* 2104 * All other non-banked bits are RAZ/WI from NS; write 2105 * just the banked bits to fpccr[M_REG_NS]. 2106 */ 2107 value &= R_V7M_FPCCR_BANKED_MASK; 2108 cpu->env.v7m.fpccr[M_REG_NS] = value; 2109 } else { 2110 fpccr_s = value; 2111 } 2112 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2113 } 2114 break; 2115 case 0xf38: /* FPCAR */ 2116 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2117 value &= ~7; 2118 cpu->env.v7m.fpcar[attrs.secure] = value; 2119 } 2120 break; 2121 case 0xf3c: /* FPDSCR */ 2122 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2123 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2124 if (cpu_isar_feature(any_fp16, cpu)) { 2125 mask |= FPCR_FZ16; 2126 } 2127 value &= mask; 2128 if (cpu_isar_feature(aa32_lob, cpu)) { 2129 value |= 4 << FPCR_LTPSIZE_SHIFT; 2130 } 2131 cpu->env.v7m.fpdscr[attrs.secure] = value; 2132 } 2133 break; 2134 case 0xf50: /* ICIALLU */ 2135 case 0xf58: /* ICIMVAU */ 2136 case 0xf5c: /* DCIMVAC */ 2137 case 0xf60: /* DCISW */ 2138 case 0xf64: /* DCCMVAU */ 2139 case 0xf68: /* DCCMVAC */ 2140 case 0xf6c: /* DCCSW */ 2141 case 0xf70: /* DCCIMVAC */ 2142 case 0xf74: /* DCCISW */ 2143 case 0xf78: /* BPIALL */ 2144 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2145 break; 2146 default: 2147 bad_offset: 2148 qemu_log_mask(LOG_GUEST_ERROR, 2149 "NVIC: Bad write offset 0x%x\n", offset); 2150 } 2151 } 2152 2153 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2154 { 2155 /* Return true if unprivileged access to this register is permitted. */ 2156 switch (offset) { 2157 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2158 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2159 * controls access even though the CPU is in Secure state (I_QDKX). 2160 */ 2161 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2162 default: 2163 /* All other user accesses cause a BusFault unconditionally */ 2164 return false; 2165 } 2166 } 2167 2168 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2169 { 2170 /* Behaviour for the SHPR register field for this exception: 2171 * return M_REG_NS to use the nonsecure vector (including for 2172 * non-banked exceptions), M_REG_S for the secure version of 2173 * a banked exception, and -1 if this field should RAZ/WI. 2174 */ 2175 switch (exc) { 2176 case ARMV7M_EXCP_MEM: 2177 case ARMV7M_EXCP_USAGE: 2178 case ARMV7M_EXCP_SVC: 2179 case ARMV7M_EXCP_PENDSV: 2180 case ARMV7M_EXCP_SYSTICK: 2181 /* Banked exceptions */ 2182 return attrs.secure; 2183 case ARMV7M_EXCP_BUS: 2184 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2185 if (!attrs.secure && 2186 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2187 return -1; 2188 } 2189 return M_REG_NS; 2190 case ARMV7M_EXCP_SECURE: 2191 /* Not banked, RAZ/WI from nonsecure */ 2192 if (!attrs.secure) { 2193 return -1; 2194 } 2195 return M_REG_NS; 2196 case ARMV7M_EXCP_DEBUG: 2197 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2198 return M_REG_NS; 2199 case 8 ... 10: 2200 case 13: 2201 /* RES0 */ 2202 return -1; 2203 default: 2204 /* Not reachable due to decode of SHPR register addresses */ 2205 g_assert_not_reached(); 2206 } 2207 } 2208 2209 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2210 uint64_t *data, unsigned size, 2211 MemTxAttrs attrs) 2212 { 2213 NVICState *s = (NVICState *)opaque; 2214 uint32_t offset = addr; 2215 unsigned i, startvec, end; 2216 uint32_t val; 2217 2218 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2219 /* Generate BusFault for unprivileged accesses */ 2220 return MEMTX_ERROR; 2221 } 2222 2223 switch (offset) { 2224 /* reads of set and clear both return the status */ 2225 case 0x100 ... 0x13f: /* NVIC Set enable */ 2226 offset += 0x80; 2227 /* fall through */ 2228 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2229 val = 0; 2230 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2231 2232 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2233 if (s->vectors[startvec + i].enabled && 2234 (attrs.secure || s->itns[startvec + i])) { 2235 val |= (1 << i); 2236 } 2237 } 2238 break; 2239 case 0x200 ... 0x23f: /* NVIC Set pend */ 2240 offset += 0x80; 2241 /* fall through */ 2242 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2243 val = 0; 2244 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2245 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2246 if (s->vectors[startvec + i].pending && 2247 (attrs.secure || s->itns[startvec + i])) { 2248 val |= (1 << i); 2249 } 2250 } 2251 break; 2252 case 0x300 ... 0x33f: /* NVIC Active */ 2253 val = 0; 2254 2255 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2256 break; 2257 } 2258 2259 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2260 2261 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2262 if (s->vectors[startvec + i].active && 2263 (attrs.secure || s->itns[startvec + i])) { 2264 val |= (1 << i); 2265 } 2266 } 2267 break; 2268 case 0x400 ... 0x5ef: /* NVIC Priority */ 2269 val = 0; 2270 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2271 2272 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2273 if (attrs.secure || s->itns[startvec + i]) { 2274 val |= s->vectors[startvec + i].prio << (8 * i); 2275 } 2276 } 2277 break; 2278 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2279 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2280 val = 0; 2281 break; 2282 } 2283 /* fall through */ 2284 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2285 val = 0; 2286 for (i = 0; i < size; i++) { 2287 unsigned hdlidx = (offset - 0xd14) + i; 2288 int sbank = shpr_bank(s, hdlidx, attrs); 2289 2290 if (sbank < 0) { 2291 continue; 2292 } 2293 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2294 } 2295 break; 2296 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2297 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2298 val = 0; 2299 break; 2300 }; 2301 /* 2302 * The BFSR bits [15:8] are shared between security states 2303 * and we store them in the NS copy. They are RAZ/WI for 2304 * NS code if AIRCR.BFHFNMINS is 0. 2305 */ 2306 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2307 if (!attrs.secure && 2308 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2309 val &= ~R_V7M_CFSR_BFSR_MASK; 2310 } else { 2311 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2312 } 2313 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2314 break; 2315 case 0xfe0 ... 0xfff: /* ID. */ 2316 if (offset & 3) { 2317 val = 0; 2318 } else { 2319 val = nvic_id[(offset - 0xfe0) >> 2]; 2320 } 2321 break; 2322 default: 2323 if (size == 4) { 2324 val = nvic_readl(s, offset, attrs); 2325 } else { 2326 qemu_log_mask(LOG_GUEST_ERROR, 2327 "NVIC: Bad read of size %d at offset 0x%x\n", 2328 size, offset); 2329 val = 0; 2330 } 2331 } 2332 2333 trace_nvic_sysreg_read(addr, val, size); 2334 *data = val; 2335 return MEMTX_OK; 2336 } 2337 2338 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2339 uint64_t value, unsigned size, 2340 MemTxAttrs attrs) 2341 { 2342 NVICState *s = (NVICState *)opaque; 2343 uint32_t offset = addr; 2344 unsigned i, startvec, end; 2345 unsigned setval = 0; 2346 2347 trace_nvic_sysreg_write(addr, value, size); 2348 2349 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2350 /* Generate BusFault for unprivileged accesses */ 2351 return MEMTX_ERROR; 2352 } 2353 2354 switch (offset) { 2355 case 0x100 ... 0x13f: /* NVIC Set enable */ 2356 offset += 0x80; 2357 setval = 1; 2358 /* fall through */ 2359 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2360 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2361 2362 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2363 if (value & (1 << i) && 2364 (attrs.secure || s->itns[startvec + i])) { 2365 s->vectors[startvec + i].enabled = setval; 2366 } 2367 } 2368 nvic_irq_update(s); 2369 goto exit_ok; 2370 case 0x200 ... 0x23f: /* NVIC Set pend */ 2371 /* the special logic in armv7m_nvic_set_pending() 2372 * is not needed since IRQs are never escalated 2373 */ 2374 offset += 0x80; 2375 setval = 1; 2376 /* fall through */ 2377 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2378 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2379 2380 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2381 /* 2382 * Note that if the input line is still held high and the interrupt 2383 * is not active then rule R_CVJS requires that the Pending state 2384 * remains set; in that case we mustn't let it be cleared. 2385 */ 2386 if (value & (1 << i) && 2387 (attrs.secure || s->itns[startvec + i]) && 2388 !(setval == 0 && s->vectors[startvec + i].level && 2389 !s->vectors[startvec + i].active)) { 2390 s->vectors[startvec + i].pending = setval; 2391 } 2392 } 2393 nvic_irq_update(s); 2394 goto exit_ok; 2395 case 0x300 ... 0x33f: /* NVIC Active */ 2396 goto exit_ok; /* R/O */ 2397 case 0x400 ... 0x5ef: /* NVIC Priority */ 2398 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2399 2400 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2401 if (attrs.secure || s->itns[startvec + i]) { 2402 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2403 } 2404 } 2405 nvic_irq_update(s); 2406 goto exit_ok; 2407 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2408 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2409 goto exit_ok; 2410 } 2411 /* fall through */ 2412 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2413 for (i = 0; i < size; i++) { 2414 unsigned hdlidx = (offset - 0xd14) + i; 2415 int newprio = extract32(value, i * 8, 8); 2416 int sbank = shpr_bank(s, hdlidx, attrs); 2417 2418 if (sbank < 0) { 2419 continue; 2420 } 2421 set_prio(s, hdlidx, sbank, newprio); 2422 } 2423 nvic_irq_update(s); 2424 goto exit_ok; 2425 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2426 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2427 goto exit_ok; 2428 } 2429 /* All bits are W1C, so construct 32 bit value with 0s in 2430 * the parts not written by the access size 2431 */ 2432 value <<= ((offset - 0xd28) * 8); 2433 2434 if (!attrs.secure && 2435 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2436 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2437 value &= ~R_V7M_CFSR_BFSR_MASK; 2438 } 2439 2440 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2441 if (attrs.secure) { 2442 /* The BFSR bits [15:8] are shared between security states 2443 * and we store them in the NS copy. 2444 */ 2445 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2446 } 2447 goto exit_ok; 2448 } 2449 if (size == 4) { 2450 nvic_writel(s, offset, value, attrs); 2451 goto exit_ok; 2452 } 2453 qemu_log_mask(LOG_GUEST_ERROR, 2454 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2455 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2456 2457 exit_ok: 2458 if (tcg_enabled()) { 2459 /* Ensure any changes made are reflected in the cached hflags. */ 2460 arm_rebuild_hflags(&s->cpu->env); 2461 } 2462 return MEMTX_OK; 2463 } 2464 2465 static const MemoryRegionOps nvic_sysreg_ops = { 2466 .read_with_attrs = nvic_sysreg_read, 2467 .write_with_attrs = nvic_sysreg_write, 2468 .endianness = DEVICE_NATIVE_ENDIAN, 2469 }; 2470 2471 static int nvic_post_load(void *opaque, int version_id) 2472 { 2473 NVICState *s = opaque; 2474 unsigned i; 2475 int resetprio; 2476 2477 /* Check for out of range priority settings */ 2478 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2479 2480 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2481 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2482 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2483 return 1; 2484 } 2485 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2486 if (s->vectors[i].prio & ~0xff) { 2487 return 1; 2488 } 2489 } 2490 2491 nvic_recompute_state(s); 2492 2493 return 0; 2494 } 2495 2496 static const VMStateDescription vmstate_VecInfo = { 2497 .name = "armv7m_nvic_info", 2498 .version_id = 1, 2499 .minimum_version_id = 1, 2500 .fields = (VMStateField[]) { 2501 VMSTATE_INT16(prio, VecInfo), 2502 VMSTATE_UINT8(enabled, VecInfo), 2503 VMSTATE_UINT8(pending, VecInfo), 2504 VMSTATE_UINT8(active, VecInfo), 2505 VMSTATE_UINT8(level, VecInfo), 2506 VMSTATE_END_OF_LIST() 2507 } 2508 }; 2509 2510 static bool nvic_security_needed(void *opaque) 2511 { 2512 NVICState *s = opaque; 2513 2514 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2515 } 2516 2517 static int nvic_security_post_load(void *opaque, int version_id) 2518 { 2519 NVICState *s = opaque; 2520 int i; 2521 2522 /* Check for out of range priority settings */ 2523 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2524 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2525 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2526 * if the CPU state has been migrated yet; a mismatch won't 2527 * cause the emulation to blow up, though. 2528 */ 2529 return 1; 2530 } 2531 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2532 if (s->sec_vectors[i].prio & ~0xff) { 2533 return 1; 2534 } 2535 } 2536 return 0; 2537 } 2538 2539 static const VMStateDescription vmstate_nvic_security = { 2540 .name = "armv7m_nvic/m-security", 2541 .version_id = 1, 2542 .minimum_version_id = 1, 2543 .needed = nvic_security_needed, 2544 .post_load = &nvic_security_post_load, 2545 .fields = (VMStateField[]) { 2546 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2547 vmstate_VecInfo, VecInfo), 2548 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2549 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2550 VMSTATE_END_OF_LIST() 2551 } 2552 }; 2553 2554 static const VMStateDescription vmstate_nvic = { 2555 .name = "armv7m_nvic", 2556 .version_id = 4, 2557 .minimum_version_id = 4, 2558 .post_load = &nvic_post_load, 2559 .fields = (VMStateField[]) { 2560 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2561 vmstate_VecInfo, VecInfo), 2562 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2563 VMSTATE_END_OF_LIST() 2564 }, 2565 .subsections = (const VMStateDescription*[]) { 2566 &vmstate_nvic_security, 2567 NULL 2568 } 2569 }; 2570 2571 static Property props_nvic[] = { 2572 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2573 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2574 DEFINE_PROP_END_OF_LIST() 2575 }; 2576 2577 static void armv7m_nvic_reset(DeviceState *dev) 2578 { 2579 int resetprio; 2580 NVICState *s = NVIC(dev); 2581 2582 memset(s->vectors, 0, sizeof(s->vectors)); 2583 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2584 s->prigroup[M_REG_NS] = 0; 2585 s->prigroup[M_REG_S] = 0; 2586 2587 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2588 /* MEM, BUS, and USAGE are enabled through 2589 * the System Handler Control register 2590 */ 2591 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2592 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2593 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2594 2595 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2596 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2597 2598 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2599 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2600 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2601 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2602 2603 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2604 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2605 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2606 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2607 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2608 2609 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2610 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2611 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2612 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2613 } else { 2614 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2615 } 2616 2617 /* Strictly speaking the reset handler should be enabled. 2618 * However, we don't simulate soft resets through the NVIC, 2619 * and the reset vector should never be pended. 2620 * So we leave it disabled to catch logic errors. 2621 */ 2622 2623 s->exception_prio = NVIC_NOEXC_PRIO; 2624 s->vectpending = 0; 2625 s->vectpending_is_s_banked = false; 2626 s->vectpending_prio = NVIC_NOEXC_PRIO; 2627 2628 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2629 memset(s->itns, 0, sizeof(s->itns)); 2630 } else { 2631 /* This state is constant and not guest accessible in a non-security 2632 * NVIC; we set the bits to true to avoid having to do a feature 2633 * bit check in the NVIC enable/pend/etc register accessors. 2634 */ 2635 int i; 2636 2637 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2638 s->itns[i] = true; 2639 } 2640 } 2641 2642 if (tcg_enabled()) { 2643 /* 2644 * We updated state that affects the CPU's MMUidx and thus its 2645 * hflags; and we can't guarantee that we run before the CPU 2646 * reset function. 2647 */ 2648 arm_rebuild_hflags(&s->cpu->env); 2649 } 2650 } 2651 2652 static void nvic_systick_trigger(void *opaque, int n, int level) 2653 { 2654 NVICState *s = opaque; 2655 2656 if (level) { 2657 /* SysTick just asked us to pend its exception. 2658 * (This is different from an external interrupt line's 2659 * behaviour.) 2660 * n == 0 : NonSecure systick 2661 * n == 1 : Secure systick 2662 */ 2663 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2664 } 2665 } 2666 2667 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2668 { 2669 NVICState *s = NVIC(dev); 2670 2671 /* The armv7m container object will have set our CPU pointer */ 2672 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2673 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2674 return; 2675 } 2676 2677 if (s->num_irq > NVIC_MAX_IRQ) { 2678 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2679 return; 2680 } 2681 2682 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2683 2684 /* include space for internal exception vectors */ 2685 s->num_irq += NVIC_FIRST_IRQ; 2686 2687 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2688 2689 /* 2690 * This device provides a single memory region which covers the 2691 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the 2692 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF. 2693 */ 2694 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2695 "nvic_sysregs", 0x1000); 2696 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem); 2697 } 2698 2699 static void armv7m_nvic_instance_init(Object *obj) 2700 { 2701 DeviceState *dev = DEVICE(obj); 2702 NVICState *nvic = NVIC(obj); 2703 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2704 2705 sysbus_init_irq(sbd, &nvic->excpout); 2706 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2707 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2708 M_REG_NUM_BANKS); 2709 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2710 } 2711 2712 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2713 { 2714 DeviceClass *dc = DEVICE_CLASS(klass); 2715 2716 dc->vmsd = &vmstate_nvic; 2717 device_class_set_props(dc, props_nvic); 2718 dc->reset = armv7m_nvic_reset; 2719 dc->realize = armv7m_nvic_realize; 2720 } 2721 2722 static const TypeInfo armv7m_nvic_info = { 2723 .name = TYPE_NVIC, 2724 .parent = TYPE_SYS_BUS_DEVICE, 2725 .instance_init = armv7m_nvic_instance_init, 2726 .instance_size = sizeof(NVICState), 2727 .class_init = armv7m_nvic_class_init, 2728 .class_size = sizeof(SysBusDeviceClass), 2729 }; 2730 2731 static void armv7m_nvic_register_types(void) 2732 { 2733 type_register_static(&armv7m_nvic_info); 2734 } 2735 2736 type_init(armv7m_nvic_register_types) 2737