xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 63785678)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/arm/arm.h"
19 #include "exec/address-spaces.h"
20 #include "gic_internal.h"
21 
22 typedef struct {
23     GICState gic;
24     struct {
25         uint32_t control;
26         uint32_t reload;
27         int64_t tick;
28         QEMUTimer *timer;
29     } systick;
30     MemoryRegion sysregmem;
31     MemoryRegion gic_iomem_alias;
32     MemoryRegion container;
33     uint32_t num_irq;
34     qemu_irq sysresetreq;
35 } nvic_state;
36 
37 #define TYPE_NVIC "armv7m_nvic"
38 /**
39  * NVICClass:
40  * @parent_reset: the parent class' reset handler.
41  *
42  * A model of the v7M NVIC and System Controller
43  */
44 typedef struct NVICClass {
45     /*< private >*/
46     ARMGICClass parent_class;
47     /*< public >*/
48     DeviceRealize parent_realize;
49     void (*parent_reset)(DeviceState *dev);
50 } NVICClass;
51 
52 #define NVIC_CLASS(klass) \
53     OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
54 #define NVIC_GET_CLASS(obj) \
55     OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
56 #define NVIC(obj) \
57     OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
58 
59 static const uint8_t nvic_id[] = {
60     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
61 };
62 
63 /* qemu timers run at 1GHz.   We want something closer to 1MHz.  */
64 #define SYSTICK_SCALE 1000ULL
65 
66 #define SYSTICK_ENABLE    (1 << 0)
67 #define SYSTICK_TICKINT   (1 << 1)
68 #define SYSTICK_CLKSOURCE (1 << 2)
69 #define SYSTICK_COUNTFLAG (1 << 16)
70 
71 int system_clock_scale;
72 
73 /* Conversion factor from qemu timer to SysTick frequencies.  */
74 static inline int64_t systick_scale(nvic_state *s)
75 {
76     if (s->systick.control & SYSTICK_CLKSOURCE)
77         return system_clock_scale;
78     else
79         return 1000;
80 }
81 
82 static void systick_reload(nvic_state *s, int reset)
83 {
84     /* The Cortex-M3 Devices Generic User Guide says that "When the
85      * ENABLE bit is set to 1, the counter loads the RELOAD value from the
86      * SYST RVR register and then counts down". So, we need to check the
87      * ENABLE bit before reloading the value.
88      */
89     if ((s->systick.control & SYSTICK_ENABLE) == 0) {
90         return;
91     }
92 
93     if (reset)
94         s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
95     s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
96     timer_mod(s->systick.timer, s->systick.tick);
97 }
98 
99 static void systick_timer_tick(void * opaque)
100 {
101     nvic_state *s = (nvic_state *)opaque;
102     s->systick.control |= SYSTICK_COUNTFLAG;
103     if (s->systick.control & SYSTICK_TICKINT) {
104         /* Trigger the interrupt.  */
105         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
106     }
107     if (s->systick.reload == 0) {
108         s->systick.control &= ~SYSTICK_ENABLE;
109     } else {
110         systick_reload(s, 0);
111     }
112 }
113 
114 static void systick_reset(nvic_state *s)
115 {
116     s->systick.control = 0;
117     s->systick.reload = 0;
118     s->systick.tick = 0;
119     timer_del(s->systick.timer);
120 }
121 
122 /* The external routines use the hardware vector numbering, ie. the first
123    IRQ is #16.  The internal GIC routines use #32 as the first IRQ.  */
124 void armv7m_nvic_set_pending(void *opaque, int irq)
125 {
126     nvic_state *s = (nvic_state *)opaque;
127     if (irq >= 16)
128         irq += 16;
129     gic_set_pending_private(&s->gic, 0, irq);
130 }
131 
132 /* Make pending IRQ active.  */
133 int armv7m_nvic_acknowledge_irq(void *opaque)
134 {
135     nvic_state *s = (nvic_state *)opaque;
136     uint32_t irq;
137 
138     irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
139     if (irq == 1023)
140         hw_error("Interrupt but no vector\n");
141     if (irq >= 32)
142         irq -= 16;
143     return irq;
144 }
145 
146 void armv7m_nvic_complete_irq(void *opaque, int irq)
147 {
148     nvic_state *s = (nvic_state *)opaque;
149     if (irq >= 16)
150         irq += 16;
151     gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
152 }
153 
154 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
155 {
156     ARMCPU *cpu;
157     uint32_t val;
158     int irq;
159 
160     switch (offset) {
161     case 4: /* Interrupt Control Type.  */
162         return (s->num_irq / 32) - 1;
163     case 0x10: /* SysTick Control and Status.  */
164         val = s->systick.control;
165         s->systick.control &= ~SYSTICK_COUNTFLAG;
166         return val;
167     case 0x14: /* SysTick Reload Value.  */
168         return s->systick.reload;
169     case 0x18: /* SysTick Current Value.  */
170         {
171             int64_t t;
172             if ((s->systick.control & SYSTICK_ENABLE) == 0)
173                 return 0;
174             t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
175             if (t >= s->systick.tick)
176                 return 0;
177             val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
178             /* The interrupt in triggered when the timer reaches zero.
179                However the counter is not reloaded until the next clock
180                tick.  This is a hack to return zero during the first tick.  */
181             if (val > s->systick.reload)
182                 val = 0;
183             return val;
184         }
185     case 0x1c: /* SysTick Calibration Value.  */
186         return 10000;
187     case 0xd00: /* CPUID Base.  */
188         cpu = ARM_CPU(current_cpu);
189         return cpu->midr;
190     case 0xd04: /* Interrupt Control State.  */
191         /* VECTACTIVE */
192         cpu = ARM_CPU(current_cpu);
193         val = cpu->env.v7m.exception;
194         if (val == 1023) {
195             val = 0;
196         } else if (val >= 32) {
197             val -= 16;
198         }
199         /* VECTPENDING */
200         if (s->gic.current_pending[0] != 1023)
201             val |= (s->gic.current_pending[0] << 12);
202         /* ISRPENDING and RETTOBASE */
203         for (irq = 32; irq < s->num_irq; irq++) {
204             if (s->gic.irq_state[irq].pending) {
205                 val |= (1 << 22);
206                 break;
207             }
208             if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
209                 val |= (1 << 11);
210             }
211         }
212         /* PENDSTSET */
213         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
214             val |= (1 << 26);
215         /* PENDSVSET */
216         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
217             val |= (1 << 28);
218         /* NMIPENDSET */
219         if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
220             val |= (1 << 31);
221         return val;
222     case 0xd08: /* Vector Table Offset.  */
223         cpu = ARM_CPU(current_cpu);
224         return cpu->env.v7m.vecbase;
225     case 0xd0c: /* Application Interrupt/Reset Control.  */
226         return 0xfa050000;
227     case 0xd10: /* System Control.  */
228         /* TODO: Implement SLEEPONEXIT.  */
229         return 0;
230     case 0xd14: /* Configuration Control.  */
231         /* TODO: Implement Configuration Control bits.  */
232         return 0;
233     case 0xd24: /* System Handler Status.  */
234         val = 0;
235         if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
236         if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
237         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
238         if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
239         if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
240         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
241         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
242         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
243         if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
244         if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
245         if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
246         if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
247         if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
248         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
249         return val;
250     case 0xd28: /* Configurable Fault Status.  */
251         /* TODO: Implement Fault Status.  */
252         qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
253         return 0;
254     case 0xd2c: /* Hard Fault Status.  */
255     case 0xd30: /* Debug Fault Status.  */
256     case 0xd34: /* Mem Manage Address.  */
257     case 0xd38: /* Bus Fault Address.  */
258     case 0xd3c: /* Aux Fault Status.  */
259         /* TODO: Implement fault status registers.  */
260         qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
261         return 0;
262     case 0xd40: /* PFR0.  */
263         return 0x00000030;
264     case 0xd44: /* PRF1.  */
265         return 0x00000200;
266     case 0xd48: /* DFR0.  */
267         return 0x00100000;
268     case 0xd4c: /* AFR0.  */
269         return 0x00000000;
270     case 0xd50: /* MMFR0.  */
271         return 0x00000030;
272     case 0xd54: /* MMFR1.  */
273         return 0x00000000;
274     case 0xd58: /* MMFR2.  */
275         return 0x00000000;
276     case 0xd5c: /* MMFR3.  */
277         return 0x00000000;
278     case 0xd60: /* ISAR0.  */
279         return 0x01141110;
280     case 0xd64: /* ISAR1.  */
281         return 0x02111000;
282     case 0xd68: /* ISAR2.  */
283         return 0x21112231;
284     case 0xd6c: /* ISAR3.  */
285         return 0x01111110;
286     case 0xd70: /* ISAR4.  */
287         return 0x01310102;
288     /* TODO: Implement debug registers.  */
289     default:
290         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
291         return 0;
292     }
293 }
294 
295 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
296 {
297     ARMCPU *cpu;
298     uint32_t oldval;
299     switch (offset) {
300     case 0x10: /* SysTick Control and Status.  */
301         oldval = s->systick.control;
302         s->systick.control &= 0xfffffff8;
303         s->systick.control |= value & 7;
304         if ((oldval ^ value) & SYSTICK_ENABLE) {
305             int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
306             if (value & SYSTICK_ENABLE) {
307                 if (s->systick.tick) {
308                     s->systick.tick += now;
309                     timer_mod(s->systick.timer, s->systick.tick);
310                 } else {
311                     systick_reload(s, 1);
312                 }
313             } else {
314                 timer_del(s->systick.timer);
315                 s->systick.tick -= now;
316                 if (s->systick.tick < 0)
317                   s->systick.tick = 0;
318             }
319         } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
320             /* This is a hack. Force the timer to be reloaded
321                when the reference clock is changed.  */
322             systick_reload(s, 1);
323         }
324         break;
325     case 0x14: /* SysTick Reload Value.  */
326         s->systick.reload = value;
327         break;
328     case 0x18: /* SysTick Current Value.  Writes reload the timer.  */
329         systick_reload(s, 1);
330         s->systick.control &= ~SYSTICK_COUNTFLAG;
331         break;
332     case 0xd04: /* Interrupt Control State.  */
333         if (value & (1 << 31)) {
334             armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
335         }
336         if (value & (1 << 28)) {
337             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
338         } else if (value & (1 << 27)) {
339             s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
340             gic_update(&s->gic);
341         }
342         if (value & (1 << 26)) {
343             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
344         } else if (value & (1 << 25)) {
345             s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
346             gic_update(&s->gic);
347         }
348         break;
349     case 0xd08: /* Vector Table Offset.  */
350         cpu = ARM_CPU(current_cpu);
351         cpu->env.v7m.vecbase = value & 0xffffff80;
352         break;
353     case 0xd0c: /* Application Interrupt/Reset Control.  */
354         if ((value >> 16) == 0x05fa) {
355             if (value & 4) {
356                 qemu_irq_pulse(s->sysresetreq);
357             }
358             if (value & 2) {
359                 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
360             }
361             if (value & 1) {
362                 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
363             }
364             if (value & 0x700) {
365                 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
366             }
367         }
368         break;
369     case 0xd10: /* System Control.  */
370     case 0xd14: /* Configuration Control.  */
371         /* TODO: Implement control registers.  */
372         qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
373         break;
374     case 0xd24: /* System Handler Control.  */
375         /* TODO: Real hardware allows you to set/clear the active bits
376            under some circumstances.  We don't implement this.  */
377         s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
378         s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
379         s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
380         break;
381     case 0xd28: /* Configurable Fault Status.  */
382     case 0xd2c: /* Hard Fault Status.  */
383     case 0xd30: /* Debug Fault Status.  */
384     case 0xd34: /* Mem Manage Address.  */
385     case 0xd38: /* Bus Fault Address.  */
386     case 0xd3c: /* Aux Fault Status.  */
387         qemu_log_mask(LOG_UNIMP,
388                       "NVIC: fault status registers unimplemented\n");
389         break;
390     case 0xf00: /* Software Triggered Interrupt Register */
391         if ((value & 0x1ff) < s->num_irq) {
392             gic_set_pending_private(&s->gic, 0, value & 0x1ff);
393         }
394         break;
395     default:
396         qemu_log_mask(LOG_GUEST_ERROR,
397                       "NVIC: Bad write offset 0x%x\n", offset);
398     }
399 }
400 
401 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
402                                  unsigned size)
403 {
404     nvic_state *s = (nvic_state *)opaque;
405     uint32_t offset = addr;
406     int i;
407     uint32_t val;
408 
409     switch (offset) {
410     case 0xd18 ... 0xd23: /* System Handler Priority.  */
411         val = 0;
412         for (i = 0; i < size; i++) {
413             val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
414         }
415         return val;
416     case 0xfe0 ... 0xfff: /* ID.  */
417         if (offset & 3) {
418             return 0;
419         }
420         return nvic_id[(offset - 0xfe0) >> 2];
421     }
422     if (size == 4) {
423         return nvic_readl(s, offset);
424     }
425     qemu_log_mask(LOG_GUEST_ERROR,
426                   "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
427     return 0;
428 }
429 
430 static void nvic_sysreg_write(void *opaque, hwaddr addr,
431                               uint64_t value, unsigned size)
432 {
433     nvic_state *s = (nvic_state *)opaque;
434     uint32_t offset = addr;
435     int i;
436 
437     switch (offset) {
438     case 0xd18 ... 0xd23: /* System Handler Priority.  */
439         for (i = 0; i < size; i++) {
440             s->gic.priority1[(offset - 0xd14) + i][0] =
441                 (value >> (i * 8)) & 0xff;
442         }
443         gic_update(&s->gic);
444         return;
445     }
446     if (size == 4) {
447         nvic_writel(s, offset, value);
448         return;
449     }
450     qemu_log_mask(LOG_GUEST_ERROR,
451                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
452 }
453 
454 static const MemoryRegionOps nvic_sysreg_ops = {
455     .read = nvic_sysreg_read,
456     .write = nvic_sysreg_write,
457     .endianness = DEVICE_NATIVE_ENDIAN,
458 };
459 
460 static const VMStateDescription vmstate_nvic = {
461     .name = "armv7m_nvic",
462     .version_id = 1,
463     .minimum_version_id = 1,
464     .fields = (VMStateField[]) {
465         VMSTATE_UINT32(systick.control, nvic_state),
466         VMSTATE_UINT32(systick.reload, nvic_state),
467         VMSTATE_INT64(systick.tick, nvic_state),
468         VMSTATE_TIMER_PTR(systick.timer, nvic_state),
469         VMSTATE_END_OF_LIST()
470     }
471 };
472 
473 static void armv7m_nvic_reset(DeviceState *dev)
474 {
475     nvic_state *s = NVIC(dev);
476     NVICClass *nc = NVIC_GET_CLASS(s);
477     nc->parent_reset(dev);
478     /* Common GIC reset resets to disabled; the NVIC doesn't have
479      * per-CPU interfaces so mark our non-existent CPU interface
480      * as enabled by default, and with a priority mask which allows
481      * all interrupts through.
482      */
483     s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
484     s->gic.priority_mask[0] = 0x100;
485     /* The NVIC as a whole is always enabled. */
486     s->gic.ctlr = 1;
487     systick_reset(s);
488 }
489 
490 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
491 {
492     nvic_state *s = NVIC(dev);
493     NVICClass *nc = NVIC_GET_CLASS(s);
494     Error *local_err = NULL;
495 
496     /* The NVIC always has only one CPU */
497     s->gic.num_cpu = 1;
498     /* Tell the common code we're an NVIC */
499     s->gic.revision = 0xffffffff;
500     s->num_irq = s->gic.num_irq;
501     nc->parent_realize(dev, &local_err);
502     if (local_err) {
503         error_propagate(errp, local_err);
504         return;
505     }
506     gic_init_irqs_and_distributor(&s->gic);
507     /* The NVIC and system controller register area looks like this:
508      *  0..0xff : system control registers, including systick
509      *  0x100..0xcff : GIC-like registers
510      *  0xd00..0xfff : system control registers
511      * We use overlaying to put the GIC like registers
512      * over the top of the system control register region.
513      */
514     memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
515     /* The system register region goes at the bottom of the priority
516      * stack as it covers the whole page.
517      */
518     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
519                           "nvic_sysregs", 0x1000);
520     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
521     /* Alias the GIC region so we can get only the section of it
522      * we need, and layer it on top of the system register region.
523      */
524     memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
525                              "nvic-gic", &s->gic.iomem,
526                              0x100, 0xc00);
527     memory_region_add_subregion_overlap(&s->container, 0x100,
528                                         &s->gic_iomem_alias, 1);
529     /* Map the whole thing into system memory at the location required
530      * by the v7M architecture.
531      */
532     memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
533     s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
534 }
535 
536 static void armv7m_nvic_instance_init(Object *obj)
537 {
538     /* We have a different default value for the num-irq property
539      * than our superclass. This function runs after qdev init
540      * has set the defaults from the Property array and before
541      * any user-specified property setting, so just modify the
542      * value in the GICState struct.
543      */
544     GICState *s = ARM_GIC_COMMON(obj);
545     DeviceState *dev = DEVICE(obj);
546     nvic_state *nvic = NVIC(obj);
547     /* The ARM v7m may have anything from 0 to 496 external interrupt
548      * IRQ lines. We default to 64. Other boards may differ and should
549      * set the num-irq property appropriately.
550      */
551     s->num_irq = 64;
552     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
553 }
554 
555 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
556 {
557     NVICClass *nc = NVIC_CLASS(klass);
558     DeviceClass *dc = DEVICE_CLASS(klass);
559 
560     nc->parent_reset = dc->reset;
561     nc->parent_realize = dc->realize;
562     dc->vmsd  = &vmstate_nvic;
563     dc->reset = armv7m_nvic_reset;
564     dc->realize = armv7m_nvic_realize;
565 }
566 
567 static const TypeInfo armv7m_nvic_info = {
568     .name          = TYPE_NVIC,
569     .parent        = TYPE_ARM_GIC_COMMON,
570     .instance_init = armv7m_nvic_instance_init,
571     .instance_size = sizeof(nvic_state),
572     .class_init    = armv7m_nvic_class_init,
573     .class_size    = sizeof(NVICClass),
574 };
575 
576 static void armv7m_nvic_register_types(void)
577 {
578     type_register_static(&armv7m_nvic_info);
579 }
580 
581 type_init(armv7m_nvic_register_types)
582